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ABOUT "EXACTNESS" OF INDEX NUMBER FORMULAS IN DEMAND WORLDS

1. Intreduction

Afriat (1972), Diewert (1976)and others have defined and used the
concept exactness of an index number in the context of demand or

production theory. Their definition goes roughly as follows. Let

n

u{q), u: R}

.+~ R, be a, utitity function and C(p,q*) = min {CIC =
p+q & u(qg) > u(q*)} be the cost functicn or minimum expenditure

function for given reference prices p€H22 and quantities q*eﬂlz

+

which determine the reference utility level. Define the economic
(or true) price index P(p],po;q*) = C(p1,q¥)/C(p0,q*) as the ratio

of mininum expenditures to bye the utility (or welbeing, level of .

Jiving) determined by g*. P(p],pogq*) = P(p],pQ q) for ali p's when

1]
g* and q are indifferent, q* ~ q or u(g*) = u(q). The preferences
are homothetic if g* ~ q «» kg* ~ kq for all k€R _ . This can be
stated also using the demand system h(p,C) defined by: h(p,C) = q «

peq < C & u(q) > u(g) for all QGBQE such that p-q < C. Preferences

+
are homothetic if and only if for all k€I2++: h{p,kC) = kh(p,C).

For homothetic preferences P(p],po; g*) is invariant not only if

indifferent G:5 are inserted in the place of gq* but P(p],pog q*) =

1.0

P(p',p 5 @) for all g*,GeR)

p q —
s Ry By (pO qO)
f(p0 qo) is an exact price index for the given preferences if

P q

1T 1
In the homothetic case a function ("index") f'P%4n

1 :
(1) £(Py 99) = P(p'.p
P’ q

0; q¥)
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for ali (pO qO)GH?ii such that q° = h(po, po-qo) ard q1 = h(p1,p1,q1

)
This means that our f-function gives for all equilibrium situations
(po,qo), (p1,q]) just the correct value of the true price index. If

(1) holds for a function f it is often thought (and used) to rationalize
the use of that f as & price index. Index number theorists seem to think
that it is a kind of merit for a function f to satisfy (1) for some homo-
thetic preferences. The general idea seems to be that those f's that are
exact for some preferences (or particularly for some flexibie families of
preferences) are in some way more suitable index number formulas to be
used in more general situations alsc than those f's which are not exact
for any preferences (or are‘exact only for very restrictive preferences).
We will demonstrate that the fulfillment of (1) for a f by no means
quarantees its usefulness in other situations. The function f must
satisfy many other properties than (1) to be a wusefuil price index number
formula in more general situations, e.g. if the data is generated by some
other demand mechanism (preferences) than implicite in (1) or if p's

and q's in f(p; q;) change freely. These other properties that f should
satisfy are investigated in descriptive (or axiomatic, atomistic, test-

theoretic, statistical) index number theory, see e.g. Fisher (1922),

Eichhorn (1976), Eichhorn& Voeller (1976), Allen (1575) or Vartia (1976).



2. Examples, the Cobb-Douglas case

0
Vi
It is well-known that the weighted geometric average H(p:/p?) Vof

the price relatives (weighted by the old value shares w? - p?q?/po-qo)

is exact for the "Cobb-Douglas case" or when u(q) = Hqici, where c;is

are some non-negative constants. But because here w? = w} = p}ql/p]'q

1
Wy

1

(the new value shares), where q} = hi(p],p1-q1), also H(p}/p?)
1,1, 0

1, 0,2(%i*%;) . 4n
H(pi/pi) are exact. Any function f: R__ - R

00,0 0
P;4;/P q

and

5 coinciding

with H(p}/p?) ‘when (po,qo) and p],q1) are equilibrium points

is exact here.

Let's investigate more carefully the conditions determining equilibrium
points (p,q) in the Cobb-Douglas case. The demand system h(p,C) =
(h](P,C),...,hn(P,C))=-(h1(p,C)) may be written in numercus forms

which complicates the issue.

