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DESCRIPTION OI' THE INCOME DISTRIBUTION BY TIE SCALED

F DISTRIBUTION MODEL

by Pentti L.I. Vartia and ¥rjo O. Vartia

A new income distribution model, the scaled F distribution,
is suggested. This distribution is a close approximation

to the log-normal distribution for low and medium incomes
and to the Pareto distribution for high incomes. Estimation
of the F distribution is based on moment- and ML-methods.
Its statistical properties and connections with some other
well-known distributions (e.g. the Beta distribution) make
the model easy to apply.

3 Introduction

The theoretical distributions most commonly in describing
the distribution of personal income have been the log-normal
and the Pareto distpibution. Pareto's law applies to the
higher incomes only, while the log-normal distribution often

gives a good fit for the lower and medium parts of an observed

distribution.

There is plenty of both theoretical and empirical evidence

in favour of the Pareto and log~normal distributions as the
right type of partial approximations to well-behaved income
distributions, see e.g. Cramer (1971, p. 38-75), who gives several
references. When trying to describe the entire range of
incomes by a single distribution we have regarded appropriate

to require that the following desiderata are fulfilled:

1. Correct gualitative hehaviour: the distribution should

approximate Pareto distribution for high incomes and

give a better overall fit than the log-normal model



2. Estimation by standard methods: It should be possible to

estimate the model using some familiar method proposed
by estimation theory and having desirable propertics
when data is sampled from the distribution.

3. Easy to apply and manipulate: the statistical characteristics

of the estimated model (predicted frequencies, measures
of central tendency and inequality, etc.) should be easily
determined by standard methods without having to use

laborous numerical methods.

No simple set of generally approved rules of contest exist
in the art of fitting income distributions. This makes it
difficult to evaluate various suggestions. Main problem is
how much weight should be given to good fit, how much to
simplicity or beauty. Davis (1941), Champernowne (1953),
Fisk (1961) and Singh.and Maddala (1976) seem to stress the
goodness of fit, while the log-normal distribution and e.g.
the gamma distribution proposed by Salem and Mount (1976)
beat these distributions in simplicity and are easy to
estimate. By desiderata 1.-3. we intend to give a tentative

clarification of the wishes involved.

We have here followed the traditional fitting approach and not
required that an income formation process should be invented

to rationalize a particular income distribution, cf. Davis

(1941, p. 412) and Cramer (1971). If a distribution approximates
well other diséributions generated by some theoretical processes
(e.g. log-normal and Pareto) a lack of a process of its own is

a lesser disadvantage. Some authors, e.g. Salem and Mount (1974),
also stress the economic interpretation of the original parameters
of the distribution. This desideratum does not concern so much

the model but a particular representation of it, becausc the
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distribution can often be reparametrized using economically
meaningful parameters (e.g. its mean, coefficient of variation
etc.). However, the parameters of our model have a natural

interpretation.

Denoting money income, a random variable, by x we

propose the following (scaled and shifted) Fdistribution model

(1) (x - t) = AF , (x - T1) >0,

where F is distributed according to Fisher's F distribution

with parameters m and n, F~F (m,n). The shift

parameter T is the minimum income for which

the model is u;;d, When 1 = 0 we have the (unshifted) scaled

F distribution model. The shifted model may be preferred if

only incomes exceeding scme 1 are recorded, as in the case, €.9.,
with taxed income in Fiﬁland. Although some truncated distribution
might be more appropriate, the shifting of theorigo isoften a
convenient apér&ximation.

The density function of F is

' -1 i ~%(m+n)
(2) fE(r) = cm,n F (1+F) , F320,
m
where Con = THD @ 2/r(g) () and I'(z) is Euler's

gamma function. We denote the distribution of the scaled
variable AF by F{A,m,n), the scaled F distribution.
Thus the density function of

‘ . p . d - X
T - g —7F * =f :f o
the scaled I' distribution i xP(Aggx) AE(X) E(A)/A.

That the money income exceeding T distributes according to the

scaled ' distribution can now be expressed by

(3) (x=1)~F (A,m,n) , (x~-T) >0 .



The interpretations given here to thec parameters of the scaled

F distribution F(A,m,n) are similar to those of the formerly used
incomedistributionnmasures.Theshapeparaméters1nandrlmeasurethe
inequality of income in low and high income groups in a

sense similar to the Pareto parameter.l) The scale paramcter A

is given the dimension of the unit of accounting (e.g. mark) and
it is closely connected with the geometric mean of the shifted
income (x-t1), e.g. A = Geom (x~1) if m=n. With proportionate
growth the relative changes in A are always equal to relative changes

in (shifted) income.

