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ABSTRACT: The paper presents a survey of modern term structure models and illustrate
how they can be used in measuring and hedging interest rate risk. Immunization strategies
can differ depending on whether one uses traditional duration measures or modern con-
tinuous-time term structure models. We illustrate this using the Vasicek one-factor term
structure model and the our parameter estimated using the Finnish money market data. With
our parameter estimates, the Vasicek model implies immunization strategies which are
clearly ditferent from the hedging implied by the traditional duration model.
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1. INTRODUCTION

The main aim of this paper is to present a survey of modern term
structure models and illustrate how they can be used in
measuring and hedging interest rate risk. There is a
considerably body of literature on interest rate hedging
concentrating on traditional, deterministic duration measures,
see for example Bierwag (1987) and references therein. At the
same time there is a distinct literature on the continuous-time
term structure models. These models are pricing models, i.e.
they give a price for interest-rate sensitive instruments. In
many cases the most prominent area of practical applications is
interest rate hedging. However, very little is written on these
applications. This gap we try to fill.

Furthermore we demonstrate that the implications of the
stochastic term structure models can differ essentially from the
implications given by the traditional duration models.
Especially we analyse the immunizated portfolios implied by the
Vasicek one-factor term structure model using parameter
estimates estimated in the Finnish money market data.

Increased interest rate volatility and increased sophistication
of financial engineering have stimulated the use of many new
kinds of interest-rate derivative instruments. The increased use
of interest rate contingent claims means financial institutions
need more sophisticated approaches to hedge their own balance
sheet.

Financial institutions have been using deterministic duration
measures to hedge their interest rate risk since the 70's. These
traditional duration measures do not, however, offer sufficient
guidelines to hedge the interest rate risk associated with
derivate instruments, which can be dependent on interest rates
in complex ways as is the case, for example, with bond options.

In case of complex (and non-complex) instruments one can use



stochastic duration measures, which are built upon sophisticated
interest rate models in contrast to the traditional duration
measures, which utilize very simple assumptions on the interest
rate process. In stochastic duration measures one utilizes the
modern literature on the determination of the term structure,
see e.g. Brennan and Schwartz (1979), Cox, Ingersoll and Ross
(1985) and Longstaff and Schwartz (1991). The basic idea of
building an immunizated portfolio is still the same as in the
case of traditional duration measures. An immunized portfolio or
balance sheet is created by computing the sensitivity of assets
and liabilities to changes in interest rates by using a
stochastic duration and by structuring the portfolio so that the
interest rate sensitivities are equated. In a immunizated

portfolio the interest rate risk is eliminated.

The outline is as follows. The next section presents continuous
time term structure models. In section 2.1 we discuss models in
which the term structure of interest rates are determined. In
section 2.2 we present a model where the observed term structure
is taken as given. Section 3 illustrates empirically how term
structure models can be used to hedge interest rate risk. The
last section presents some conclusions and suggestions for

practical applications.

Some of the continuous time term structure models are highly
mathematical, but we try to emphasize the economic logic of the
models. To get more rigorous presentations of the underlying
mathematics we refer the reader to Merton (1982) or Duffie
(1988).

2. PRICING INTEREST RATE CONTINGENT CLAIMS

2.1 Using Endogenous Term Structure

2.1.1 Partial Equilibrium Models

This section will present a brief exploration of continuous time

term structure models. In this Section we will present two one-



factor models, namely Vasicek (1977) and Cox, Ingersoll and Ross
(1985), which are based on the "traditional" approach to pricing
interest rate derivative instruments. In Section 2.2 we present
the Heath, Jarrow and Morton (1991) term structure model, which
utilizes the observed term structure of interest rates.

The traditional approach begins with a continuous trading
economy driven by a finite number of exogenously specified,
stochastic state variables. In partial equilibrium (arbitrage
approach) models as Vasicek (1977) we make basically ad hoc
assumptions on the functional form of market price of risk. In
equilibrium approach functional forms of the market price of
risk is obtained as part of the equilibrium. We will focus our
attention first upon the Vasicek one-factor partial equilibrium

term structure model.

In the Vasicek model the underlying factor is the instantaneous
interest rate r, which follows the diffusion process:

(1) dr = a(r, - r)dt + odw,

where a, 0 and r, = positive constants and
W(t) = Wiener process.

In Ornstein-Uhlenbeck's process drift a(r, - r) keeps pulling the
process towards its long-term mean. The constant r, can be
interpreted as the historical average of the instantaneous
interest rate. The constant a describes in turn the speed at
which the process converges to this mean. The process has a
limitation that the instantaneous spot rate can have negative
values with positive probability. This probability is small if
the interest rate is well above zero and the mean-reverting
tendency is sufficiently large.