Its first representation uses only the parameters of c = (cj)

of the utility function u(q) = Hq1C1:

i A
@) hea0) = g ()
J
This 1is equivalent to
p.h. (p,C) C.
(3) T ; >:c1 s
J

which shows the utmost speciality of the CD-case:



by (3) the value share w, = piqi/p-q = piqi/C is constant (=cﬁ/ch)

;
for all equilibrium points (p,q) = (p, h(p.C)). Thus if (po,qo) is

N . .0 _ 00,0 0 _ -
any equilibrium point we know that wo o= piqi/p g = c1./>_cj and we

may reparametrize (2) and {3) by

_Cc .0

(4) hi(p,C) - 'p_1 ‘”]'
0
(5) Pih(psC)/C = wy.

This is the natural way to think the Cobb-Douglas case: it is the case

where the demand system is determined by the constancy of the value

share, i.e. by (5). From now on let (po,qo) be a fixed pair in H?E+

and w0 = (w?) = (p?'q?/po-qo). Now we can determine in a compact way
all the "index number fermulas f" which are exact in the Cobb-Dougias

case. They are functions f: B<2+ a»B?++ which satisfy

p] q] n 1 Op?q?/po'qo
(6) f( 0 o) = T (pi/P,-)
P q i=1
when w} = p}q}/p]-q1 = p?q?/po-qO = w? and are otherwise arbitrary.

For instance the following functions.satisfy (6):

"The logaritmic Paasche"

pl g L oPaimal g Wi
(7) fz(po qo) = Tp;/py) = (p;/p;)
0
1 1 0 v@iwi

, 1
(8) f3<g0 20) = Wp;/py)



"Vartia-Sato"

1 1.0
1 1 L(w WysWS )/ZL( )
9 f(° %) = nGelpd) 3
P g
11 11
= P4 / f (Cl P)
p0q] ¢’ p°

where L(x,y) = (x-y)/log(x/y) is the logarithmic mean of positive

numbers x and y, see Vartia (1976).

"Vartial"
1 11 0
ol g 1.0 L(piqg,p?q?)/L(p «q',p%+q")
(10) el ) = T(p:/ps)
600 i -1
P” q
p:qé Op]
e /f'
P -q 2 q* p
“Toraqvist”
p] 1 0 ;(w +w )
(1) (% %) = 1(pl/pd)
P q
p] 1 1. 0.%; (w /wo)]O
(12) fal ) = W(p;/p;)
8\ 0 0 i
P q
0
11 W
(13)  £,(P %) = n(glw wD)pl/ed) T,
" a T

where g: H!i+ - H%++ is any function satisfying g(wo,wo) = 1. Also all

the "factor antitheses" of these functions, i.e. functions f]O,...,f]7



satisfy (6). Note that because (9) and (10) satisfy the facter reversal

test (for all arguments) we have fgy = f17 and fip = Ti1g for all

1 1 T 1 1 1
(p )€H24n, not only for (p g JECD, where CD = {(p 9.) EHQqn I
0 0 0 0 0 0 4
P q P q P q
p}-q}/p]-q p?q?/p0 qo)} is the subset of BQfE where w? = w} and where

all the functions (7)-(14) coincide. If K: le+ > R, s any function

such that K(x,x) = x for all x€R__ (e.g. K(x,y) is some mean of x and y)

then any function

- ol g Al )1 ]
(]5) 0 O) - K(f ( 0 0: ( 0))’ 1,j = ]s~--,]4s 1
f(5,9) q 0 07 30

Js

i

is a function from E22+ to R . and satisfies (6). Take e.g. K(x,y)
X + 1946 sin(x,y), for which K(x,x) = x + 1946 sin (0) = X, choose
(i,3) = (3,15) and we have:
1 L o W]
(16) f(3,]5)( 0 O) (p1p1) +
1, 1.0
1,0 ‘/‘“’?”’1 pleg! 1,02,
1946 sin (1(p;/py) - /mla;/a”)

This formula (as well &s fz,...,f]7) is exact in CD-case which may be
thought to "ratiornalize" the use of (16) also in other situations.

0f course, no such conclusions should be drawn.



The problem is that (6) determines the function f only in the subset

(D < H?iz and we have given no rules to extend its definition to H%iz

from CD. Without such ruies all above mentioned functions are appropriate
extensions. By choosing functions g in (13) and K in (15) 1n0various
0:, 5

dn ! g . :
to E2++. And still more are easily invented. Al1 these functions are

ways we can generate infinitely many extensions of H(p}/p from CD
usefull in the CD-world by (6) but this does not say anything of their
usefulness in wider worlds, when w? # w}. Completely other kind of
tests (or properties) are required to judge if any of the functions
we have mentioned or some other functions satisfying (6) are useful

in wider contexts.

