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We study how changes in household borrowing constraints influence housing market 
liquidity. To this end, we develop a housing market model with both matching and 
credit frictions. In the model, risk-averse households may save or borrow in order to 
smooth consumption over time and finance owner housing. Prospective sellers and buyers 
meet randomly and bargain over the price. In the model, housing market liquidity 
is very sensitive to changes in household credit conditions. In particular, a moderate 
tightening of household borrowing constraints increases the average time-on-the-market 
and idiosyncratic price dispersion substantially.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Housing market liquidity varies a lot over time, at least if liquidity is measured by the average time it takes to sell a 
house. Díaz and Jerez (2013) and Ngai et al. (2017) demonstrate this for the US and UK housing markets. We provide similar 
evidence for the Finnish housing market. While Finland has experienced very large house price fluctuations, the average 
time-on-the-market (TOM) has been even more volatile. Given that the primary residence typically represents a very large 
share of a home owner’s total assets, large changes in housing market liquidity are bound to affect household welfare.

In this paper, we analyze the determinants of housing market liquidity. Specifically, we consider the possibility that the 
observed changes in the average TOM are driven by changes in household credit conditions. Intuitively, a tighter borrowing 
constraint may imply that some potential buyers are willing to buy only if the seller accepts a relatively low price. The 
evidence from the Finnish housing market is also consistent with this conjecture. The average TOM has increased drastically 
during periods when household credit conditions have tightened, and vice versa.

The relation between credit conditions and housing market liquidity is also relevant for the current debate on ‘macropru-
dential’ policies. Many countries have recently implemented loan-to-value restrictions on household borrowing. The aim of 
such policies is to make households and banks less vulnerable to housing market fluctuations by reducing household lever-
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age. However, by making potential home buyers more likely to be borrowing constrained, they may also reduce housing 
market liquidity.

Most of the existing housing market models with borrowing constraints do not allow studying how borrowing con-
strains might influence housing market liquidity. This is because they do not feature matching frictions. In the absence of 
matching frictions, all households can count on being able to instantly sell their house at the prevailing market price. On 
the other hand, existing housing market models with matching frictions assume risk-neutral preferences and abstract from 
households’ savings decisions. As a result, they are not directly applicable when considering the role of credit frictions for 
housing market outcomes.

In order to study the interaction of credit constraints and matching frictions in the presence of precautionary savings, 
we develop a new modeling framework by combining two strands of literature. We introduce matching frictions following, 
for example, Wheaton (1990), Krainer (2001), Piazzesi and Schneider (2009), Head and Lloyd-Ellis (2012) and Díaz and Jerez 
(2013). In these models, households can become dissatisfied with their current housing and in order to move need to meet 
a potential trading partner and bargain over the price. We embed this setting into a Bewley–Huggett–Aiyagari framework 
where risk-averse households face uninsurable income shocks and make savings decisions (Huggett, 1993; Aiyagari, 1994). 
This allows us to study how borrowing constraints and households’ asset positions affect housing market outcomes in the 
presence of matching frictions. Similar incomplete market models with housing and housing-related borrowing constraints, 
but without the matching frictions, include Ríos-Rull and Sánchez-Marcos (2008), Díaz and Luengo-Prado (2010), Iacoviello 
and Pavan (2013), and Halket and Vasudev (2014).1

In our model, the households either rent or own their housing. Some households prefer owner housing over rental 
housing and the tenure preference may change over time. If a renter household becomes dissatisfied with rental housing, 
it wants to buy a house. Similarly, a home owner may want to move to rental housing in which case it considers selling 
its house. Prospective sellers and buyers meet randomly and bargain over the price. Households may save or borrow with a 
financial asset but can only borrow against owner housing.

In the model, the asset distributions of potential buyers and sellers are both key equilibrium objects. For instance, 
when bargaining over the price, the sellers need to consider the distribution of all potential buyers because it influences 
the value of not selling today and staying in the market. Similarly, buyers need to consider the distribution of sellers as 
that influences the value of not buying today. This feature distinguishes our paper from the recent very interesting work of 
Hedlund (2016a,b). He develops a general equilibrium model that is similar to ours in that it also features both matching and 
credit frictions in the housing market. In his model, however, trading in the housing market is intermediated by real estate 
brokers and does not involve bilater bargaining between individual households. The presence of these brokers gives rise 
to a simpler (block recursive) equilibrium where households need not keep track of the distributions to form expectations 
regarding housing market liquidity.

The combination of precautionary savings and matching frictions also relates our analysis to recent labor market match-
ing models with a precautionary savings motive such as Krusell et al. (2010). In their model, unemployed workers and 
firms with vacancies are matched and bargain over the wage.2 Workers are heterogeneous in their assets, but all recruiting 
firms are identical. In our housing market model, where current buyers are future sellers and vice versa, both parties of the 
bargaining process are heterogeneous in their assets.

We calibrate the model using data on Finnish households’ portfolios and the Finnish housing market. In order to capture 
the importance of both borrowing constraints and matching frictions, we match, among other things, the share of highly 
leveraged recent house buyers and the average time it takes to sell a house.

We first study how the outcome of the bargaining process depends on the traders’ asset positions. We find that it is sen-
sitive to asset positions whenever either the potential buyer or seller is close to being borrowing constrained. For instance, 
poor sellers might be willing to sell at a relatively low price because of liquidity reasons whereas a wealthier seller would 
prefer to wait for a better match. Conversely, if both traders are relatively wealthy, the credit frictions are not important for 
them and as a result, the outcome of the bargaining process does not depend on the asset positions of the traders. Com-
bined with asset heterogeneity, which stems endogenously in the model, this feature has two realistic implications. First, 
not all matches result in trade. Second, at any given point in time, identical houses sell at different prices.3 In particular, the 
stationary equilibrium features non-trivial deviations from the average market price in cases where the seller and the buyer 
are both close to being borrowing constrained. Since owner houses are identical in the model, these results reflect solely 
the role of borrowing constraints and households’ asset positions in determining the outcome of the bargaining process.

1 In many of these models, houses are illiquid in the sense that buying or selling a house involves transaction costs. However, transaction costs alone do 
not prevent households from selling or buying instantly at the equilibrium market price.

2 An earlier example of a model that combines labor market matching frictions and precautionary savings is Costain and Reiter (2005). In their model, 
bargaining takes place between worker unions and firms.

3 Merlo and Ortalo-Magne (2004) document that in the UK one third of all matches are unsuccessful. It also seems widely recognized that there is 
idiosyncratic dispersion in quality adjusted house prices even though it is difficult to measure it accurately. See, for instance, Leung et al. (2006) and the 
references therein.



186 E. Eerola, N. Määttänen / Review of Economic Dynamics 27 (2018) 184–204
These two equilibrium properties arise also in some previous housing market matching models but for very different 
reasons. Typically, they follow from exogenous preference heterogeneity that affects the surplus from trade.4 We believe 
that preference heterogeneity is indeed relevant for housing market outcomes. However, we find it more likely that changes 
in household credit conditions rather than changes in preferences are key drivers of changes in aggregate housing market 
outcomes, such as the average TOM. Evidence also suggests that household credit conditions indeed vary quite frequently 
over time (see, e.g. Duca et al., 2011). This is one reason why we focus on asset heterogeneity and credit frictions.

We then consider how changes in the borrowing constraint influence the stationary equilibrium in the presence of 
matching frictions. We find that credit frictions influence liquidity in the housing market by magnifying the effects of 
matching frictions. A tightening of the borrowing constraint decreases the share of matches that result in trade. As a result, 
it increases the average TOM much like an increase in matching frictions would do. Moreover, while some matching frictions 
are needed to generate idiosyncratic price dispersion, a tightening of the borrowing constraint increases price dispersion. 
Intuitively, these results reflect the fact that a tighter borrowing constraint makes the surplus from trade more sensitive 
to traders’ asset positions. The results are quantitatively relevant in that a moderate tightening of the borrowing constraint 
increases both the average TOM and idiosyncratic price dispersion substantially.

We proceed as follows. In the next section, we discuss empirical observations from the Finnish housing market. In 
section 3, we describe the set-up, present the household problem and the matching process, define the recursive stationary 
equilibrium, and outline our numerical solution algorithm. In section 4, we discuss the calibration. In section 5, we present 
our results. Section 6 offers a conclusion.

2. Time-on-the-market and credit conditions in the Finnish housing market

Díaz and Jerez (2013) and Ngai et al. (2017) demonstrate that housing market liquidity, as measured by the average 
TOM, has varied a lot over time in the US and the UK. In this section, we present similar evidence from the Finnish housing 
market. In addition to the volatility of the average TOM, we are interested in its correlation with household credit conditions. 
Our data cover a period when there were drastic changes in household credit conditions. Until mid-1980s, loan volumes 
were controlled which resulted in very tight household credit rationing. Bank lending to households was liberalized in 
1986.5 This implied a rapid relaxation of household borrowing constraints and induced a rapid growth of household credit. 
The financial market liberalization is the main explanation typically put forward for the housing market boom of the late 
1980s.6 The subsequent bust in turn coincided with a severe depression and a banking crisis in the early 1990s, which 
certainly tightened household credit conditions again.