We assume that the price at time t of a pure discount bond which
matures at time T is determined by the spot rate process over
the term of the bond. Thus we can apply Ito's formula to the
bond's pricing process P(t,T,r(t)) and express the bond price in



terms of a, o and the partial derivatives of the bond price:

(2) dP = P u(t,T,r) dt + P p(t,T,r) 4w,

where u(t,T,r) 1/P(t,T,r) [P, + a(r, - )P, + 1/2 o* P_],

p(t,T,r) - 1/P(t,T,r) o P, and

P., P.,, P, are first and second partial derivatives of

r rr

price with respect t and r respectively.

The next step is to use the so-called local arbitrage condition
that the price of risk q(t,T,r) (defined as the expected
instantaneous excess return above the riskless rate, divided by
the instantaneous standard deviation of return) is independent
of a bond's maturity, i.e. q(t,T,r) = q(t,r) for all T.

Furthermore Vasicek (1977) specifically assumes that the market
price of risk is a constant. This corresponds to the assumption
that the mean of the instantaneous rate of return on a bond is
the sum of the current instantaneous interest rate and the term
premium in the following way:

(3) p(t,T,r) r + q p(t,T,r),

where p(t,T,r) the mean of the instantaneous rate of

return on a bond with maturity date T,

r = the instantaneous interest rate,

q = the market price of risk and

p(t,T,r) = the standard deviation of the instantaneous

rate of return on a bond.

Substituting for p and p from equation (2) gives the
so-called fundamental partial differential equation:

(4) P, + a(r* - r)P, + 1/2 o> P,_ - TP 0,

]

where r* = r, + go/a.



The bond price is the solution to the partial differential
equation using the boundary condition that the price of the bond
corresponds to its nominal value at maturity. The basic
difference with respect to the Black-Scholes option pricing
model, the logic of which the Vasicek model follows, can already
be seen from (4). The differential equation (4) includes

the market price of risk, q, which is a utility dependent
parameter. The pricing formula will not be independent of risk

preferences as the Black-Scholes option pricing model is.

In the Vasicek case the resulting term structure equation is of

the form:
(5) R(t,T) = R(») + (r(t)-R(=)) al%l-(l-e'““) +
Zgj—- (1-e7)?,
where M =T - t = the maturity of the bond maturing at T and

R(») = the yield on a very long-term bond, as T -> «,

is the following:
(6) R(w) = 1, + oq/a - % o*/a’ = r* - % o%/d’.

In order to determine the term structure of interest rates
according to the equations (5) and (6) we need an observation of
the instantanous interest rate, r(t), and parameter estimates of
a, r* and o?. The market price of risk, q, is not needed to
estimate separately.

There is a considerable number of other works where the
instantaneous spot rate also serves as a state variable. See for
example Dothan (1978) and Brennan and Schwartz (1977) and

for empirical comparison of alternative specifications of short-
term interest rate processes Chan, Karolyi, Longstaff and
Sanders (1991). Single-factor models have a drawback in that
they imply that the instantaneous returns on bonds of all



maturities are perfectly correlated. This feature does not
appear in multi-factor models. Brennan and Schwartz (1979) have
presented a model where the term structure is determined by two
state variables, namely by the instantaneous spot rate and the
console rate. Brennan and Schwartz were not able to present the
closed form solutions as in (5) for a partial differential

equation.

Above we had to assume that the particular form of the risk
premium is correct. As pointed out by Cox, Ingersoll and Ross
(1985), the arbitrage approach has a limitation in that it
provides no way of guaranteeing that the obtained term structure
is supported by any underlying economic equilibrium. The
functional form of the market price of risk and so the risk
premiums are not determined in the model endogenously. The next
section briefly presents a model which removes this limitation.

2.1.2 General Equilibrium Models

The Cox, Ingersoll and Ross (1985), CIR, model differs from
the arbitrage models in the respect that it is a general
equilibrium model where the risk premiums are determined

endogenously.

In the CIR model the term structure is determined within a
general equilibrium in which firms face a stochastic investment
opportunity set and identical agents, with time-additive
logarithmic utility, maximise the expected utility of lifetime
consumption. Niskanen (1991) presents a good review on the CIR
model and its links to the earlier models. CIR describe a number
of models, but the empirical analysis has focused on the special
case in which there is one state variable and where both this
and the instantaneous short rate follow a 'square-root' process:

(7) dr = x(6 - r)dt + o/r 4dw.

In (7) ¥ is the mean reversion coefficient (a in equation 1),
® is the mean of the process (r, in equation 1) and o is a



constant governing the scale of changes in r. The main
difference compared to equation (1) is that the volatility term
incorporates the level of the interest rate. This means that the
absolute variance of the interest rate increases when the
interest rate itself increases implying a heteroscedastic
process. The second difference compared to the process presented
by equation (1) is that negative interest rates are now

precluded.

In the CIR model the fundamental partial differential equation

is as follows:
(8) P, + x(6* - r)P, + 1/2 ¢* P, - TP = O,
where 6* = 8 - Ar/k.

The factor A is the covariance of changes in the interest rate

with percentage changes in optimally invested wealth.