2. Connections with other distributions

Let us consider first incomes exceeding Xy Or the conditional

variable (x|x>xq). If (x|x>x)) obeys Pareto's law,

(§|§>x0)~,Pareto (xo,u), then?)

(4) P{(§|§>x0)>x} = (xo/x)a = P (§>x|§>x0), when x>x0.

We say that a distribution 'has a Pareto tail' if its
conditional variable (§|§>x0) satisfies (4) when Xy or,
geometrically, its decreasing distribution function approaches

a straight line on double logarithmic paper, see figure 4.

1) This corresponds to the idea of 'Two-Tailed Pareto Distribution'
presented by Champernowne (1953) to approximate not only the
upper tail but also the lower tail of the distribution by a
straight line on a double~logarithmic scale.

2) The Pareto model may also be generalized for the shifted
income variable (x-71): (§-T|§~T>K0)~ Pareto (xqg,a) and
P(x>x|x>xn+r) = [xg/ (x-1) 1% for x>xg+1. Thus we sec
that the shift parameter ¢ and the truncation paramecter
X0 are connected with cach other in no simplce way.



The mecan of Pareto (xo,a), or E(§|§>xo), exists only when a>1
and equals xo(a/a~l). The conditional variance D2(§|§>x0)

exists only when o>2, and similarly for higher mcments.

It is well-known that the upper tail of the log-normal
distribution does not agree with the Pareto distribution

but gives a systematic “undershooging"; However, the density
function fAF(x) approaches C(l/x)§+ ; a Pareto density, where
o=n/2. F(A,;,n) has thus a Pareto tail as required by
desideratum 1. The expectation E(F)=n/(n-2) exists only for
n>2, in accordance with the Pareto distribution. If n-= 2

the mean of the I distribution approaches infinity. Analogously
the k:s moment of F exists only if n>2k. These facts reflect

the shewness of empirical income distributions and should

not be regarded as a disadvantage as Fisk (1961, p. 172) does.

The scaled F distribution F(A,m,n) is also a close approximation

to the log-normal distribution because
(5) log X = log A + log F = log A + 2z ,

where z is Fisher's z-variable, i.e.,
_ 1 e -[2‘ 2
(ﬁ) 2= log F = 5 log (gm/m)/(zn/n)]

the distribution of which is closely normal for moderatam and n.
Cumulativedistributionfunctionsof}L plotted on logarithmic
probability paper (Figure l), as presented, e.qg., by Hald (1960, p. 377)
show thie close correspondence between the log-normal and

F distributions. From these figures we see that the distribution
function of 1logAT on probability paper is S-shaped or its

distribution is leptocurtic as requippd by Rutherford (1955)
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Figure 1. Cumulative frequencies of the

obscrved distribution and of the log-normal
and I' distribution models plotted on loga-
rithmic probability paper, i.e., their
"log-normal representations".
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and Lydall (1968, p. 66). Therefore the scaled I' distribution
seems to fulfil desideratum 1. Our moment method estimation

uses the correspondence of z- and I-variables.

The flexibility of our I' distribution modell) is reflected

by the following results given, e.g., by Hald (1960, p. 384-387):

_m

. n_
1. forn=e,F=x/m and £,(F) = CF2 'e 2"
(scaled xz—variable)
n
. ~(5+1) -1
2 form = w , F = n/;i and f,(F) =CF 2 e 2F,
(inverse of a scaled x2—variable)
3% for m—» o« and n- « the F distribution approaches via

normal distributions a singular distribution concen-

trated on point 1.

Using l. we get Axﬁ/mn-Gamma(m/2A,m/2)=F(A,m,w), i.e. the

gamma distribution proposed by Salem and Mount (1974) is a

special case of the scaled F distribhution, when n=e. Therefore,

using any data and any goodness of fit measure some F(A,m,n)

still better than the best fitting gamma distribution.

1) In vartia and vartia (1972) we proposed as an income
distribution the generalized (scaled) F distribution
F(c,A,m,n). This is the distribution of x=AF¢, where

A and ¢ are positive parameters and E~F%m,ﬂ}. The
density function of F(c,A,m,n) is
m

L m+n

m
x 26 L] 2, o
‘A n'A f *

r(

2
m+n m
—2—) ('ﬁ)

fx(X) =
AT T D)
Thus F(l/a,t0,2,2) is Fisk's (1961) sechz—distribution
o n LAY
and F(l/az,(l/ala3) ,2,2a3

proposed by Singh and Maddala (1976), both being
special cases of the gencralized ¥ distribution.