We consider quarterly price index from Statistics Finland for resales of apartment buildings for the whole country. For 
the TOM, we employ individual transaction data based on transactions where major real estate agencies acted as intermedi-
ary.7 We focus on time period 1984–2012 and consider only dwellings in apartment buildings. With these restrictions, the 
transaction data include some 530,000 transactions almost 90% of which are resales. We determine for each transaction the 
sale time as the difference between the listing date and the date of sale. We then group the transactions according to the 
quarter of the sale date and calculate, for each quarter, the average TOM. Fig. 1 displays the resulting demeaned log average 
TOM and the linearly detrended house price index.

While Finland has experienced very large house price fluctuations during this time period, the average TOM has been 
even more volatile. The standard deviation of the (demeaned log) average TOM is 20.4% while that of the (linearly de-
trended) house price index is 17.5%. Díaz and Jerez (2013) find similar results for the US economy. They report a standard 
deviation of 16.7% for the average TOM and 4.1% for the Case–Schiller house price index.8

The Finnish data also suggest that changes in the average TOM are closely related to changes in household credit con-
ditions. As Fig. 1 shows, following the credit market liberalization in the late 1980s, the average TOM was well below the 
average during a period of few years. During the banking crisis in the early 1990s, in contrast, the average TOM was very 
high. It is also likely that the 2008 financial crisis led also Finnish banks to tighten household borrowing constraints. As can 
be seen from the figure, the average TOM again increased at that time.9 The figure also reveals that the average TOM and 
the price level have been strongly and positively correlated.

4 The heterogeneity may be match-specific, as for instance, in Williams (1995) and Díaz and Jerez (2013). Alternatively, individuals may be inherently 
different as in Carrillo (2012), where agents differ in their intrinsic motivation to trade.

5 For details on the timing of the different measures, see Vihriälä (2005).
6 See Koskela et al. (1992) and Berg (1994).
7 These data are voluntarily collected by a consortium of Finnish real estate brokers and the dataset is refined and maintained by the VTT Technical 

Research Centre of Finland. As not all real estate agencies participate, the dataset represents a sample (albeit rather large) of the total volume of transactions. 
For a more detailed description of the data, see e.g. Eerola and Lyytikäinen (2015).

8 Their TOM measure relates to newly built houses. They compute the standard deviations from quarterly data HP detrended with λ = 1600. Using the 
same detrending gives us a standard deviation of 13.7% for the average TOM and a standard deviation of 7.5% for the price index.

9 Fig. 3 in Ngai et al. (2017) shows that a similar pattern was observed in the UK. The average TOM (“time to sell”) increased drastically from 2007 to 
2008.
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Fig. 1. Demeaned log average TOM and linearly detrended house price index between 1984/1 and 2012/4. Note: Quarterly average TOM calculated from 
individual transaction data (dwellings in apartment buildings). For each quarter and for each transaction during that quarter, the sale time is determined 
as the difference between the listing date and the date of sale. The sale times are used to calculate average TOM for each quarter between 1984/1 and 
2012/4. The price index from Statistics Finland is based on resales in apartment buildings.

3. Model

3.1. Set-up

Time is discrete and there is a continuum of households of mass one. Households live forever. In each period, households 
work, consume nondurables, and occupy a house. The economy is small and open to the international capital markets in 
the sense that the interest rate and the wage rate are exogenously determined.

There are two types of dwellings: owner houses and rental houses. Owner houses are in fixed supply.10 The mass of 
owner houses is equal to mo ∈ (0, 1). Each household either owns or rents one house. The ownership rate is then mo , 
and the share of households living in rental houses is 1 − mo . In state d = r, the household is renting. In state d = o, the 
household owns the house it lives in.

We assume that some households derive a higher utility flow from owner houses than rental houses, whereas other 
households derive the same utility flow from the two house types. We capture this tenure preference by assuming that 
some households incur a utility cost when living in rental housing.11 As in Wheaton (1990) and the related literature, in 
each period, a household may be hit by a mismatch shock which affects the utility it derives from its current house. In our 
setting, the mismatch shock changes the tenure preference of the household.12

The story we have in mind is that rental houses are smaller than owner houses reflecting the fact that the rental 
market for larger apartments and single-family houses tends to be very thin. Households without children are happy with a 
relatively small and inexpensive rental flat. Later, they may have children, which leads them to prefer larger, more expensive 
houses. They then consider becoming home owners because large rental houses are hard to find.

For simplicity, we assume that there are no trading frictions in the rental market: a household can always find a rental 
house at a fixed exogenous rental rate. The market for owner housing, in contrast, is characterized by matching frictions. In 
order to sell or buy a house, a household must first meet a potential trading partner.

The tenure preference is denoted by z = 1, 2. In state z = 1, the household derives the same utility from owner housing 
and rental housing. In state z = 2, the household incurs a utility cost if it lives in rental housing. Given current state z, the 
probability of next period state z′ is P

(
z′, z

)
.

Each household will therefore be in one of the following four situations: i) Those with d = r and z = 1 are renting 
without incurring a utility cost related to rental housing. We refer to them as ‘happy renters’. ii) Those with d = r and z = 2
are renting, but suffer a utility cost relative to owning. We refer to them as ‘unhappy renters’. iii) Those with d = o and 

10 Assuming that the stock of owner houses is fixed simplifies the analysis substantially. Head and Lloyd-Ellis (2012) assume that owner housing can be 
converted to rental housing and vice versa but assume that the costs from doing so are high enough for no conversion to take place in their benchmark 
analysis.
11 We could also assume that all households derive higher utility from owner housing than from rental housing, as in Head and Lloyd-Ellis (2012). What 

matters for our analysis is that some households value the (larger) owner houses more than others.
12 In this respect, our model is similar to that in Head and Lloyd-Ellis (2012) where a household that wishes to downsize needs to rent.
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z = 1 are owning but would not suffer a utility cost if they were renters. We refer to them as ‘unhappy owners’. iv) Those 
with d = o and z = 2 are owning and would suffer a utility cost if they were renters. We refer to them as ‘happy owners’.

Unhappy renters would like to buy so as to avoid the utility cost of rental housing. Unhappy owners in turn would like 
to sell because of the cost of housing. This is because the equilibrium user cost of owner housing (capital and maintenance 
costs) will be higher than the rent since all households value owner housing at least as much as rental housing (given 
non-housing consumption) and some households strictly prefer owner housing to rental housing. Therefore, the unhappy 
owners pay the higher cost of owner housing but would receive the same utility flow from rental housing. Happy renters 
and happy owners on the other hand have little reason to trade.

In the baseline model, we assume that all unhappy renters and unhappy owners participate in the housing market, that 
is, search for a house to buy or put their house for sale, while happy renters and happy owners do not enter the market. 
However, we also consider an extension with endogenous market entry where unhappy renters first decide whether to 
participate in the market (and incur a market participation cost) or not.

Each period, households receive wage income εwz , where ε ∈ {ε1, ..., εnε } is an iid income shock and wz the average 
wage rate of those with tenure preference z. Probability of income shock εi is ϕi . By allowing the wage rate to depend 
on the tenure preference, we can capture the fact that owners have on average higher income than renters. This helps 
in replicating the empirical fact that home buyers tend to have little savings. In addition, by assuming that the persistent 
income shock is perfectly correlated with the tenure preference, we save a state variable. This is particularly important in 
our setting, because the number of possible buyer and seller matches grows exponentially with the number of individual 
state variables. Note also that since the wage depends on the tenure preference, instead of the actual tenure, households do 
not attain a higher wage by buying a house.

In each period, timing is the following. First, potential buyers (unhappy renters) and potential sellers (unhappy owners) 
are randomly matched and can meet at most one trading partner. Upon having met, they bargain over the price. If there 
exists a price that makes trade mutually beneficial, trade takes place and the price is determined by Nash bargaining. The 
price will depend on the seller’s and buyer’s continuation values, which in turn depend on their asset positions. Next, 
unsuccessful matches break down and the transactions of successful matches take place. Buyers move to owner housing 
and sellers move to rental housing.13 The renters pay the rent and the owners the maintenance cost. Finally, all households 
decide on non-housing consumption and financial saving or borrowing.

The periodic utility of the household is given by u (c, z,d) where c denotes non-housing consumption. Each household’s 
financial asset position, a, evolves as

a′ = Rs + ε′w ′,
where s denotes financial saving or borrowing, interest rate is R −1, and primes indicate next period values. In what follows, 
we refer to a as ‘financial wealth’.

Borrowing is limited by a borrowing constraint.14 We require that s ≥ sd for d = r, o. We will later assume that sr = 0
and so < 0, that is, only owners can borrow. These assumptions mean that home owners can costlessly refinance their 
mortgage.15

If a household does not buy or sell a house, its current non-housing consumption is

c = a − s − g, (1)

where g is the direct cost of housing services. This cost equals the rent, g = υ , for the renters and the maintenance cost, 
g = κ , for the owners.