The resulting term structure equation is:

(9) R(t,T) = 1/(T-t) * (-log A(t,T) + B(t,T)r(t)),
where

2 Y (e[Y(T-l)(T-t)l /2 _1) 21(9/0'2
(10) A(t, T) =

(y + x + A)(e'™V-1) + 2y

z(ev('r-l)_l )
(11) B(t, T) = '
(y +x + A)(e"™P-1) + 2y
(12) Yy = ((x + A)2 + 20?%)4.

As in the Vasicek model, the term structure is determined by the
parameters of the instantaneous spot rate process - x, 6, o -
and the utility dependent parameter A. One must notice that the

volatility parameter, o, is not the same as in the Vasicek



model.

The CIR term structure model has been modificated by several
authors. Ahn and Thompson (1988) include the possibility of
jumps in the instantaneous spot rate process by adding a Poisson
process term in equation (7). Longstaff (1989) on the other hand
allows technological change to affect production returns
nonlinearly, which implies that the instantaneous risk-free rate

follows the following process:!
(13) dr = x(6 - /r)dt + o/r Aw.

The main difference is that the restoring force is proportional
to the term (06 - /r) rather than (6 - r) as in previous models.

Perhaps the most interesting extension has been done by
Longstaff and Schwartz (LS) (1991). LS developed a two-factor
model of the term structure by using the framework of CIR.

As in the CIR, Longstaff and Schwartz begin with unspecified
factors that affect (the productivity and returns on physical
investments), but make transformations to the factors that are
easily observable.? The first factor is the same as in the
previous models, i.e. the short-term interest rate. The second
factor is the volatility of the short-term interest rate
changes. LS were able to derive closed-form expressions for

discount bond prices.

1 In the CIR (1985) model the change in production
oportunities over time is described by a single state variable.
The means and variances of the rates of return on the production
process are proportional to this state variable. Longstaff
(1989) allows them to be proportional to the nonlinear term X?,
where X is a state variable referred above.

2 In principle one can construct models that have some
macroeconomic variables such as terms of trade or consumption as
a state variables. Market participants must, however, use
pricing models daily or even more frequently. Compared to the
short-term volatility of asset prices statistical observations
of macroeconomic variables change much more slowly. We would
only have marginal gain by adding new slowly changing state
variable to our pricing equation.



Above we presented term structure equations implied by

the Vasicek and CIR models. These frameworks can also be used to
derive valuation formulas for interest rate dependent derivative
instruments.

Cox, Ingersoll and Ross presented an analytical solution for
European bond options. Longstaff and Schwartz were also able to
present closed form solution for European bond option with two
factors. Jamashidian (1989) has solved the price of the European
bond option analytically in the case of the Vasicek model. The
pricing formula resembles the famous Black and Scholes stock
option pricing model with changes in variables. We will postpone
the option pricing model presentation until the next section in
connection with the Heath, Jarrow and Morton model.

The solution method is usually the same as with the term
structure equation. The fundamental p.d.e is solved with the
relevant boundary conditions. In the case of the bond call
option the relevant boundary condition is the payoff function
for the call option at maturity. That is max[0, P - K), where P
is the price of the bond and K the strike price of a European
call option on a bond.

In many cases there is no analytical solution to the fundamental
partial differential equation. In these cases one must use

numerical techniques to solve it.

2.2 Using Exogenous Term Structure

In this section we will present the model of Heath, Jarrow and
Morton (1991). In some recent papers such as Heath, Jarrow and
Morton (HJM) and Turnbull and Milne (1991) the initial term
structure of interest rates is taken as given. This differs from
previous models, where bond and option prices were determined
within the model assuming that the instantaneous spot rate can

serve as a sufficient state variable.

The new approach is essentially aimed at pricing interest rate
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dependent derivative instruments such as options on bonds or
options on interest rate futures. However, as Brenner (1989) has
shown in the context of HIJM-model, we can also derive duration

measures for bonds.

A few words on the mathematical approaches to solve the pricing
problem are probably worthwhile. In the previous section the
pricing formulas were acquired by deriving the so-called
fundamental partial differential equation and solving it with a
relevant boundary condition. It produces in some cases closed-
form solutions for the term structure equation and option
pricing formulas, but in many cases pricing formulas must be
solved numerically. HJM, as well as Turnbull and Milne (1991)
and Stapleton and Subrahmanyama (1991), use the so-called
martingale approach to solve the pricing problem.

The martingale (or risk-neutral) representation was first
employed by Cox and Ross (1976) for option pricing and was later
developed more formally by Harrison and Kreps (1979).

According to Harrison and Kreps the asset prices are arbitrage-
free only when the prices are martingales under the specific
probability measure. The martingale representation yields a
price equal to the expected value under the martingale measure
of the product of the terminal value times a discount factor
that corresponds to rolling over the shortest maturity default-

free bonds.

The stochastic discount factor is a particularly natural choice
in pricing interest-rate derivative securities. In HJM the
discount factor is the price of a money market account rolling

over at r(t), i.e

t
(14) B(t) = exp(ojr(y)dy).