3. Examples, the CES-case

We have used the CD-case as an example because of its simplicity. But
the conclusions are not limited to this simple case. In the same way
we could generate an infinity of "exact index number formulas" e.g. in
the CES(o) case. In this Constant Elasticity of Substitution case, see
Bergson (1936), Uzawa (1962) and Shephard (197C), the utility function

has a representation

1
4 1/0-)

(17) u(q) = (£c;q; o)

where ci’s are non-negative and CES-parameter ¢ > 0. The great majority
of "exact index number formulas" in the CES(ou)-world would be useless in
more general situations. A remarkable fact shown by Sato (1976) is that

Vartia-Sato index (9), or



L(w],w )/zL(w

0
Ws)

;
3’
is exact for all CES(o)-worlds.

4" - R, coinciding with (i8) for all equi-

Therefore any tunction f: R | Bk

l1ibrium points in the CES(o)-wor]d, or for points in
1 1

(19) CEs(o) = {(Py Yp)eR
P q

4n 1

are any two equilibrium points compatible

with maximization of (17)}

HWe need to represent thi§ set more explicitely. Using demand system

g = h(p,C) any equilibrium point (p,q) satisfies q = h(p,p-q) and
conversely. Just like in the CD-case we have different representations

for h(p,C). A representation used e.g. by Lloyd (1975) is

(py/c;)”%C (py/e) %
(20) h.(p,C) = (54 (py/c, ) T- O)T/U-O) )
where
(200)  e(p) = (zc;(py/e;)'” ")) L (s Gplmy1/ (1-0)

is the price function, see Afriat (1972, p. 36). This 15

however an unillustrative representation. Let (p ,q )EH{ bc any

0 0 0 0

fixed pair which satisfies (20): q° = h(p ,p -q ). Then we have



0
h.(p,C) ps/P; ¢/c9
(21) Tog (- ) = =olog(— L ) + Tog{—t—=ns)
% (e(p)/e(p") e(p)/e(p)
0
p/p 0
= =010g{——tpt-) + ]0g(—£12~6—)
- P(pspG) P(p,p )

where CO = po-qO and P(p,po) is the economic price index

(22)  P(psp°) = e(p)/e(p’)

)1-011/(1-9).

T=g, 0
[\ch (pj/cj) /zcj(p:]/cj

This however simplifies considerably when we choose an other

parametrization by expressing the parameters CyseeesCy in terms of
TN

(po,qo). Using the normalization

1 1
y T R
(23)  xe; =T, ue)) = (5@ ) T0=1

and the first order conditions

(24)  au(@)/aa5= 2}

we get after some easy manipulations

0,1/0, 0, 0
= p2(a)/°

(25) c /p 9

(p?qg/po-qO)C:%r)

i

O
q.

1
i

1-1/0
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This gives ci's in terms of 'old value shares' w? = p?qg/po'qo and
'old quantities’ q?. Inserting this to {17) gives
7.1
1-1/0.7T-
(26)  u(q) = (zc;a, V)T

1
-1 e
(ZW?(qi/qg)] 5) 171/9

]

o-1 o]

(swi(a;/a9) @) O

This is a weighted moment mean (of order o = 1-1/0) of the quantity
relatives (qi/q?), weighted by the old value shares. Note that no
dimensional problems arise because value shares w? and quantity
relatives (qi/q?) are dimensioniess numbers, which are independent
of all units of measurement. Therefore (26) seems to be the naturai
parametrization. Note also that u(q) = 1 for all g's indifferent to
0

qQ, q~ q0 and u(q) 2 1 according to q Z qo. Simularly we get for the

price function

1
(27)  e(p) = (zc2 pl")TO
J J
al
= (= Py
4
| .l
= (50 %) oy 7)1
Fi's
i
- 0-]'1 T:_
= (g " WD) 1O
P °q
]-—
- %" @D T
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Because e(po) = po-qO = CO we have for the price index (22)

(28)  P(p.p") = e(p)/e(p’)

1

0 T-GIT_b

(Zw (p:/p:) )