If a renter buys a house with price p, its current non-housing consumption is

c = a − s − κ − (1 + τ )p, (2)

where τ ≥ 0 denotes a transaction tax.
Finally, if an owner sells a house, its current non-housing consumption is

c = a − s − υ + p. (3)

All households must be able to afford strictly positive non-housing consumption. Denoting this minimum consumption 
level by cmin > 0 (close to zero), it directly follows from (2) that the maximum price a buyer can pay is

p = a − so − κ − cmin

1 + τ
. (4)

13 We abstract from own-to-own trades. According to Wheaton and Lee (2009), in the US housing market, there are generally more purchases of homes 
by renters or new households than there are by existing owners. Having both own-to-own trades and rent-to-own trades would substantially complicate 
the model. See Anenberg and Bayer (2013) for a model where the choice of whether to first buy or sell is endogenous.
14 In our model, the borrowing constraint is entirely exogenous. See e.g. Hedlund (2016b) and Mitman (2016) for a model with endogenous mortgage 

supply.
15 Most mortgage contracts in Finland specify an amortization schedule and mortgage refinancing is relatively rare. However, mortgage contracts typically 

provide an option to pay interest only for several years and also reverse mortgages are available.
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Similarly, from (3) it follows that the minimum price a seller needs to receive is

p = sr + υ − a + cmin. (5)

3.2. Household problem and bargaining

We now define the household optimization problem recursively. Let V d (a, z) denote the value function before current 
period matches and vd (a, z) the value function conditional on not trading. The latter is determined as:

vd (a, z) = max
s≥sd

⎧⎨⎩u (c, z,d) + β

2∑
j=1

P ( j, z)
nε∑

i=1

ϕi V d (
Rs + εi w j, j

)⎫⎬⎭ (6)

subject to (1)

where β < 1 is the subjective discount factor, z = 1, 2 and d = r, o. We use sd (a, z) to denote the associated savings policy.
Because happy renters and happy owners do not participate in the housing market

V r (a,1) = vr (a,1) (7)

V o (a,2) = vo (a,2) . (8)

For unhappy renters and unhappy owners, we have to take into account the value of being matched with a potential 
trading partner. Let W b

(
ab,as

)
denote the value of a potential buyer (unhappy renter) with financial wealth ab matched 

with a potential seller (unhappy owner) with financial wealth as . Similarly, W s
(
ab,as

)
denotes the value of the potential 

seller.
Finally, let us denote the population of households with financial wealth a, occupancy state d, and tenure preference state 

z by μd (a, z). The mass of potential sellers is ms =
∫

μo (a,1)da and the mass of potential buyers is mb =
∫

μr (a,2)da.

We can now define V r(a, 2) as

V r (a,2) = φs
∫

W b (a, ã)
μo (̃a,1)

ms
d̃a + (

1 − φs) vr (a,2) , (9)

where φs denotes the probability of meeting a potential seller. The first term is the expected value of a match weighted by 
the probability of being matched with a potential seller. The second term is the value of a renter not trading weighted by 
the probability of not being matched.

Similarly, we define V o(a, 1) as

V o (a,1) = φb
∫

W s (̃a,a)
μr (̃a,2)

mb
d̃a +

(
1 − φb

)
vo (a,1) , (10)

where φb denotes the probability of meeting a potential buyer.
In order to determine W b(.) and W s (.), we need to find out, for all possible matches, whether the match leads to trade 

and if so, at what price. This can be computationally very costly when we discretize the state space with a reasonably fine 
grid for financial wealth. However, the computational costs can be reduced drastically by exploiting the fact that the surplus 
from trade can be expressed using the no-trade value functions defined above. The benefit of this approach is that one does 
not have to solve the household optimization problems when determining W b(.) and W s (.).

Consider a potential buyer with financial wealth a who has met a potential seller and contemplates buying the house 
with price p. If it buys the house, it becomes an owner and faces the same problem as a happy owner with financial wealth 
equal to a − (1 + τ ) p. If it does not buy, it’s value is the same as that of an unmatched renter. Hence, its surplus from trade 
can be written as

Sb (a, p) = vo (a − (1 + τ ) p,2) − vr (a,2) . (11)

In the same way, if a potential seller with financial wealth a sells its house with price p, it becomes a happy renter 
with financial wealth equal to a + p. If it does not sell, its value is the same as that of an unmatched owner. Therefore, its 
surplus from trade is

Ss (a, p) = vr (a + p,1) − vo (a,1) . (12)

If there exists a price p such that Sb(ab, p) ≥ 0 and Ss(as, p) ≥ 0, the match leads to trade and the equilibrium price is

arg max
p

{
Ss (

as, p
)ω

Sb
(

ab, p
)(1−ω)

}
(13)

where ω denotes the bargaining power of the seller.
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We denote the equilibrium price by p 
(
ab,as

)
. Appendix A.1 shows that if trade takes place, the Nash bargaining price is 

uniquely determined.
Finally, let T r

(
ab,as

)
be an indicator function that equals one if trade takes place and zero otherwise. Hence, T r is 

defined as

T r
(

ab,as
)

=
{

1 if ∃ p s.t. Sb
(
ab, p

) ≥ 0 and Ss
(
as, p

) ≥ 0
0, otherwise

(14)

We can now define W b(ab, as) and W (ab, as) as

W b(ab,as) =
{

vo
(
ab − (1 + τ ) p

(
ab,as

)
,2

)
if T r

(
ab,as

) = 1

vr
(
ab,2

)
if T r

(
ab,as

) = 0
(15)

W s(ab,as) =
{

vr
(
as + p

(
ab,as

)
,1

)
if T r

(
ab,as

) = 1

vo
(
as,1

)
if T r

(
ab,as

) = 0
. (16)

3.3. Matching

Trading frictions can be modeled in various ways. Existing housing market matching models make different assumptions 
concerning the frictions related to meeting a potential trading partner and price determination after potential traders have 
met. However, most papers assume either directed search with posted prices or random matching with some type of 
bargaining.16

It seems clear that both competitive forces and bargaining are present in the housing market. Actual transaction prices 
often differ from listing prices and the listing price does not seem to constitute a ceiling nor a floor. However, it also seems 
that TOM depends on the listing price.17

As we wish to focus on the bargaining after the match has been formed, we assume that trading frictions can be repre-
sented by a matching function, which specifies the number of trading opportunities in a given period.18 More specifically, 
we follow Piazzesi and Schneider (2009) in assuming that matching is governed by Cobb–Douglas matching technology and 
that the potential buyers and sellers are matched at rate

M
(

ms,mb
)

= χ
(
ms)α (

mb
)1−α

where the masses of potential buyers and sellers are mb and ms , χ ∈ (0, 1] is a matching parameter and 0 < α < 1. The 
probability of being matched with a potential seller, φs , and the probability of being matched with a potential buyer, φb , 
are then given by

φs = χ

(
ms

mb

)α

and φb = χ

(
ms

mb

)α−1

. (17)

In addition, M
(
ms,mb

) ≤ mb and M
(
ms,mb

) ≤ ms have to hold.
In our benchmark calibration, the ownership rate is 50% and there are equal numbers of owners and renters. We also 

assume that the tenure preference transitions are symmetric, so that P (1,2) = P (2, 1). Therefore, the stationary tenure 
preference distribution is such that half of the households strictly prefers owner housing to rental housing. Under these 
assumptions, the mass of potential buyers equals the mass of potential sellers in a stationary equilibrium.19 From (17) it 
then follows that φb = φs = χ .

In the sensitivity analysis, we allow the ownership rate to differ from 50%, but retain the assumption of symmetric 
preference shocks. This means that the ownership rate does not match the (stationary) tenure preference distribution and 
there is shortage or oversupply of owner housing relative to what the households prefer. Therefore, the mass of potential 
buyers differs from the mass of potential sellers and, as a result, the traders on the short side of the market are more likely 
to meet a potential trading partner.

16 Exceptions include Albrecht et al. (2016) who consider directed search with limited commitment to the asking price, Díaz and Jerez (2013) who 
consider a combination of directed search and random matching with posted prices and Carrillo (2012) who considers directed search with bargaining.
17 See e.g. Díaz and Jerez (2013) and Albrecht et al. (2016) for more discussion on this issue.
18 Other studies assuming random matching include Albrecht et al. (2007), Caplin and Leahy (2011), Krainer (2001), Piazzesi and Schneider (2009), and 

Wheaton (1990).
19 This is true even if the mass of potential buyers initially differs from the mass of potential sellers.
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3.4. Stationary equilibrium

We consider a stationary equilibrium where the distribution of households over their asset, tenure preference, and oc-
cupancy states is constant over time. The interest, wage and rental rates as well as the ownership rate are exogenously 
given.

Definition 1. The stationary equilibrium consists of value functions 
{

V d (a, z) , vd (a, z) , W b
(
ab,as

)
, W s

(
ab,as

)}
, household 

savings function sd(a, z), prices p 
(
ab,as

)
, indicator function T r

(
ab,as

)
, matching probabilities φb and φs , and distribution 

μd (a, z) (containing the information of mb and ms) which satisfy
Matching:
Given μd (a, z), φb and φs are determined by (17).
Household optimization and bargaining:

a) Given V d (a, z), sd (a, z) solves (6) with vd (a, z) as the resulting value function.
b) Given vd (a, z), surpluses Sb (a, p) and Ss (a, p) are determined by (11) and (12). Given the surpluses, T r

(
ab,as

)
is 

determined from (14). For pairs {ab, as} such that T r
(
ab,as

) = 1, p 
(
ab,as

)
is determined by (13). Given T r

(
ab,as

)
and 

p 
(
ab,as

)
, W b

(
ab,as

)
and W s

(
ab,as

)
are determined by (15) and (16).

c) Given vd (a, z), V r (a,1) and V o (a,2) are determined by (7) and (8). Given vd (a, z), W b
(
ab,as

)
, W s

(
ab,as

)
, and 

μd (a, z), V r (a,2) and V o (a,1) are determined by (9) and (10).