Next we define the relative bond price for a T-maturity bond as
Z(t,T) = P(t,T)/B(t). The bond price is expressed in units of
money market account.
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In Section 2.2 we used the so-called local arbitrage condition
that the market price of risk is independent of bond's maturity.
Heath, Jarrow and Morton establish the equivalence between this
and two other alternative conditions given that there are no
arbitrage opportunities in the markets. These alternative
conditions are: (i) a existence of unique, equivalent martingale
measure such that relative bond prices are martingales for all
maturities, (ii) the specific form of the forward rate drift
under the martingale measure.

Condition (i) implies that there is a unique, equivalent
martingale measure so that E*[Z(T,T)I F(t)] = Z(t,T), where
E*(.) denotes expectations with respect to the probability
measure Q*. The same kind of statement can be also used in a

straightforward way in pricing contingent-claims.

Heath, Jarrow and Morton concentrate on the term structure of
forward rates and their evaluation in time. The HJM paper's
discrete time forerunner was a binomial model by Ho and Lee
(1986). The HJIM model can be seen as a generalization of the Ho

and Lee model.

We will present only HIM's simplest model, where there is only
one shock affecting the forward rate and the volatility
parameter is a constant. Heath, Jarrow and Morton start by
defining the forward rate process. In this case they assume that
the forward interest rate follows the following process:

(15) df(t,T) = a(t,T)dt + odW(t),

where f(t,T) = the instantaneous forward rate at
time t for date T.

Using the martingale condition they write the resulting bond's

pricing formula as:
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T
(16) P(t, T) = exp(- j(f(o,y> - £(0,t))dy -(0%/2)t(T-t)? -
t

(T-t)r(t))

To get more intuition in the above equation we can use the
definition of interest rates and forward rates and express the

equation in the following form:
(17) R(t,T) = F(0,t,T) - £(0,t) + (0%/2)t(T-t) + r(t),

where F(0,t,T) is the forward rate at time 0 applying to the

time interval t to T.

Equation (17) states that the (T-t) period interest rate at time
t depends on the slope of the initial forward rate curve,
F(O,t,T) - £(0,t), the disturbance term, (0?/2)t(T-t), which
grows as the maturity grows, and instantaneous spot rate time t,
r(t).

The equation (16) gives an arbitrage-free bond price in an
artificial economy, where the discounted bond prices are
martingales with respect to the probability measure. In order to
price bonds in a real observable world, we would need
probability measures governing term structure movements that
incorporate risk preferences. However, in order to price
contingent claims, which are independent of the preference
structure, the artificial economy is sufficient. That is exactly

what Heath, Jarrow and Morton do.
We will illustrate the contingent-claim pricing by an example of
a European call option on the bond P(t,T) with an exercise price

of K and a maturity date t*, where 0 < t < t* < T,

Let C(t) be the value of this call option at time t. The cash
flow to the call option at maturity is:

(18) C(t*) = max [P(t*,T) - K, O].
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Using the martingale pricing condition for contingent claims we
can claim that the value of the call at time t can be written

as:

(19) C(t) = E*(max [P(t*,T) - K, O]B(t)/B(t*) | F(t)).

The expression (19) is not itself useful in practical pricing
purposes, but it can be simplified to the following option

pricing formula:
(20) C(t) = P(t,T) N(h) - KP(t,t*)N(h-o,(M)¥?)

where h = [log(P(t,T)/KP(t,t*)) +
(1/2)0,’(t*-t)]1 ou(t*-t)V? ,
M = T-t¥,
o, = variance of the instantanous return on the forward
price of a T-maturity bond and

N(.) = the cumulative normal distribution.

The resemblance between equation (20) and the Black-Scholes
formula is clear. The value of the bond option is equal to the
Black-Scholes formula, where the bond price, P(t,T), replaces
the stock price, P(t,t*), plays the role of exp(-r(T-t)) in the
B-S model and o, replaces the volatility of the stock.

This particular bond option pricing formula has also been
derived by several other authors. Turnbull and Milne used a
general equilibrium model. They present closed form solutions
e.g. for European options written on Treasury bills, interest-
rate forward contracts, interest-rate futures contracts,
Treasury bonds and interest-rate caps. Jamshidian (1990) derived
the bond option formula in the Vasicek term structure framework.
Stapleton and Subrahmanyam (1991) have also derived a bond

option pricing formula.

A final note on the division of endogenous and exogenous term
structure models used above is justified. In practice the
difference is not necessarily so fundamental. Also Vasicek and
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CIR models can be expressed in terms of the observed term
structure of interest rates and the observed term structure of
spot and forward interest rate volatilities; see Hull and White
(1990).