) 1s the distribution

F{(c,A,m,m) also approaches log-normal (u,az), when m-+ o,

fits

A=eM and c =L/me2. F(c,A,m,n) is a very flexible distribution

which satisfics at lcast our two first desiderata. Estimation

of I"{c,A,m,n) may be done according to chapter 3.1.
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distribution models; the unit square representation.
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In the following the ML-estimation of the scaled I' distribution

model x =AF is based on the transformation

1%

(7) A = = ,K:
- A+ x
'

which produces a Beta(m/2, n/2) distributed variable A in the
interval [0,1], see Cramér (1946, p. 242). The distribution
function of A is the incomplete betafunctioﬁ Ix(m/2,n/2)
tabulated by Pearson (1968), also computer subprograms are
often available. The incomplete betafunction is one of the most
investigated highex transcendental functions, see e.q.
Abramowitz and Stegun (1970). This is a benefit when properties
of F(A,m,n) are derived. Note that Thurow (1970) has fitted beta
distribution directly. to scaled income data.

It is interesting to investigate the distrilbution functions

of the estimated Beta(m/2, n/2) distribution and the
corresponding transformed observed distribution in the unit
square, as is done in Table 3 and Figure 2. The scaled F-
variable x on the original income scale in terms of ) is

given by the inverse transformation of (7): x = Zg/(1~g).

3. Estimation of the scaled F distribution

3% Le Moment Method for the log-income

The first three moments of the z-variable, see Fisher (1950),

= B P a2 2 4_ 4
(8) My =Bz =-5(r -r)) - F(r;-ry) + 0(x -r,)
=p2 =1/ l..2,02 1,3 .3 5 .5
(9) Mo D” (z) —2(11+r2)4 2(l1+12)-+§(rl+r2)4-O(ll+r2)
(10 =R{(z~E 3:-—1 2._ 2 = 2-- 3 414
) Uy =E(z-Ez) 2(rl r,) (rl r2)~+o(rl 12)

¢
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(where rl=:1/m, r2==l/n) can be used in estimating the parameters
of the scaled F distribution. These equations follow from the
moments of 1og(£2/m), see Abramowitz and Stequn (1970, p. 943).
Since (1/2)logx-(1/2)logA is approximately normally distributed,
the moment methods is here well established. The corresponding

moments of the logarithm of income logx = logA + 2z are

(L) E(logx) = logA-f2ul

. 2 -

(12) D" (logx) = 4u,

(13) E(logx - E(logx))° = Bu, -

Defining the empirical moments of logarithms by

A
(14) logG = 5 Zlogx,
2 -1 _ 2
(15) 8" = & Z(logxi 10gG)
(16) m, = e L (logx, - lo G)3
3° N 974 g

we get the estimating equations

_ _ 1.3 2
(17) logA = logG + (rl rz) -+ §(r1 r2)

o . 2, 2 4,3 3
(1.8) s = 2(rl + rz) 4 2(rl 4 r2) + -3—(rl + r2)
(19) my = -4(r] r2) 8(r1 r2)

The last two equations determine r, = 1/m and r, = 1/n as
functions of 52 and mq and the first equation can then be
used to give the scale parameter A. We have solved the eqguations

(18)-(19) by iteration as follows



(20) (ry+1,) (n+1) _ o) /o /aan (™)
(21) (r ry- )(nF])— m /M rtr, )(n+l%8(rlhﬂrlhn+rl“ﬂr2“”+r2“”r;n5]
(n+1) 1 _ (n+1) _ (n4-1)
(22) 1 E[(ll+r2) +(rl r2) ]
(23) ém 1) _ [(r o ) (n+1) (rl"rz) (n+1)]
(n) _1 ) 2,7, )] (0) __(0)
where H =§s +2r r, —3[(rl ) +(r2 y ] and r,=r, =0,

Convergence is quite rapid.

3.2 Maximum likelihood method

The close connection of F(A,m,n) with the Beta distribution provides
an alternative estimation method. The ML-estimators of the
parameters of Betaﬂ%,gf) are approximated by simple functions

in ¥. Vartia (1973). These lead to a relatively simple procedure

for also estimating the parametels of F(A,m,n).