I+

This is also a weighted moment mean (but cf order o = 1-0) of the price
00,0 O

relatives (pj/pg), weighted by the old value shares wg = qJ/p
Actualiy e(p) is the minimum expenditure needed to bye the utility
determined by qo when prices are p. Therefore we could denote it more
explicitely by C(p,qO), where C(p,g*) is the (minimum) expenditure
needed to buy the utility level determined by q* ‘under prices p, or
C(p,q*) = min {p-qiu(q)‘} u(g*)}. Afriat (1972) denotes this by

p(p,x) and calls it "utility cost function". He also shows that C(p.q)

factoririzes into price and quantity functions

(29) C(p,q*) = e(p)u(qa)

if and only if preferences are homothetic, or q ~ g* = kg ~ kg* for
all k > 0. The "antithetic price and quantity functions" in (29) are

always linearly homogenocus: e(kp) = ke(p), u(kq) = ku(q).

CES(o)-preferences are homothetic and it may be checked using the
Lagrangian technique with F(a,x) = p-q - A(u(q) - u(g*)) that
1

m(at/a) ”")T—V"

0 0,_0 0\ 1-0\T=¢

D .q (YW (p /p

(30) C{p,q*) )

e(pju(y*),
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in accordance with (26) and (27). We also have C(po,qo) = po-qo,

C(p,qb) = e(p) and C(po,q) = Do'qo u(q) Especially the price and

00 0. 0

quantity indices P(p,p®) = e(p)/e(p®) = c(p,a®)/c(p%a") = P(p.pia¥),

Q(q,qo) = u(q) = C(po,q)/C(DO,q ) = Q(q.q ;po) satisfy

(31) Cﬂ%‘l(ﬁ = P(p,p")0(a,0")

for all p's and q's. As C(po,qo) = po.q0 equation (31) may be used

to determine any of C(p,q), P(p,po), Q(q,qo) from other twc. It is

a "difficulty" in homothetic theory that identifying features (e.g. g*
in P(ps pO:q*)) cancel away and things become too "simple", or special.
It is difficult to keep in mind what is given and what is derived.
Hicksian (or compensated) demand functions are derived by derivating

the cost function (Shephard's theorem):

(32) H-i(psq*) BC(p,q*)/api

03(p./p9)™ u(q*)/P(pop®) .

This has beautiful representations in logarithms

0
2 P:/Ps
(33)  Tog(MiB9t)) < _giog (——to-) + Tog Q(a*,a")
P P(p.p")
- Tog(] H(psg*)/q ?) : ,pi/p? )
3 Off (pressgpeeiZr ] 0 ( ==ty
Q(g*.q") \P(p,pu)

with numerous ohvious interpretations, cf. also (21). According to (33) the

log-change in the compensatad demand - (p,q*) changes by the amount of the
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log-change in welfare and decreases in relation to the difference between the

rate of change in its own price]og(pi/p?) and the price level ]OgP(p],pO\

]’

According to (34) the Togarithmic deviation of an individual price ratio
pi/p? from the true price index P(p,po), i.e. pi = 1og(p1/p?) - 1ogP(p,pO),
and the corresponding logarithmic deviation of the quantity ratio from

the true quantity indexd1=:Iog(Hi(p,Q*)/Q?)- TogQ(q,q*) depend on each other
in an extremely simple way. They are negative multiples of each other,

di = -obi, the coefficient being the negative of the elasticity of the
substitution o, which is the same for all commodities a. We have used

here the same notation as in Vartia (1978).

Figure 1. Relation between logarithmic deviations of price and quantity
ratios from corresponding indices in CES(c)-world

9 < : o
quantity q; = 1og(H1.(p,q‘)/'Q9) #a
deviation !
in leg- | = 10gQ(q,q) 15
percents

5%
0 - 0
2.5 ==
-5 L oJi =5
-10 |- 4 =10
. 0 0
. = 1o /ps) - logPlp,p )
15 . . . L P; 9(",1”’1) Ly
20 =20 =15 -10 -5 0 5 10 15 20 ﬁé

price daviation in log-percents

Suppose that o = 0.5 and consider say "vegetables" ass whose prices

have increased 10 % (read 10 log-percents, meaning 100 1bg(p}/p?) = 10)
as the general price level has increased 5 % . The change in expenditure
is 8 % and its real change 8 g - 5% = 3 }%. How much must the demand

of vegetables change to fit the situation? We have from (33)

100 1og(q}/q?) = ~0.5 (10-5) + 3 = 0.5, or the compensated demand of
vegetables has to increase 0.5 }. Qv in other words: If the prices of
vegetables have increased 10 - 5 = § % more thanaverage prices then its
demand must "exceed" the growth of real expenditureby 0.5 -3 ==-2.5% as

shown in figure 1.
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Those who Tike to think in terms of value shares may find the foilowing

expressions convenient. Let us define

the market value share functions

(35) Wi(p,C) = Pihj(p,C)/C

and the compensated value share functions

n
pi”i(p’Q*)/jE] P;H;(p.a¥)

(36) Wi(psq*)

p;H. (p.a*)/C(p,q*).