3. HEDGING INTEREST RATE RISK

3.1 Deterministic and Stochastic Duration Measures

In the previous section we made a brief exploration of the
continuous time term structure models. These models can play a
prominent role in interest rate hedging. They offer the
possibility of using consistent models in pricing of different
interest rate sensitive assets and derivative instruments and
calculating duration measures. That helps to assess and hedge
interest rate risk. We will show that hedged portfolios implied
by the term structure models can differ essentially from the
portfolios implied by the traditional duration measures.

We will start with a discussion of the traditional duration
measures. The modified duration will serve as an example of many
deterministic duration measures. Duration measures are aimed to
measure interest rate risk, i.e. risk arising unexpected term
structure movements. We will see that duration, as used in
literature, is essentially an elasticity measure of bond price
sensitivity with respect to the change in some index of the term
structure. We illustrate that the elasticity measure, -P_./P, is a
valid risk measure also in continuous-time term structure

context.

Most of the duration literature has concentrated on
deterministic duration measures, see for example Bierwag (1987).
Macaulay (1938) presented duration measure as a weighted average
of a coupon stream and principal payment. The role of the
duration as a proxy for interest rate risk was originally
proposed by Hicks (1939). The modified duration derived by Hicks
and afterwards by Hopewell and Kaufman (1973) is attainded by
computing the differential of the bond price with respect to the
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yvield to maturity. The bond price is equal to the sum of the
present values of the stream of coupon payments and of the final

payment at maturity:

T C(t) A
(21) P(t,T) = L + ,

t=1 (1l+y)* (1+y)T
where C(t) = coupon payment at time ¢t,

A = final payment at maturity,
y = yield to maturity.

Differentiating (2) with respect to y we obtain the following

equation:
T tC(t) TA
(22) dp = - [ L - 1 dy/(1+y).
t=1 (1l+y)* (1+y)T
This can be written as
(23a) dP/P = - D dy/(1l+y) = - D,,4 dy or
(23b) D,s = - dP/dy (1/P) and
T tC(t) TA
[ X +
t=1 (1l+y)° (1l+y)T
(23c) D =
T C(t) A
[ X + 1
t=1 (1l+y)°® (1+y)°

where D is the duration and D, ,; = D/(1l+y) the modified duration.

It is well known that the modified duration formula holds only
when the term structure is flat and the stochastic process
restricts interest rate movements to parallel changes.

There are several modifications that allow different discrete
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interest rate changes, see Khang (1979) for a particular
example. These duration measures, however, still have the
drawback that they either rely on very resrictive assumptions or
even worse allow arbitrage opportunities as pointed out by
Ingersoll, Skelton and Weil (1978).

Next we investigate the proper duration measure in continuous-
time term structure framework, where the arbitrage opportunities
are precluded. We verify that the semi-elasticity, i.e. P_./P, is
a proper measure for risk also in this context. The elasticity
is now calculated based on the stochastic term structure model.

We use an example of the one-factor model starting from the

following general diffusion process:

(24) dr = £f(t,r) dt + o(t,r) 4w,

where f(t,r) is drift and o(t,r) variance. We have the Vasicek
model if we define f(r,t) = a(r, - r) and o(t,r) = o.
Respectively we have the CIR one-factor model if we define
o(t,t) = o/r.

Using Ito's lemma we can state that bond price satisfies the

following equation:

(25) dp/P = u(t,T,r) dt - p(t,T,r) 4w,
where p(t,T,r) = P./P + £(t,r)P./P + 1/2 o* P, /P and
p(t,T,r) = - o(t,r) P./P.
Since o(t,r) is common to all bonds, - P_./P is a valid measure of

risk associated with the unexpected change in instantaneous



interest rate.?

Next we extent our analysis to cover both assets and
liabilities. If we define the price of the liabilities to be P*"
and the price of the assets P?, the stochastic component of the

return of the portfolio will be

(26) (o PP./P* - o P'./P") dW.

By selecting assets and liabilities so that

(27) P*./P* = P /P,

total return will be independent of stochastic component 4dW and
total return must be zero. We state that the position is
immunized, when assets and liabilities are structured so that
the stochastic component is eliminated from our portfolio.
Portfolio is immunizated when equation (27) holds. In a
immunizated portfolio the interest rate risk is eliminated.

In practice immunized portfolios are created by computing the
sensitivity of assets and liabilities with respect to changes in
factors using duration measures, and structuring the portfolio
so that the interest rate sensitivities are equated. In many
cases we also require that the value of the liabilities equals

3 Brenner (1989) has shown that in the context of the HJIM
model the local percentage change in bond price can be presented
as:

T
(25b) dP/P = u(t,T) dt + (- Io(t,v) dv) dw,
t

where o(t,v) is the forward rate volatility coefficient. The
drift, p(t,T), depends on the initial forward rate curve and the
forward rate process' drift and volatility coefficient. The
local percentage change due to the unexpected change in forward
rate curve is the integral of the forward rate volatility
coefficient over the remaining life of the bond. As discussed in
Section 2.2 HJIM price bonds only in the artificial economy.
However, as the forward rate volatility coefficient is
independent of preference restrictions, we can acquire duration
measures also in HJM-model.
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the value of the asset, P* = P*. Risk is then eliminated, when P*
= P,
Above we used a one-factor model to investigate a valid risk
measure. The example can be generalized to a n-factor case
straightforwardly, see for example Peltokangas (1991, pp. 40 -
41) on a two-factor case. Now we are ready to define a general

stochastic duration measure.