Consistency:
μd (a, z) is the time invariant distribution that follows from the household savings policy, the outcome of the Nash bargain-
ing, the probabilities P

(
z′, z

)
and ϕi for all i = 1, 2, ..., nε , and the exogenously determined ownership rate.

3.5. Solving the model

When making decisions, households need to take into account the distribution of potential trading partners. This is the 
key computational challenge in solving the model. For instance, a potential seller wants to consider the distribution of asset 
holdings of all potential buyers. This is because its surplus from a match depends on the asset position of the potential 
buyer. Therefore, the value of not selling today depends on the whole distribution of traders.

When solving the model, we thus need to find a distribution which is consistent with households’ information about the 
distribution and the resulting household behavior. In practice, we iterate over the distribution. We first make an initial guess 
for the distribution. We then use that distribution to determine the matching probabilities and the value functions of the 
households that are not in the market (equations (9) and (10)). After that we solve recursively for all the value and policy 
functions. Finally, we simulate the model to find the associated stationary distribution. The resulting distribution provides 
us with a new guess.

In practice, this iteration converges nicely. We have also experimented with very different initial guesses for the distri-
bution and the equilibrium was always independent of it. We discuss computational issues in more detail in Appendix A.2.

4. Calibration

When calibrating the model, we try to capture the importance of both borrowing constraints and matching frictions. 
We match the average TOM in the data. In addition, we impose a reasonable loan-to-value restriction and try to match the 
share of households that are close to it.

The model does not allow us to replicate the entire wealth distribution in the data. Replicating the wealth distribution 
would at least require introducing very large and highly persistent income shocks. The reason we focus on the left tail of 
the wealth distribution is twofold. First, changes in the borrowing constraint do not directly influence the trade-offs faced 
by wealthier households. Second, as we show below, the outcome of the bargaining process is sensitive to small changes in 
household asset positions only when the trading partners are relatively poor. In other words, housing market outcomes are 
mainly driven by the left tail, rather than the entire asset distribution.

We base our calibration on the Wealth Survey that was conducted by Statistics Finland in 2004. The survey contains 
register data about the asset holdings and incomes of a representative sample of Finnish households. The register data are 
supplemented by survey information. In the survey, households were asked, among other things, to give an estimate of the 
current market value of their house and to report the length of stay in their current dwelling.

We consider only households where the age of the household head is between 25 and 60, in order to focus on the 
working age population. In addition, we only use data from Helsinki Metropolitan Area (HMA) because we wish to focus on 
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a single housing and labor market.20 We also exclude households living in service housing. These restrictions imply that we 
have a data set of about 600 households.

We set the model period to 3 months. We set the interest rate parameter at R = 1.01 implying an annual interest rate 
of about 4%. We also consider a shorter model period in the sensitivity analysis.

We construct two variables for the analysis: ‘house value’ and ‘financial wealth’. House value is the value of primary 
residence as estimated by the household. Financial wealth is the sum of all financial assets, quarterly after-tax return to 
financial assets, quarterly after-tax non-capital income, less mortgage debt and quarterly interest payments on it.

We consider the following utility function

u (c, z,d) = c1−σ

1−σ
− I (z,d) f ,

where

I (z,d) =
{

1 if z = 2 and d = r

0 otherwise
.

Parameter σ > 0 measures risk-aversion (σ = 1 corresponds to log-utility) and f is the utility cost of living in rental 
housing when having a preference for owner housing. We set σ = 2, which is a relatively conventional value.

In our data set, the ownership rate is 45%.21 However, in the benchmark calibration, we focus on the case where the 
ownership rate equals 50% and the tenure preference shocks are symmetric. As discussed in section 3.3, we can directly 
control the matching probabilities φb and φs with the matching parameter χ . We set the weight in the Cobb–Douglas 
technology determining the number of matches at α = 0.5. We assume symmetric bargaining power, i.e. ω = 0.5.

In our data set, the average length of stay in current house is roughly 7 years. Based on this and the assumption of 
symmetric tenure preference shocks, we set the tenure preference transition probabilities at

P
(
z′, z

) =
[

0.967 0.033
0.033 0.967

]
.

The income shock can take two values, that is ε ∈ {ε1, ε2}. We interpret the first shock as unemployment. The unem-
ployed households receive an unemployment compensation. In Finland, most workers are covered by an earnings-related 
unemployment insurance scheme. During the first two years of unemployment, the replacement rate is typically about 50%. 
We therefore set

ε1 = 0.5 and ε2 = 1.

We choose the probabilities of the income shocks so that the unemployment rate is 8%, which implies

ϕ1 = 0.08 and ϕ2 = 0.92.

We future reference, we also define

ε = ϕ1ε1 + ϕ2ε2 = 0.96.

In the data, the mean after-tax non-capital income of renters is 58% of the mean income of owners. Let yr and yo denote 
the average non-capital income of renters and owners in the model, respectively. We will normalize the wage rates so that 
the average non-capital income equals 1 and yr

yo
= 0.58. This results in yr = 0.73 and yo = 1.27. In what follows, we refer 

to the after-tax non-capital income as simply ‘income’. In the data, the median rent-to-income ratio is 0.27. Hence, we set 
the rent at υ = 0.20 (0.2/0.73 ≈ 0.27).

We set the transaction tax at τ = 0.016.22 We assume that households can only borrow against owner housing. Therefore, 
the borrowing constraint for renters is sr = 0.

We are then left with seven parameters: owners’ borrowing limit, so , maintenance cost, κ , matching parameter, χ , 
discount factor, β , utility cost, f , and wage rates w1 and w2. We set these parameters so that the model matches certain 
empirical targets.

First, we want the model to feature a realistic average house price-to-average income ratio. In the data, the median ratio 
of house value to quarterly income among owners is 17.2. Given that the average income of owners is 1.27 in the model, 
the average house price in the model should be 21.8.

Second, we want to capture the role of borrowing constraints as realistically as possible. As we show below, the housing 
market outcomes in the model are sensitive to changes in traders’ asset positions only when the traders are close to being 

20 The Helsinki Metropolitan area consists of four municipalities (Helsinki, Espoo, Vantaa and Kauniainen) and roughly one fifth of the overall population 
of Finland.
21 Based on our calculations using the Wealth Survey, the ownership rate is 67% in the whole of Finland. In HMA without the age restriction we use in 

calibrating the model, the ownership rate is 51%.
22 This was the tax rate for dwellings in apartment buildings in Finland up until 2013 when it was set to 2% of the transaction price.
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borrowing constrained. We therefore wish to target the share of buyers that are likely to be borrowing constrained. Those 
buyers have little savings relative to the value of the house they are contemplating buying. After buying a house, they are 
highly leveraged.

The asset positions of renters in our data offer little guidance in this respect because the data do not reveal which 
renters are considering buying a house or the value of the house they would like to buy. Fortunately, we know the length of 
stay in current house for each household. Therefore, instead of looking at the asset positions of all renters, we focus on the 
asset positions of those who recently bought a house. These recent buyers have had very little time to repay their mortgage 
and should therefore have a very similar financial position as right after having bought the house. We define recent buyers 
as home owners that have lived in their current house for up to two years. We then match the share of recent buyers with 
a financial wealth-to-house-value ratio less than −0.8. In the data, that share is approximately 25%.

Third, we want the model to feature a realistic average TOM, so that households in the model economy face a realistic 
trade-off between trading now and waiting for a better match. According to Eerola and Lyytikäinen (2015), the average TOM 
for repeat sales in Finnish cities between 2003 and 2011 has been 48 days. This corresponds to 0.53 model periods.23

Fourth, we choose the borrowing limit for owners, so , so that it reflects a realistic down payment requirement for 
mortgages. In 2010, according to a survey conducted by the Financial Supervisory Authority about half of the housing loans 
for first time buyers exceeded 90% of the house value, but loans exceeding 100% of the value of the house were rare and 
involved special arrangements (Financial Supervisory Authority, 2011). We therefore assume that owners can borrow up to 
95% of the average house price.24 Fifth, in the data, the average annual maintenance cost of owner-occupiers is 1.6% of the 
average house value. We use this information to pin down the maintenance cost κ .

Finally, we match the average income of renters relative to owners and normalize the average income in the model to 
one. As explained above, this means that we should have yr = 0.73 and yo = 1.27. Since the wage rate is determined by 
the tenure preference, the average incomes of renters and owners in the model are given by

yr =
[(

1 − mo − mb
)

w1 + mb w2
]
ε

1 − mo
and yo =

[(
mo − ms

)
w2 + ms w1

]
ε

mo
,

where mo is the ownership rate and w1 is the wage rate of those with z = 1 and w2 is the wage rate of those with z = 2.
To summarize, we choose β , f , χ , so , κ , w1 and w2 so as to match the following targets: i) Average house price equal 

to 21.8 (median house value-to-income ratio in the data), ii) share of recent buyers with financial wealth-to-house value 
ratio less than −0.8 equal to 0.25, iii) average TOM equal to 0.53 model periods, iv) owners can borrow up to 95% of the 
average house price, v) average annual maintenance cost is 1.6% of the average house price, vi) average income of renters 
equal to 0.73, and vii) average income of owners equal to 1.27.