N

the maximum likelihood estimates of m,n and E::%A

If Xye Xgr eeeq Xy are independent observations from T (A,m,n),

are the solutions of the ML-eguations

(24) vER) -y (B = ZJog(—- 2y
(25) vERD v =%Ilog(yiy ) 2 v

i
(26) 'HTIL};"-Y(A ) ’

where k =%y /(Afx YE[O,1] and p(y)'=Ji~log](x) is the digamma

function.
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Here equations (25)-(26) correspond to the ML-equations for
the Beta distribution and )X is a Beta (%,g) variable, cf. (7).
These cannot be solved explicitly, but are approximated
accurately by simple functions given in Vartia and Vartia
(1972), which also includes an iterative procedﬁre for

solving (25)-(26).

3.3 An empirical illustration

As an illustration we have used the distribution of taxed
income in Finland in 1967, see Table 1. For institutional
reasons we have chosen in all our examples 1=2000 mk as the
value of the shift parameterl). We ignore here complications
due to problems of estimation with grouped data (cf. Salem
and Mount (1974)) and the fact that the figures in T&ble 1

are based on a stratified.sample containing about 200 000
obsérvations. The density functions of the estimated F
distribution models together with the empirical frequency
distribution are represented'in Figure 3. The corresponding

cunulative frequencies are given in Table 2.

The moment method estimation gave A=5290 marks, m=9.93 and

f=6.44. This estimated F distribution model is also represented

in Figures 1 and 4, in order to compare the fit with those

2)

obtained by Pareto and log-normal models”™' . In both representations

1) No state tax was levied on incomes less than 2300 marks.
Corresponding income earners are not registered in the
IFFinnich taxed income statistics.

2) The log-normal modelslog(§;r)~N(“,02)for =0 and
T=2000 were estimated using the ML-method.
The Parcto-model in its unshifted form was estimated
for the 213780 observations exceeding 12000 mk by ML-
method. This Paret02(12000,2.215) gave an excellent fit,
see figure 4, and x“=151.2 only (the 0.1 % critical x2-value
is 20.5 for df=5). The Pareto distribution has fitted
excellerntly to the same data at least from the beginning
of 1950's, sec Vartia and Vartia (1973).
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tha P distribution model scems to fit systematically better

than the shifted ices-normal model log(x-2000)~ N(8.632,0.586),
as was to be expected. The ML-estimaticn gave slightly different
paramceter cestimates, i.e. A=5365 marks, m=9.4 and n=6.8, but

the density functions approximate each other accurately as

shown in Figure 3. The unit square representations for the

estimated I distribution models are given in figure 2.

Here, as often in very large samples, deviations between the
predicted and observed frequencies clearly cannot result from

sampling fluctuations only, though the fit in descriptive

)

sense is very goodl..E.g. the familiar xz—measure x2=2(oi—ei)2/ei=
o B ' :
:nZ(pi-pi) /pi (where n is the total number of observations,

N
:p.=oi/n and pi=ei/n) is large because it increases with n,

1

although the squared deviations (f)i—pi)2 are small. Here we

.have an additional problem of the "right" number of observations.

2 .
However, x~ remains too largez) for all reasonable choices of n.

For curiosity we report the xz—values (calculated using
n=1 063 065) and the sum of squared deviations between the
predicted and observed probabilities used e.gq. by 8ingh and

Maddala (1976).

1) Ijiri and Simon (1977) give an excellent introduction to these
problems. We cite from p. 4: "...our theories are always only
approximate theories that do not capture all the fine structure
of the phenomena. Hence, with sufficiently large samples of
sufficiently good data, the deviations of data from thcory
almost always reveal themselves. However, we cannot conclude
from this that the theory should be rejected; the only valid
conclusion to-be drawn is that the theory is only a first
approximation - hardly surprising - and that the next step in
the investigation is to look for an additional mechanism that
could be incorporated in the thecory so as to lead to a better
second approximation. It would be foolish for us to give up the
gas laws for ideal gases simply bcecause most gases are not, in
fact, ideal; or to give up the law of acceleration in a vacuum
because most of the bodies we obscrve are falling through air.
Hence, we shall not be much concerncd, in what follows, with

2)

significance tests, which are completely inappropriate for testing
the fit of data to extreme models. Instcecad, we will be concernoed
with how much of the variance in the raw data is explained by the
models, and with how sensitive the fit is to changes in assumptions. ™

The 0.1 % critical xz-value is less than 33 for relevant
degrees of frecdom df=11 or 12.
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£ 2

(P;~P;) - 2
Model X ERE— SD==Z(pi—pi)'

Py

logx~ N(8.991,0.3127) 160 585 0.0246
log (x—2000) ~ N(8.632,0.586) 34 975 0.00169
(x—2000) ~F(5290,9.93,6.44) 17 574 0.00133
(x-2000) ~I'(5365,9.4,6.8) J 22 238 0.00132

Although the SD:s of models 3 and 4 are almost equal, their
x2-values differ because of slightly different tdail probabilities

1)

(cf. table 2). Different goodness of fit measures may thus
rank the models in different order. Comparing the goodness of
fit of good approximate but strictly speaking misspecified

models is a difficult philcsophical problem, which we must

leave aside in this connection, see Ijiri and Simon (1977, p. 109-134).