~

The market and compensated value share systems are w(p,C) =

(Wy(PsC)oe vy (95C)) and W(psq*) = (Wy(Psq*)se - oW (P2G%))-

In CES (o)-world these satisfy by (21) and (33):

(37) : Wi(p,C) (1-0) 1 p?
og —q—g- = (1-0) 109 ——-
W, (p ,CO) P(P:PG3
(38) N (p>q%) (1o 1 p1/p?
og ——gy—g- = (1-0) leg .
wi(p~sq”) P(p.p")

For o > 1 the value share of the ith commodity decreases when its
relative price increases; if o = 1 the value shares are constant and
we are back in the CD-case. Because all CES(o)-systems are homothetic

the value shares depend only on prices and are independent ot income

. or standard of living, w,(p.C) = wﬁ(p,ﬁ) for all C and C, and wi (p,q*) =

wi(p,q) for ali g* and q. Therefore there is no need %o specify C or g*
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in (37) and (38). This is the curiosity of homothetic demand worids.

In fact w(p,C) = w(p,g*) = w(p) for all p,C and q* in any homothetic
demand world, i.e. the market and compensated value shares systems

give same results if only their p's are the same. But they are different

vector valued functions, because thay are defined in different spaces.

Using the following representation for the log-change

(39)  T0g(l) = 3yy

where L(x,y) = (x-y)/log(x/y) ~ [2 VXy + "’zfy]/3 is the logarithmic
mean of positive x and y, we get from (35) for any w} = wi(p],c1) and
0 _ ,0 .0,.
Wy = wi(p ,C): .
¥
(40) w} - w? = (1-0) L(w},w?) ]og-~8i4325-.
P(p »p")

This is valid for all i's and for all p's and w's in any CES(c)-world.

Therefore by summing

0

n
3 D=1-1=0

(41) = (wj-w
i=]

1,p0)] 5

n
(1-0)_21 L(w},w?)[1og(p}/p?) - TogP(p
1=

which is equivalent to

1 0
N L(w,aw;) 1.0
= X seusye—ps log (P-i/Pi)'

%
i=1 XL(wj,wj)

(42)  TogP(p',p
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This shows that Vartia-Sato index. (9) is exact in all CES(o)-worlds

as shown first by Sato (1976).

Next we demonstrate some other index number results in CES(c)-worlds.

1 1

For q = h(p1,C ) we have

(43) - ¢! = C(p],q]) = p]-q]
and using (31) and C0 = po.q0

0 0 1- 0 1 0
(44) p]-q]/p ‘g =P(p'sp) Q(q 5q).

0

This shows that for all equilibrium points (p ,qO) and (p],ql), or

1 1
points (po qo) in CES(o) the price and quantity indices (26) and (28)
satisfy the weak factor reversal test, or multiply into the value
ratio. From (43) e.g. P(p',p°) may be solved by dividing the value

ratio by the quantity index

1 1
1 .
(45)  P(p .p°) = B595 7 Q(q'sq”)
P q
1.4 01 05 &
= i‘o“gﬁ / (Zw-j (q'i/qi) ° ) e

This determines a new exact price index number formula in CES(g)-

world.