Given the targeted average house price, targets iv) and v) directly imply so = −0.95 ∗ 21.8 = −20.71 and κ = (0.016 ∗
21.8)/4 = 0.0872. The other targets depend on all remaining parameters. With parameter values β = 0.986, f = 0.33, 
and χ = 0.76, w1 = 0.73 and w2 = 1.353 the model closely matches all the remaining targets. (The resulting stationary 
distribution features mb = ms = 0.0248.)

Table 1 shows selected percentiles of the distribution of the financial wealth-to-house value ratio in the data and the 
model. For the table, we calculated, for each owner-occupier in the data and in the model, the financial wealth-to-house 
value ratio. This ratio is close to the usual loan-to-value ratio. In the data, ‘recent buyers’ refers to owners who have lived 
in their current house up to two years. In the model, it refers to households who have become owners within the last 8 
model periods.

The model roughly replicates the left tail of the two empirical distributions. In particular, the model is consistent with 
two important features of the data. First, a non-trivial share of all owner households are very highly leveraged.25 Second, 
recent buyers are typically even more leveraged than other home owners suggesting that borrowing constraints are partic-
ularly relevant for the potential buyers. As we discuss below, the reason why recent buyers are more leveraged than other 
owners relates to the correlation between tenure preference and income.

The model also roughly matches the empirical distribution of TOM. In the model, 65% of the houses are sold within the 
same period they are put on the market, 23% in the second period and 8% in the third period, while 4% of the houses (that 

23 In the model, we compute the average TOM by following households that have just become unhappy owners. In the model, transactions occur in the 
beginning of a period. Therefore, an unhappy renter that buys a house in a given period avoids paying the utility cost associated with rental housing for 
the whole period. Accordingly, if a household sells its house in the same period it enters the housing market, the TOM is recorded as zero. If it sells in the 
next period, TOM is recorded as 1 period, or 90 days, and so on. TOM is not recorded if a household is hit by a new tenure preference shock before selling 
the house and withdraws the house from the market.
24 The fact that the borrowing constraint does not depend on the trading price simplifies the computation. In our view, this formulation of the borrowing 

constraint is also reasonable as it is the average price, rather than trading price, that reflects the expected collateral value of the house for the bank.
25 Because of higher house prices, home owners living in the HMA are typically more leveraged than households living in other parts of Finland. Moreover, 

Finnish households in general have little private pension savings because the mandatory pension system is quite generous. However, in an international 
comparison, households in our data are unlikely to be exceptionally highly leveraged. For instance, according to the OECD, the aggregate gross household 
debt-to-income ratio in 2004 was 82% in Finland, 104% in Germany, and 123% in the US. Since then, this ratio has increased in most OECD countries, 
including Finland. Cowell et al. (2017) compare household net worth distribution in 5 countries. Fig. 1 and Table 1 in their paper suggest that the left tail 
of this distribution is quite similar in Finland, US and UK.
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Table 1
Distribution of financial wealth-to-house value ratio in the data and in the model.

Percentile Owners, data Owners, model

All Recent buyers All Recent buyers

5th −0.85 −0.93 −0.84 −0.87
10th −0.69 −0.87 −0.81 −0.84
25th −0.40 −0.78 −0.70 −0.81
50th −0.01 −0.50 −0.52 −0.73
95th 0.69 0.29 0.02 −0.21

Note: The table shows the financial wealth-to-house value ratio for all households in the model and 
our data. In the data, ‘recent buyers’ refers to owners who have lived in their current house up to 
two years. In the model, it refers to households who have become owners within the last 8 model 
periods.

Fig. 2. Renters’ (left) and owners’ (right) savings policy. Note: The figure plots the difference between the expected next period financial wealth and current 
financial wealth as a function of current financial wealth (a).

are eventually sold) are sold in the fourth period or later. In the data, the comparable figures are about 79% (sold within 
the first 3 months), 16%, 3%, and 2% (not sold within the first 9 months).

5. Results

5.1. Household policies and price determination

Let us first briefly discuss the household savings policy, illustrated in Fig. 2. In the figure, current financial wealth is 
on the horizontal axis.26 The vertical axis shows the difference between the expected next period financial wealth (that is, 
Rsd (a, z) + Eεw) and current financial wealth. If this difference is positive (negative), the household is expected to become 
wealthier (poorer). The left hand panel shows the savings policy for renters and the right hand panel that for owners 
separately for those on the market and those not on the market.

For very low asset holdings, any increase in the current financial wealth is spent on non-housing consumption in the 
current period. Therefore, an increase in current financial wealth is associated with a one-to-one reduction in the difference 
between expected future financial wealth and current financial wealth. This happens as long as households are borrowing 
constrained. Borrowing constrained owners borrow up to −so and borrowing constrained renters choose to save nothing 
(sr = 0). For those close enough to the borrowing constraint, the expected next period financial wealth is nevertheless 
higher than current financial wealth because financial wealth includes the wage income and the unemployment benefit.27

26 The lowest financial wealth levels in the figure correspond to the maximum and minimum prices defined in equations (4) and (5). See Appendix A.2
for details.
27 For instance, the expected next period financial wealth for a happy renter with no savings is approximately 0.7. This is much higher than the lowest 

possible realization of the financial wealth level (i.e., no savings and the worst income shock).
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Fig. 3. Price as a function of seller’s (left) and buyer’s (right) asset position. Note: “a/mean price” denotes the financial wealth-to-average house price ratio.

For a given level of financial wealth, unhappy renters and happy owners save more than happy renters or unhappy 
owners. This reflects the fact that unhappy renters and happy owners expect their income to decrease sometime in the 
future (as w2 > w1). Unhappy renters also expect to spend more on housing in the future since the user cost of owner 
housing is higher than that of rental housing.

Fig. 3 illustrates how the Nash bargaining outcome depends on potential buyer’s and seller’s asset positions. The hori-
zontal axis shows the ratio of buyer’s or seller’s financial wealth to the average house price. For sellers, this ratio is close to 
the usual loan-to-value ratio. The left hand panel plots the Nash bargaining price as a function of seller’s asset position and 
the right hand panel as a function of buyer’s asset position. Both panels show two different cases: one where the potential 
trading partner is relatively poor in terms of financial wealth and another where the potential trading partner is relatively 
wealthy. For some combinations of the seller’s and buyer’s financial wealth, a match does not result in trade.

Consider first the left hand side of the figure and the case of a wealthy buyer. When the seller is close to the borrow-
ing constraint, the Nash bargaining price is relatively low. Selling the house allows a highly leveraged owner to smooth 
consumption over time. For a given price, these households benefit more from trade than wealthier sellers. Therefore, the 
Nash product is maximized at a relatively low price. However, the need to sell for liquidity reasons diminishes quickly as 
we increase seller’s financial wealth. This means that the outside option of the seller increases rapidly. Hence, for there to 
be trade, the price must also increase rapidly. Further away from the borrowing constraint, the price curve becomes flat. As 
wealthier sellers do not need to sell in order to smooth non-housing consumption, they all face the same trade-off between 
selling today and waiting for a better match. Hence, the price does not depend on seller’s asset position.

When looking at the case of a relatively poor buyer, one observes that trade only occurs if the seller is also poor. Because 
of the borrowing constraint, a poor buyer is only able to trade if the price is relatively low. When faced with such a buyer, 
a wealthier seller, who does not have to sell for liquidity reasons, prefers to wait for a better match.

Similarly, the right hand side panel shows that when the seller is wealthy, trade occurs only when the buyer is not very 
poor. In contrast, a poor seller is willing to trade also with a relatively poor buyer. In that case, the price first increases 
rapidly with buyer’s financial wealth. At higher wealth levels, when the borrowing constraint no longer limits consumption 
smoothing, the price curve becomes much less steep. However, unlike in the left hand panel, it does not become completely 
flat. This is because a wealthier buyer is always willing to pay more than a poorer one in order to avoid the utility cost 
associated with rental housing today rather than later.

Fig. 4 shows the combinations of buyer’s and seller’s asset positions (relative to the average house price) that result in 
trade. The figure only covers matches where traders are relatively poor. Even very poor buyers end up buying if matched 
with a very poor seller trading for liquidity reasons. As the seller’s financial wealth increases, the potential buyer needs to 
be wealthier for the match to result in trade.

In the absence of matching frictions, all trades (within the same period or in the stationary equilibrium) would take 
place at the same market price and all households could count on being able to buy or sell at the prevailing market price. 
One important implication of matching frictions is that poor sellers that would like to sell quickly for liquidity reasons may 
not be able to sell or may have to sell at a relatively low price. In this sense, matching frictions make borrowing constraints 
more relevant for household welfare.
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Fig. 4. Matches that result in trade. Note: “a/mean price” denotes the financial wealth-to-average house price ratio. Given seller’s asset position, the figure 
shows the asset position of the poorest buyer with which the seller would trade.

Fig. 5. Average price (top) and probability of trade (bottom) by buyers’ and sellers’ financial wealth percentile.

Fig. 5 shows the average price and the probability of trade for buyers and sellers in different asset positions. The x-axis 
shows the financial wealth percentile in the stationary distribution associated with the benchmark calibration. (The per-
centiles correspond to very different asset positions for buyers and sellers.) Both the average price and the probability of 
trade are much more sensitive to the buyer’s asset position than that of the seller’s. The very poorest potential buyers are 
very unlikely to trade, as they only trade when matched with a very poor seller. Over a certain range (between percentiles 
10 and 20), the probability of trade increases steeply with the buyer’s financial wealth as the borrowing constraint becomes 
less relevant. For buyers above percentile 20, the probability of trade is the same as the probability of being matched with 
a potential seller. In other words, these buyers end up buying whenever they have the opportunity to do so. The sellers, in 
contrast, may always face a poor buyer with whom they would not trade.