The stochastic duration is a bond price semi-elasticity with
respect to a change in the underlying factor f,:*

oP(r,t,T) / Of,

(28) Di(rltrT) = =
P(r,t,T)

where P(r,t) = price of the bond,
f, = factor i.

We use the term structure models to calculate derivatives and

prices of different kind of instruments.

Recall that in equations (24) and (25) we did not use any
particular asset specific restrictions such as boundary
conditions. In fact we can derive stochastic duration measures
for any asset X, and factor f, given a specific stochastic model
for this asset price. For example, if we substitute the price of
the bond, P, by the price of the European call option, C, we can
derive a duration measure for this particular option.

In the one-factor model case, where the factor is usually the
instantaneous interest rate as above, the duration gives a
bond's (or other asset's) semi-elasticity with respect to the

“ This is not the only possibly definition of duration. For
example, Cox, Ingersoll and Ross (1979) and Brenner (1989) call
the price elasticity of a security as a basis risk. A security's
(coupon bond) duration is defined in turn as the maturity of the
pure discount bond with the same basis risk. See more from CIR
and Brenner.



- 19 -

marginal change in the instantaneous interest rate. In the
multi-factor model we have more than one duration measure. For
example in the Longstaff-Schwartz (1991) two-factor term
structure model, where the factors are the instantaneous
interest rate and the volatility of the instantaneous interest
rate changes, we can derive exposures to changes in both the
interest rate and the volatility. The portfolio is immunized
when both exposure measures are separately equated on both sides
of the balance sheet.

The sensitivity of a portfolio to the factor change is simply
the sum of each asset's sensitivities to that factor weighted by
the asset's share in the value of the portfolio. The portfolio
is immunized when the weighted sum of elasticities is equal

zZero.

Immunization can be seen as analogous to the Black-Scholes
continuous hedge strategy in option pricing, where portfolio
proportions depend on the sensitivity of the option price to a
change in the underlying stock (S). In the continuous trading
economy the perfect hedge is acquired by restructuring the

portfolio continuously.

The duration measure in turn has a close counterpart in the
option hedge literature, namely delta dP/dS, which measures
option price sensitivity to the underlying asset's changes.
See more in Hull (1989) chapter 8. In the option literature
there are several other partial derivatives with respect to
other model variables. One of the most important is gamma,
defined as 9?P/dS?, which is an option price's second derivative
with respect to the stock price. It measures the delta's
elasticity with respect to the stock price movements. In the
interest rate hedging literature the corresponding measure is
convexity. Convexity measures the rate at which the duration
itself will change as the factor changes.

The mathematical definition of convexity is:
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9* P(r,t,T) / 9f}
(29) C(r,t,T) = - ,
P(r,t,T)

where the variables are the same as above.

If convexity is small, duration changes only slowly. If
convexity is large, however, duration is sensitive to the
changes in the underlying factor values. In this case the
adjustments to keep portfolio hedged need to be made frequently.

The fact that in practice trading is done discretely and the
possibility that a factor's values can sometimes experience
discrete jumps require the measurement of exposure of a measure
of exposure. Bond elasticity, being a marginal rate of change,
is not exactly equal to the total percentage price change for a
sudden jump in a factor even it can approximate it. The
convexity can measure how risky our position is with respect to

the sudden jumps.

Above we already pointed out that hedging is essentially
dynamic. We need to restructure the portfolio as the factor
values change. Moreover the duration will change as the maturity
of fixed income assets changes. The position, which was hedged
last month will not necessarily be hedged today any more as the
maturity of asset has changed. Hedging requires active
management. As Maloney and Logue (1989) have demonstrated active
management can produce significant transactions costs, which can
affect the return on the immunized portfolio.

3.2 Stochastic Duration Measures in Practice

We will illustrate the use of stochastic duration measures by
simple examples. In the first case, we suppose that our aim is
to immunize 7-year discount bond debt with 5- and 10-year
discount bonds. We require that in our portfolio the value of
assets equals the value of the liabilities at time t (i.e when

we hedge). Our task is find how much of these bond we must buy.
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Let N;' and N,;? be the amounts of 5 and 10-year bonds
respectively. The amounts N;' and N,,° for a given instantaneous

spot rate level and term structure are obtained by solving:
(30a) N;'P(5) + N, ,P(10) = 100P(7)
(30Db) Ns'P.(5) + N ,?P_.(10) = 100P_(7)

To derive the hedged portfolio we use both stochastic and
deterministic duration measures. The stochastic duration will be
based on the Vasicek term structure model. For the deterministic
model P(r,,T) = exp(-r,T) and hence P (r,,T) = -T exp(-r,T). We
suppose that the observed term structure corresponds exactly to
the term structure implied by the Vasicek term structure model.
We also assume that under the deterministic model the changes of
different maturity interest rates change by an equal amount.