As e.g. Samuelson and Swamy (1974) show in any homothetic case e.qg.

the price index P(p],po; q¥) = P(p}

test: P(p],po) & 1/P(DO>P1

,po) satisfies the time reversal

). This gives us many new expressions for
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the price index P(p],po). For instance from (28) and (45) we derive

respectively

1 1 0 0
(46)  fa0(P5 90 = 1f,e(7 )
38 b q0 A 28 D q]
:

1/(2 w) (p0/pl)179) 10

1
0.0 0=
=z wl(plpD)o T
1 1 0 1
(47 Fggl®y o) = 1L U
39 o’ g 37 pl qO
o-1 o
2Ll A0
= (2 wi(ay/ay) )% 7 B4
P q
N1 L
= BOJ-O / (Z W](q1/q0) ¢ )]-0
peg (R R

Usually (46) and (47) give different results but in the CES(c)-world
their difference vanishes, or
1 1 L
¢ - (P q
(48)  fyg(°0 Fg) - 739(° %) = 0.
P q P q
Therefore this "“zero" (or any multiple of it) could be added anywhere
say'in (46) without disturbing its exactness in CES(c)-worid. But for
instance adding f38 - f39 to the denominator of (pé/pg) would spail
the formula in other situations. The reader may invent other dirty

tricks which would leave exactness invariant.
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As we noted in Vartia (1978, p. 21) in CES (c=0) we have

(49) Zw?(pg/P?) =Dz qo/p0 q0 = L Laspeyres)
Ty - 1 0
= (Zw:(p?/p!)) T=pligizplg® =p (Paasche)
/1.0 1T
= v PG QO PO q] =VLP = F (Fisher)
P-q q
= 3(L+P)
1 201 1,0
= £011961911-= LAl {C 5 (Edgeworth)
p(g+q ) 1+ (C/CP
Similarly in CES(o=1) or CD case
wo
(50) H(P /P ) =2 (Log-Laspeyres)
0 W]
= H(p /p; Yy 1 =p (Log-Paasche)
(w +w )
= (P /PO )2 = Vap =t : (Torngvist)
1 O ]w?/).x w]wO
= H(pi/p1, JJ ) (Walsh)
L (s 1
1.0 ‘(.i,w )/L(w W ) ‘
= H(pi/pi) (Vartia-Sato)

to mention only some obvious cases. Note that all factor antithesis of

I
. 11 w .

the formulas e.g.-E '9--/H(q!/q_) I p / 7(q /q " etc. could be

pﬁjqo i1

added here. These functions in (49)- (50\ are all always reasonable inuex
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number formulas because of their general properties, which have nothing

to do with their accidental identity in these special CES(c)-cases.

If again it happens that o = 2 in the CES(o)-world then

(51) ZW (P /P ) = P1 (Palgrave)
10,0, 1 ) ,
= 1/1w1(p1/P1) = Lh (Harmonic Laspeyres)
ol Ve Nz 00, 0, 0, 18 _ Gt
= \/wi(pi/pi)/ wi(py/p;) = VP1-Lh

= 2(P1 + Lh).

Also all the factor antithesis (FA for short) of the formulas give here

same results so that e.g.

(52) Zw (p /D ) = PJ (Palgrave)
plgl ,~ 1,1,0
= 5ig /T w:(9,/95) (FA of Palgrave)
pq
p] 1
= (—trgb)/fw (a5 /q ) (FA of Lh)
P +q

These curious identities of CES(o=2)-world are "in practice” usually

far from being satisfied, see Vartia (1978).
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Less evident identities in all CES(u)-cases are

0 /v

' (Quadratic mean
i

)1
02, 11,1, 0-r/2
)R (py(py/pg) T of order r)

(53) [l (pi/p

i | 1/r
. D, 1, BF/2 1,1, 0,~ N
= gojio / [Zwi(qi/qi)r/ /2w (a;/a5) r/2] (FA of above)
1.0 1 0
L{w; »w3)/ZL (W, sw.)
=n(py/pY) 37 (Vartia-Sato)

with r = 1-g. Quadratic means of order r are considered e.g. by Denny
(1974), Diewert (1976, 1978), Sato (1974) and Vartia (1978) and shown
to be useful index number formulas by many independent criterions.
Note that there are no parameters to be estimated in Vartia-Sato
index so that it adjusts itself automatically. In quadratic means

above the right r = 1-a must be known befcrehand.

4. Conclusion

We have demonstrated that a great many different functions f: nzﬂﬂ - BQ++
which may or may not deserve the name "index number formula" can be
constructed so that they are "exact" in CD or CES worlds. Some of these
functions are useful elsewhere, most are not. The problems do not Timit
to these special demand systems but arise similarly in any demand or
production system. This cai]s.for a systematic investigation of the
properties we would demand or desire of an index number formula; i.e.

an axiomatic treatment of index number formulas in the spirit of Fisher

(1922), Vartia (1976) and Eichhorn & Voeiler (1977).
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