In the stationary equilibrium of the benchmark calibration, the very lowest realized house price is about 4.5% below 
the average price. Hence, the model can account for non-trivial deviations from the average price. The lowest house prices 
correspond to matches were both trading partners are close to the borrowing constraint. However, given the stationary 
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Table 2
Percentage changes in selected statistics relative to the benchmark calibration.

ao ar p tom cv(p) tr

Matching probability
χ = 1 1 1 0 −64 −19 −1
χ = 0.6 0 −1 0 66 21 2

Borrowing constraint
so = −18.53 20 6 −6 84 28 −24
so = −16.53 40 13 −11 185 60 −41

Note: In the table, ao and ar denote the average asset holdings of owners and renters, respectively, 
and p denotes the average price. The measures of market inefficiency are average time-on-the-
market (tom), coefficient of variation of house prices (cv (p)), and share of matches that lead to 
trade (tr). All figures in the table refer to percentage changes relative to the benchmark calibration 
where χ = 0.76 and so = −20.71. Owners’ average financial wealth is negative. The table shows the 
change relative to the absolute value of average financial wealth.

asset distribution, such matches are very rare. Most transactions take place at a price close to the average. As a result, the 
coefficient of variation for the transaction price is just 0.38%. By comparison, the coefficient of variation of total wealth is 
about 104%, where total wealth is equal to financial wealth in the case of renters and financial wealth (a) plus the average 
house price in the case of owners. On the other hand, because of the borrowing constraint and wealth dispersion, about 
16% of the matches do not result in trade in the benchmark calibration.

5.2. Frictions and housing market outcomes

In this section, we analyze how the housing market outcomes in the stationary equilibrium depend on the matching 
friction and the borrowing constraint. We vary one friction at a time, keeping all other parameters fixed, and recompute 
the stationary equilibrium. We first vary the matching parameter χ . We consider values χ = 1.0 and χ = 0.4 (benchmark: 
χ = 0.76). We then tighten the borrowing constraint for owners by setting so = −18.53 and so = −16.35 (benchmark: 
−20.71). These numbers correspond to a borrowing limit that is 85% and 75% of the average house price in the benchmark 
calibration, respectively.

We report changes in the average house price and the average asset positions for owners and renters. We also consider 
the average TOM, the share of matches that result in trade, and the coefficient of variation of house prices.

The average TOM is a commonly used measure of housing market conditions. In the model, it also indirectly measures 
the welfare cost related to the misallocation of housing units because it reflects the share of households that pay the utility 
cost associated with rental housing. This share changes almost one-to-one with the average TOM. There are two reasons 
why unhappy renters do not trade immediately. First, since χ < 1, some potential buyers are not matched with a potential 
seller. Second, because of credit frictions and asset heterogeneity, some matches do not result in trade.

Also price dispersion is closely linked to the frictions we are interested in. Since all owner houses are identical in the 
model, absent matching frictions, they would sell at the same price. If better matches are instantaneously available, all 
differences in prices stemming from the characteristics of the current trading partners must vanish. In other words, some 
matching frictions are needed to create any price dispersion. However, in this set-up, matching frictions alone would not 
be able to generate price dispersion, if there was no wealth heterogeneity. Moreover, if all potential future trading partners 
were alike and identical to the current trading partner, waiting for a new match would never be profitable. Therefore, 
in the model, both unsuccessful matches and house price dispersion stem from matching frictions together with wealth 
heterogeneity.

Table 2 displays the results as percentage changes relative to the benchmark calibration. The first three columns report 
the relative changes in the average financial wealth of owners (ao) and renters (ar ) and the average house price (p). The 
last three columns report the relative changes in the average TOM (tom), the coefficient of variation of house prices (cv(p)), 
and the share of matches that result in trade (tr).

Consider first the matching frictions. Changes in the matching parameter χ have virtually no effect on households’ 
average financial asset holdings or the average house price. Also the coefficient of variation of total wealth (not shown 
in the table) is almost unaffected: Increasing χ from 0.6 to 1 decreases the coefficient of variation of the total wealth 
distribution from 104.1% to 102.7%.

Naturally, changes in the matching efficiency do affect the average TOM. For instance, reducing matching frictions by 
increasing χ from 0.76 to 1.0 decreases the average TOM by 64%. This directly follows from buyers and sellers being more 
likely to be matched. There is a small countervailing effect, however, because now the share of matches that result in trade 
is smaller. This is because a reduction in matching frictions makes deferring trade less costly. Interestingly, this effect also 
shows up in reduced price dispersion. The coefficient of variation decreases by 19%. Because deferring trade is less costly, 
the bargaining outcome becomes less sensitive to the asset positions of the traders.

Increasing matching frictions has the opposite effects: The average TOM goes up as trading opportunities are less fre-
quent. However, at the same time, a larger share of matches leads to trade because waiting for a better match is more 
costly. This also implies higher price dispersion.
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Consider then the borrowing constraint. Not surprisingly, tightening the borrowing constraint increases households’ aver-
age financial wealth. This is because more savings are required in order to be able to buy a house. The effects are relatively 
large, reflecting the fact that many home owners are close to the borrowing constraint in the benchmark calibration. For 
instance, lowering the maximum mortgage by about 10% (from 20.71 to 18.53) increases owners’ average financial wealth 
by 20%. In absolute terms, this increase corresponds to about 1.5 times the owners’ average periodic income. It also lowers 
the average house price by 6%. The distribution of total wealth becomes only slightly more equal with the coefficient of 
variation of total wealth decreasing from 103.5% to 101.8%.

A tighter borrowing constraint also leads to a substantially longer average TOM. Lowering the maximum mortgage by 
about 10% increases the average TOM by 84%, while the more drastic reduction increases it by 185%. The increase in the 
average TOM reflects the fact that a smaller share of matches result in trade. Tightening the borrowing constraint reduces 
the surplus from trade for matches where the buyer is relatively poor. As a result, even though households are on average 
wealthier, there are more matches that do not lead to trade.28

Tightening the borrowing constraint also increases the price dispersion. Lowering the maximum mortgage by about 10%
or 20% increases the coefficient of variation of house prices by 28% and 60%, respectively. In the latter case, we also find that 
the very lowest realized house prices are 11% below the average price (compared to about 4.5% in the benchmark case). As 
the borrowing constraint is tightened, it becomes relevant to a larger share of potential buyers, even though renters’ average 
financial wealth also increases. As a result, buyers end up trading only if they are matched with a seller that needs to sell 
for liquidity reasons. In those cases, the realized price is relatively low.

More generally, these results illustrate how credit frictions interact with the effects of matching frictions. Tightening 
the borrowing constraint increases the average TOM, much like increasing matching frictions would do. While borrowing 
constraints do not alter the frequency of finding a trading opportunity, they influence the surplus from trade and hence the 
share of successful matches. Moreover, while some matching frictions are needed to create any price dispersion between 
identical houses, tightening the borrowing constraint increases price dispersion substantially.

The intuition behind both the smaller share of successful matches and the increased price dispersion relates to the 
fact that the bargaining outcome depends on traders’ asset positions mainly through the borrowing constraint. When the 
borrowing constraint is very lax, all matched sellers and buyers face a similar trade-off between trading now and deferring 
trade. As a result, there is no reason to wait for a better match and trade takes place at (approximately) the same price in 
all matches. A tighter borrowing constraint creates heterogeneity in the match surplus because of liquidity concerns. As a 
result, fewer matches result in trade and the price dispersion (of identical houses) is larger.

These results are broadly in line with the empirical observations discussed in Section 2. In particular, a tighter borrowing 
constraint lowers house prices and increases the average TOM, with the relative increase in the average TOM being much 
larger than the relative decrease in prices. Ngai et al. (2017) show that in the UK and US, the average TOM is positively 
correlated with the number of viewings per transaction. Our results are also consistent with this observation if we interpret 
a match in the model as a viewing in the data. Following a tighter borrowing constraint, the share of matches leading to 
trade decreases.

Since these results are based on comparing stationary equilibria, they do not directly inform us about the impact effects 
of the changes considered here. The impact effects of an unanticipated tightening of the borrowing constraint on the average 
TOM, the average house price and price dispersion may be even larger than those presented above. This is because it takes 
some time for potential buyers to increase their savings as a response to the tighter borrowing constraint. However, the 
impact effects would also depend on how the new borrowing constraint is applied to those home owners who are already 
highly indebted when the tightening takes place.

5.3. Sensitivity analysis

In this section, we consider alternative parametrizations. Our main interest is in studying whether the above conclusions 
regarding the effects of the borrowing constraint are sensitive to changes in some key parameters. In what follows, we vary 
the ownership rate, consider a lower risk aversion (logarithmic utility) and a lower discount factor than in the benchmark 
calibration. We also analyze the effects of asymmetric bargaining power. When varying these parameters, we recalibrate 
the utility cost f so as to get the same average house price as in the benchmark calibration. We do not recalibrate other 
parameters. We first report how these changes affect housing market outcomes relative to the benchmark case. We then 
consider the effects of tightening the borrowing constraint in these alternative parametrizations.