Thus we allow horizontal term structure movements.®

In order to apply the Vasicek model we need estimates for r*, o?
and a. We use parameters estimated from weekly Helibor-rates.

The estimated parameter values are r* = 0.1236, o2 = 0.0293 and a
= 0.5467. See equation (5) and (6) in Section 2.1. The
estimation as also the data is explained in more detail in the
appendix. Furthermore we assume that the level of the

instantaneous interest rate is 0.10.

The results from the immunization simulations are presented in
table 1. The hedged portfolios corresponding to both the Vasicek
model and the simple deterministic duration are presented. The
first two rows present the numbers of the 5- and 10-year
discount bonds that will immunize a 7-year target bond. The

> An alternative way would be to assume flat term structure,
when under the deterministic model the term structure can be
solely determined by the maturity and the instantanous interest
rate. The change in the instantanous interest rate would induce
horizontal changes in the term structure. In this setting the
duration, presented by the equation (23b), is a valid risk
measure.
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stochastic model gives a relatively greater investment in the

long-term asset.

In Figure 1 we have N;! and N,,> as a function of T, the maturity
of the first bond. N, is zero when T=7 i.e. when the first
bond's maturity equals the target bond's maturity. When T is
less than seven years, N,,’ is always greater than N;'. Both N;!
and N,,2 will start to increase rapidly in absolute terms as N;!

approaches the maturity of the second bond.

Table 1. Amounts of two discount bonds to immunize a target

bond. The face value of a target bond is assumed to be 100. The
2

parameter values used in the Vasicek model are r* = 0.1236, o
0.0293 and a = 0.5467.

The Amount of Amount of Target

model bond 1 bond 2 bond

N51 NIO2 N73
Vasicek 24.74 89.16 100
Simple 51.39 50.15 100

N1/21 NZ2 Nl3
Vasicek 54.40 47.13 100
Simple 64.35 35.59 100

—

NI/Z:L le st
Vasicek -115.43 212.17 100
Simple -180.83 281.00 100

- ————————

In the second case we are interested in hedging a l-year bond
with a combination of 1/2 and 2-year bonds. The difference

between the stochastic and deterministic models is the same as
above: the Vasicek model gives a relatively greater investment

in the longer-term asset.

In the last example we hedge a 2-year target bond with
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1/2- and l-year bonds. In this case the immunized portfolio is

acquired by going short with 1/2-year discount bonds and going
long with l-year bonds.

Figure 1. Amount of bond number one as a function of T
N, N2 nl
T 10

200t

150+

1004

50T

-50+4

-100+
N2
10

Under the deterministic model a small change in the
instantaneous interest rates induces a movement in the level of
the entire term structure. This implies that the price of the
long-term bond is very sensitive to interest rate changes. Under
the stochastic model the sensitivity of the long-term bond price
is smaller, which can be seen from durations. Under the
deterministic model the duration of the discount bond is simply
the time to maturity. In the Vasicek model the duration of 5-,
7- and 10-year bonds with above described parameter values are
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1.71, 1.79 and 1.82 respectively. The riskiness measured by the
duration is increasing in maturity much more slowly in the
stochastic model than in the deterministic model. The reason is
that in the Vasicek model the instantanous interest rate keep
pulling back to it's long-term mean when a is positive and
different from zero. The unexpected change in the instantanous
interest rate will not affect the long-term interest rates any
greater extent, because the instantanous interest rate is

expected to return toward it's long-term mean.

The figure 2 shows the relationship between the value of a and
and duration for different maturities. As the value of the

a approaches zero the difference between the durations implied
by the stochastic and deterministic models dimish. For example,
when a is 0.001 the duration of the 5-year discount bond in the
Vasicek model is 4.99. In this case the stochastic process of
the instantanous interest rate is close to the random walk. The
unexpected changes in the short-term interest rates are not
expected to perish so that the term structure moves very much in

the same manner as under the deterministic model.

Now we can discuss the relative advantages of using stochastic
duration measures as compared to the deterministic duration
measures. One major advantage is that one particular term
structure framework gives us consistent models to price and
hedge different interest-rate sensitive instruments. When
hedging an investor can use the same parameter estimates and the
same set of factors in calculating elasticities for different
instruments. This ensures that assumptions, for example, on
interest rate volatility are consistent when pricing and hedging
different instruments.
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Figure 2. The relationship between the value of a, maturity and
duration.

DuraTION

100
TIME TO MATURITY

The stochastic duration measures are also natural when hedging
complex instruments such as options on bonds or options on
interest rate futures. Furthermore traditional duration measures
do not provide any guidance in hedging against possible second
factors as the risk of volatility changes in Longstaff and
Schwartz-model. We can also simulate the impact of parameter
changes in our portfolio. For example, in the Vasicek model we
can study how our hedging will change as the estimate of a, ¢’ or
r* changes.