4, Conclusions

We have tried to demonstrate analytically that the old, well-
known F distribution is a relevant alternative in describing
empirical income (or similar) distributions. The scaled F
distribution approximates the log-normal and Pareto distributions
well and has e.g. the gamma distribution as a special case.
Furthermore, it has a aatural generalization which includes

e.g. the distribution proposed by Singh and Maddala and thus
Fishk's scchz—distribution as its special cases. The F

distribution models are at least as flexible as the compceting

models they include.

1) E.g. Rao (1965, p. 288) gives 4 alternatives for the
familiar x2-mecasure.

-~
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As large empirical income data seldom can be interpreted as
a random sample from any given theoretical distribution
having only a few parameters, we have paid attention not
only to good fit and correct gualitative behaviour but also
to the general applicability of the model: that it may be
estimated by standard methods and is easy to understand

and manipulate.

Table 1. Numbers of persons in various
. taxed income groups in Finland

in 1967
. . 1)

Income group Classmark Frequency

(Fmk) (Fmk) of income
' earners
- 2 699 2 520 8 890
2 700 - 3 399 3 033 25 387
3 400 - 3 999 3 691 55 100
4 000 - 5 999 5 089 247 493
6 000 - 7 999 6 940 256 335
8 000 - 8 999 8 469 91 427
9 000 - 9 999 9 474 69 571
10 000 - 11 999 10 925 95 082
12 000 - 13 999 12 92) 61 844
14 000 -~ 17 999 15 702 64 341
18 000 - 21 999 19 805 30 820
22 000 - 25 999 23 809 18 111
26 000 - 29 999 27 852 10 825
30 000 - 39 999 34 209 13 897
40 000 - 63 506 13 942

1) The arithmetic mean income in the income
group. Our estimation procedures used
only the classmarks and the corresponding
frequencies, whereas nc continuity correction
was applied here.



Table 2. Comparision of the observed and estimated
cumulative frequencies of the I distribution

model
Upper limit Cumulative frequencies
of the income
group il
(Frak) Observed ML-method Moment method
2 700 8 890 3 614 3 721
3 400 34 277 35 294 34 018
4 000 89 377 90 254 88 979
6 000 336 870 352 406 354 213
8 000 593205 581 071 580 008
9 000 684 632 674 727 663 671
10 000 754 203 743 082 73Z 664
12 000 849 285 840 140 830 785
14 000 911 129 906 157 892 975
18 000 975 470 989 607 964 519
22 000 1006 290 1018 204 1004 490
26 000 1024 401 1034 150 1022 031
30 000 1035 226 1042 335 1035 319
40 000 1049 123 1053 816 1048 714
© 1063 065 1063 065 1063 065

Table 3. Cumulative relative frequencies of the observed
distribution and the Beta distributioncorresponding
to the F distribution model (x-2000) ~ F(5365, 9.4,6.8)
as estimated by the ML-method; the unit square

representation.

Upper class Upper class Cumulative Observed

Limit of limit of relative cumulative
shifted transformed frequency of relative

income income Beta (4.7,3.4) frequency

X

By 25/ 2 £y
z= xi-2000 Xi__§§81+zj P(g,gxi) xkfxi k=n

0 .0000 .0000 .0000
700 .1528 .0034 .0084
1 400 « 2651 .0332 0322
2 000 .3401 .0849 .0841
4 000 W «b075 » 3315 .3169
6 000 .6072 .5466 .5580
7 000 .6433 .6347 .6440
8 000 .6733 .6990 . 7095
10 000 .7204 .7903 .7989
12 000 . 75506 .8524 .8571
16 000 .8048 .9309 .9176
"20 000 .8375 | .9578 . 9466
24 000 .8608 .9728 .9636
28 000 .8783 .9805 .9738
38 000 .9073 . 9913 .9869
* 1.0000 1.0000 1.0000
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