In the benchmark calibration, the supply and demand for owner and rental houses is balanced in the sense that the 
(fixed) ownership rate equals the share of households that prefer owner to rental housing. Here we consider ownership 
rates of 45% and 55%. We retain the symmetric tenure preference shocks of the benchmark calibration. As a result, the 
supply of owner houses may now be smaller or larger than the mass of households that strictly prefer owner housing to 
rental housing and the matching probabilities are no longer directly given by χ . In order to target the same average house 
price, the utility cost f must be higher than in the benchmark case when the ownership rate is higher, and vice versa.

28 Despite the increase in the average TOM, the transaction volume hardly changes. This is because almost all unhappy owners eventually sell their house. 
As explained in Ngai et al. (2017), sustained changes in the transaction volume must be related to changes in the moving rate rather than the average TOM.
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Table 3
Percentage changes in selected statistics relative to the benchmark calibration.

ao ar tom cv(p) tr

Ownership rate 45%, f = 0.260 1 0 −59 −12 0
Ownership rate 55%, f = 0.440 0 0 65 19 3
Lower risk-aversion (σ = 1), f = 0.310 −42 −52 −1 −20 0
Lower discount factor (β = 0.983), f = 0.370 −30 −40 15 9 −5
Higher seller barg. power (ω = 0.6), f = 0.275 −1 −1 6 12 −2
Lower seller barg. power (ω = 0.4), f = 0.405 1 2 −11 −7 4

Note: In the table, ao and ar denote the average asset holdings of owners and renters, respectively. 
The measures of market inefficiency are average time-on-the-market (tom), coefficient of variation 
of house prices (cv (p)), and share of matches that lead to trade (tr). All figures in the table show 
the percentage changes relative to the benchmark calibration where the ownership rate is 50%, 
σ = 2, ω = 0.5, and f = 0.33. Owners’ average financial wealth is negative. The table shows the 
change relative to the absolute value of average financial wealth. In all cases, the utility cost pa-
rameter f has been recalibrated so that the average house price is the same as in the benchmark 
calibration.

Table 3 displays changes in selected statistics relative to the benchmark calibration. The first row of the table relates to 
the case where the ownership rate is 45%. In this case, there are more buyers than sellers in the market and the probability 
of meeting a buyer is higher than in the benchmark case. This results in shorter average TOM. On the other hand, since 
sellers are more likely to meet a buyer, they are less likely to accept a low price when matched with a relatively poor buyer. 
As a result, there is less price dispersion.29

When the ownership rate is 55%, the probability of meeting a buyer is lower than in the benchmark case. This increases 
the average TOM. However, a lower probability of meeting a buyer also means that deferring trade is more costly for the 
seller. Therefore, the seller is more willing to sell at a relatively low price when she is matched with a borrowing constrained 
buyer. This increases price dispersion.

The logarithmic utility function results in much lower average financial wealth than the benchmark calibration. Because 
households are less risk-averse, being borrowing constrained is not as serious a concern. The average TOM is virtually 
unchanged relative to the benchmark calibration. This reflects two opposite effects. Since households are less keen on 
smoothing consumption over time, the borrowing constraint is less relevant for the bargaining outcome. On the other hand, 
as households are on average poorer, it is more likely that the potential buyer is close to being borrowing constrained.

Assuming a lower discount factor (β = 0.983) decreases the average financial wealth, thereby increasing the importance 
of the borrowing constraint. In this case, however, households are still equally concerned about consumption smoothing 
as in the benchmark calibration. As a result, the average TOM and price dispersion increase relative to the benchmark 
calibration.

Assuming that the seller has a higher bargaining power than the buyer (ω = 0.6) increases the average TOM and price 
dispersion somewhat relative to the benchmark calibration. These effects are reversed when the bargaining power of the 
buyer is increased (ω = 0.4).

Table 4 shows the effect of a tightening of the borrowing constraint in the different cases discussed above. In each case, 
we lower the maximum mortgage by about 10%. For comparison, the table also shows the effects of the same experiment in 
the benchmark calibration. Qualitatively, the effects are the same across all the cases. Renters’ and owners’ average financial 
wealth, average TOM and price dispersion increase while the average house price and the share of matches that result in 
trade decrease. Quantitatively, when looking at the average TOM, the effects are large except when the ownership rate is 
55%. In this case, however, the average TOM is very high to start with. The absolute increase is in fact quite similar in all 
cases. The effect on price dispersion does seem to depend on the ownership rate, but is very similar across all other cases. 
The effect on the share of matches that result in trade is remarkably similar in all cases.

Finally, we analyze an alternative calibration where the model period is interpreted to be six weeks instead of three 
months. We set the interest rate at R = 1.005 in order to have approximately the same annual interest rate as in the 
baseline calibration. We still normalize the average income to one. This means that the average house price should now be 
twice as high as in the baseline calibration, i.e. 43.6. Also the target for the average TOM doubles to 1.06. The other targets 
remain the same. By setting β = 0.994, f = 0.330, χ = 0.690, w1 = 0.750, and w2 = 1.333, while keeping other parameters 
the same as in the benchmark calibration, the model economy closely matches all the calibration targets.30 The results in 
Table 4 related to the six week calibration show that the effects of tightening the borrowing constraint are very similar to 
those in the benchmark calibration.

29 It should be noted, however, that even though the average TOM for the sellers is shorter than in the benchmark case, potential buyers may have to 
stay longer in the market than in the benchmark case, because they are less likely to meet a seller.
30 It is worth noting that the value of the matching parameter χ is almost the same as in the benchmark calibration. In other words, the per period 

probability of meeting a potential trading partner is only slightly lower than in the benchmark calibration even though the model period is now much 
shorter. The explanation relates to the fact that a shorter model period lowers the cost of waiting for a better match. This makes matches less likely to 
result in trade, which works to increase the average TOM. The share of matches that lead to trade is now 64% versus 84% in the benchmark calibration.
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Table 4
Percentage changes in selected statistics following a tightening of the borrowing constraint in dif-
ferent cases.

ao ar p tom cv(p) tr

Benchmark calibration 20 6 −6 84 28 −24
Ownership rate 45% 20 5 −6 183 22 −22
Ownership rate 55% 20 7 −5 58 32 −27
Lower risk-aversion (σ = 1) 15 12 −7 81 25 −23
Lower discount (β = 0.983) 16 7 −7 78 33 −24
Higher seller barg. power (ω = 0.6) 19 5 −6 91 25 −26
Lower seller barg. power (ω = 0.4) 21 7 −6 80 32 −21
Model period six weeks 41 5 −6 63 15 −25

Note: In the table, ao and ar denote the average asset holdings of owners and renters, respectively, 
and p denotes the average price. The measures of market inefficiency are average time-on-the-
market (tom), coefficient of variation of house prices (cv (p)), and share of matches that lead to 
trade (tr). All numbers in the table show the effect (percentage changes) of lowering the maximum 
mortgage by about 10% relative to the case where so = −20.71. Owners’ average financial wealth 
is negative. The table shows the change relative to the absolute value of average financial wealth. 
The utility cost parameter f has been recalibrated so that the average house price is the same as in 
the benchmark calibration. In the case of a shorter model period, also other parameters have been 
recalibrated.

5.4. Endogenous market participation

So far we have assumed that all unhappy renters and unhappy owners participate in the housing market, i.e. search for 
a potential seller or buyer, whereas happy renters and happy owners stay out of the market. In this section we relax this 
assumption and consider endogenous market participation.

In many other housing market matching models, it is possible to show that there exists a participation cost such that all 
“mismatched” households enter the market whereas all “matched” households stay out. This is not the case in our model 
because of wealth heterogeneity and the fact that the value of entering the market increases with wealth. For instance, a 
very wealthy happy renter might want to buy a house in order to insure against a possible change in her tenure preference.

In principle, we could endogenize all market participation decisions by assuming that all households need to incur some 
fixed cost in order to have a chance of meeting a potential seller or buyer. However, this would complicate the analysis 
substantially. The reason is that the number of possible buyer and seller matches grows exponentially with new types of 
buyers or sellers.

For this reason, we only endogenize the market participation of unhappy renters. Given our focus on borrowing con-
straints, endogenous participation might be especially relevant for this group. Very poor unhappy renters, who are unlikely 
to be able to finance a house, may not be willing to incur even a relatively small cost to participate in the market. By the 
same token, changes in the borrowing constraint may influence their participation decision.

Let η > 0 denote a periodic utility cost of participating in the market for unhappy renters. In the beginning of the model 
period, unhappy renters decide whether to incur it or not. Formally, the value function V r (a,2) becomes

V r (a,2) = max

(
−η + φs

∫
W b (a, ã)

μo (̃a,1)

ms
d̃a + (

1 − φs) vr (a,2) , vr (a,2)

)
.

Otherwise, the household problem remains the same.
It is hard to pin down a realistic value for η. We therefore consider several values, namely 0.005, 0.02 and 0.04. These 

market participation costs are equivalent to a fall in average non-housing consumption of about 0.4%, 1.7% and 3.3%, re-
spectively.31 When introducing these costs, we again recalibrate the utility cost f so as to get approximately the same 
average house price as in the benchmark calibration while keeping all other parameters fixed. The resulting utility costs are 
somewhat lower than in the benchmark case.