In the above examples we assumed that the observed term
structure corresponds exactly to the term structure implied by
the Vasicek model. This is hardly a general case. The
theoretical and observed term structures will differ in most
cases, even though we are fitting the model to the observed
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data. This can cause problems in immunization. Even thought the
equations (30a) and (30b) hold for our portfolio, the market
value of assets and liabilities can differ because theoretical
and observed bond prices differ. It can be that equation (30a)
no longer holds, when theoretical prices are replaced with
observed market prices. One possible solution is to use market
prices in equation (30a) and stochastic model in equation (30b).
Now the drawback is that restrictions implied by these equations

can be inconsistent for the given parameter values.

The basic idea of immunization appears to be simple, but
applications of stochastic duration measures can be quite
complex. As mentioned in Section 2.1, in many cases there is no
analytical solution to the fundamental partial differential
equation, in which case one must use numerical methods. The
practioners often prefer the simple models that are cheaper and
less time consuming, especially if they have a plethora of

different instruments to price and hedge.

The further complication as compared to the deterministic
duration measures is that the precision of stochastic duration
measures relies partly on the parameter estimates. The accuracy
of immunization is dependent on our estimation procedure and the

stability of the parameters.

Needless to say the stochastic duration measure essentially
depends on the specification of factors and factor risk
premiums. How many factors we need, what these factors are and
how they evolve over time are basically empirical questions.

Traditional duration measures have performed quite well when
compared to the stochastic duration measures in empirical
comparisons. For example Brennan and Schwartz (1983) compared
stochastic duration based on the two-factor term structure model
to the traditional duration model. In immunization simulations
the traditional and stochastic duration models yielded quite
similar results. This defends the use of traditional duration
measures in basic hedging situations where the portfolio does
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not include complex instruments.

The literature concerning the relative performance of different
stochastic measures is, however, still quite limited. For
example, it is an open research question how much better
immunization can be acquired when the volatility risk is also

incorporated in hedging as LS-model two factor model imply.
4. CONCLUSIONS

We have presented several basic approaches to modeling prices of
interest rate sensitive instruments. We noticed that there are
basically two ways of pricing these assets. We can either
determine the term structure of interest rates within our model
or take the term structure of interest rates as given. Bond
prices can only be determined in the first approach, but both
ways lead to pricing formulas for derivative instruments. The
choice of a proper framework is in some cases almost trivial as
both avenues can result in the same kind of pricing formulas

(e.g. Black-Scholes formula).

The term structure models can be used to assess and hedge
interest rate risk. We referred to duration measures based on
the stochastic term structure models as stochastic duration
measures. The stochastic duration measures have clear
theoretical benefits over the traditional duration measures.

The stochastic duration models pfeclude arbitrage opportunities.
We can use consistent models in assessing interest rate risk
using the stochastic duration measures. Furthermore, in the
case of two factor models as that of Longstaff and Schwartz we
can get price sensitivies also for other factors than short-term
spot rate. We can assess interest rate risks arising from

different sources.

Immunization strategies can differ essentially depending on
whether one uses traditional duration measures or modern
stochastic term structure models. We used the Vasicek one-factor
term structure model and the parameters estimated using the
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Finnish money market data. With our parameter estimates, the
Vasicek model implies immunization strategies which are clearly
different from the hedging implied by the traditional duration
model. In some parameter values the difference between the
implications from the models can however diminish. This happens
when the instantanous interest rates follows a random walk.

The drawback of stochastic duration measures is that the
resulting formulas can be considerably more complicated than in
traditional duration measures. We must also rely on parameter
values in most cases, which must be estimated from the data.
Traditional duration measures can also yield satisfactory
results in practical situations. On the other hand there are
quite many open research questions concerning the stochastic
duration measures which can be answered only by further

empirical work.
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APPENDIX

The estimation was based on Helibor-rates. The Bank of Finland
calculated daily Helibor-rates (Helsinki Intervank Offer Rates)
for 1, 2, 3, 6, 9 and 12 month maturities as the average bid
rate for the bank's CDs quoted by the five large banks. The data
is weekly and starts from 6.1.1987 and ends at 19.02.1991. There

are 209 observations on each maturity.

The parameters were estimated by the GMM. The instruments used
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were lagged one-month interest rates. We estimate the model with
data in the level form in order to have all parameters
estimated. When using date in the first differences we have only
one parameter estimated, namely a.

Table 1 represent the results from estimation of the Vasicek
model. Table display parameter estimates, their t-statistics,
the GMM minimized criterion (x?) value, its associated degrees of
freedom and p-value.

Table 1. Estimating the Vasicek Model

Parameter estimates Goodness-of-fit
a o? r* %2 d.o.f p-value
0.5467 0.0293 0.1236 143.30 22 .000

(19.21) (6.45) (32.66)
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