Introducing the participation cost changes the stationary equilibrium, compared to the benchmark calibration. The poor-
est unhappy renters, who are most likely to be borrowing constrained, choose not to enter the market. This affects the 
average TOM in two ways. First, a match is now more likely to result in trade, which works to decrease the average TOM. 
In fact, with η equal to 0.02 or higher, virtually all matches result in trade. On the other hand, there are also less buyers 
relative to sellers. This lowers the probability of meeting a buyer, which works to increase the average TOM. The overall 
effect is a shorter average TOM. With η equal to 0.02, for instance, the average TOM is 0.29 periods compared to 0.53 in 
the benchmark calibration. Also price dispersion decreases somewhat as the buyers are less heterogeneous in their assets.

Table 5 shows the effects of tightening the borrowing constraint with different participation costs. We again lower the 
maximum mortgage by about 10%. Again, price dispersion increases but less than in the benchmark calibration. As in the 
benchmark calibration, the share of matches that result in trade decreases for a small participation cost. However, with η

31 The average non-housing consumption of unhappy renters is approximately 0.83.
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Table 5
Percentage changes in selected statistics following a tightening of the borrowing 
constraint with different participation costs.

ao ar p tom cv(p) tr

Benchmark calibration 20 6 −6 84 28 −24
η = 0.005 16 6 −4 50 27 −5
η = 0.02 17 6 −4 45 20 0
η = 0.04 19 5 −6 71 14 0

Note: In the table, ao and ar denote the average asset holdings of owners and 
renters, respectively, and p denotes the average price. The measures of market in-
efficiency are average time-on-the-market (tom), coefficient of variation of house 
prices (cv (p)), and share of matches that lead to trade (tr). All numbers in the 
table show the effect (percentage changes) of lowering the maximum mortgage 
by about 10% relative to the case where so = −20.71. Owners’ average financial 
wealth is negative. The table shows the change relative to the absolute value of 
average financial wealth. The utility cost parameter f has been recalibrated so that 
the average house price is the same as in the benchmark calibration.

equal to 0.02 or 0.04, virtually all matches result in trade even with the tighter borrowing constraint, and hence there is no 
effect on the share of successful matches.

Interestingly, the effect of a tighter borrowing constraint on the average TOM is very similar to that in the benchmark cal-
ibration. However, the mechanism is somewhat different. With a participation cost, a tightening of the borrowing constraint 
does not decrease the share of successful matches as much as in the benchmark calibration. However, it now reduces the 
number of potential buyers in the market, thereby lowering the probability that a seller meets a potential trading partner.

6. Discussion

We have analyzed how changes in credit frictions influence liquidity in the housing market. To this end, we developed 
a model of the owner-occupied housing market that features both credit and matching frictions. Our main result is that 
housing market liquidity is very sensitive to changes in the household borrowing constraints. Even a moderate tightening 
increases both the average TOM and idiosyncratic price dispersion substantially. Intuitively, this is because borrowing con-
straints make the outcome of the bargaining process between a house buyer and a seller more sensitive to traders’ asset 
positions. A tightening of the borrowing constraint may also induce some potential buyers not enter the market at all. 
Given matching frictions, this would also make it more difficult to sell a house. The results show that the observed large 
fluctuations in the average TOM can be explained by moderate changes in household credit conditions.

Our results also suggest some caution when imposing stricter loan-to-value restrictions for housing lending. The aim of 
such ‘macroprudential’ policies is to make households and banks less vulnerable to housing market fluctuations by reducing 
household leverage. In the model economy, reducing the maximum loan-to-value ratio indeed limits household leverage. 
However, by making potential home buyers more likely to be borrowing constrained, it effectively makes the housing market 
less liquid. This may complicate the situation for those home owners that need to sell quickly for liquidity reasons.

We see our model as a first step towards a more general housing market theory that takes into account both matching 
and credit frictions. The basic structure could be extended and modified in several ways. It might be particularly interesting 
to consider different assumptions regarding how house buyers and sellers meet and how prices are determined.

Appendix A

A.1. Nash bargaining price

In this appendix, we show that the Nash bargaining price is unique. The value function of the household in occupancy 
state d and tenure preference state z with financial wealth a is

vd (a, z) = max
s≥sd

⎧⎨⎩u (c, z,d) + β

2∑
j=1

P ( j, z)
nε∑

i=1

ϕi V d (
Rs + εi w j, j

)⎫⎬⎭ .

Denote the savings policy that solves the household problem by sd (a, z). The savings policy is determined by the first-order 
condition

−∂u (c, z,d)

∂c
+ βR

2∑
j=1

nε∑
i=1

P ( j, z)ϕi
∂V d

(
Rs + εi w j, j

)
∂a′ + μd = 0, (A.1)

where μd is the Kuhn–Tucker multiplier on the borrowing constraint s ≥ sd .
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Taking into account that households optimally choose savings after trade, we can write the surplus from trade for the 
potential buyer and the potential seller as

Sb (a, p) = u
(

cb,2,o
)

+ β

2∑
j=1

nε∑
i=1

P ( j,2)ϕi V o (
Rso (a − (1 + τ ) p,2) + εi w j, j

) − vr (a,2)

Ss (a, p) = u
(
cs,1, r

) + β

2∑
j=1

nε∑
i=1

P ( j,1)ϕi V r (
Rsr (a + p,1) + εi w j, j

) − vo (a,1)

where

cb = a − κ − (1 + τ ) p − so (a − (1 + τ ) p,2)

and

cs = a − υ + p − sr (a + p,1)

Using the above expressions for the surpluses and taking into account condition (A.1), the effect of price changes on the 
surplus of the buyer and the seller can be written as

∂ Sb (a, p)

∂ p
= − (1 + τ )

∂u
(
cb,2,o

)
∂c

and (A.2)

∂ Ss (a, p)

∂ p
= ∂u

(
cs,1, r

)
∂c

In addition,

∂2 Sb (a, p)

∂ p∂ p
= (1 + τ )2 ∂2u

(
cb,2,o

)
∂c∂c

(
1 − ∂so

(
ab − (1 + τ ) p,2

)
∂a

)
and (A.3)

∂2 Ss (a, p)

∂ p∂ p
= ∂2u

(
cs,1, r

)
∂c∂c

(
1 − ∂sr

(
as + p,1

)
∂a

)
The surplus from trade only depends on the price through its effect on current non-housing consumption. (The standard 

Kuhn–Tucker optimality conditions imply that μd > 0 if the borrowing constraint is binding. In this case, however, ∂sd(a,z)
∂a =

0. If, in turn, the borrowing constraint is not binding, μd = 0.)
Assume that Sb

(
ab, p

)
> 0 and Ss

(
as, p

)
> 0. Then the Nash bargaining price p maximizes

S
(

ab,as, p
)

= Ss (
as, p

)ω
Sb

(
ab, p

)(1−ω)

.

The first order condition for the optimal price is given by

(1 − ω) Sb
(

ab, p
)−ω ∂ Sb

(
ab, p

)
∂ p

Ss (
as, p

)ω + ωSs (
as, p

)ω−1 ∂ Ss
(
as, p

)
∂ p

Sb
(

ab, p
)(1−ω) = 0

By using (A.2) this can be written as

ω
∂u

(
cs,1, r

)
∂c

Sb
(

ab, p
)

− (1 − ω) (1 + τ )
∂u

(
cb,2,o

)
∂c

Ss (
as, p

) = 0. (A.4)

The second order condition is

∂2 S
(
ab,as, p

)
∂ p∂ p

= −ω(1 − ω) Sb
(

ab, p
)−ω−1

(
∂ Sb

(
ab, p

)
∂ p

)2

Ss (
as, p

)ω
+ (1 − ω) Sb

(
ab, p

)−ω ∂2 Sb
(
ab, p

)
∂ p∂ p

Ss (
as, p

)ω
+ 2ω(1 − ω) Sb

(
ab, p

)−ω ∂ Sb
(
ab, p

)
∂ Ss

(
as, p

)
Ss (

as, p
)ω−1
∂ p ∂ p
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− ω(1 − ω) Ss (
as, p

)−ω−2

(
∂ Ss

(
as, p

)
∂ p

)2

Sb
(

ab, p
)(1−ω)

+ ωSs (
as, p

)ω−1 ∂2 Ss
(
as, p

)
∂ p∂ p

Sb
(

ab, p
)(1−ω)

.

Together with 1 − ∂sr
(
as+p,1

)
∂a > 0 and 1 − ∂so

(
ab−(1+τ )p,2

)
∂a > 0 and (A.3), this implies that 

∂2 S
(

ab,as,p
)

∂ p∂ p < 0. Therefore, when-
ever trade is mutually beneficial, (A.4) determines a unique equilibrium price.

A.2. Computational issues

We use the following algorithm to solve the model: i) Guess distribution μd (a, z) and determine the matching probabil-
ities φs and φb . ii) Solve for the value and policy functions using value function iteration. iii) Simulate to find the resulting 
stationary distribution. iv) Update the guess for distribution. v) Repeat i)–iv) until the distribution has converged.

In step ii), given a guess for V d (a, z), we first solve for vd (a, z) from (6). We then determine T r
(
ab,as

)
and p 

(
ab,as

)
. 

It is clear that Sb (a, p) is decreasing and Ss (a, p) is increasing in price: other things equal, the buyer’s surplus from trade 
is always smaller and the seller’s larger the higher the price. We therefore begin by calculating prices pb and ps such 

that Sb
(

a, pb
)

= 0 and Ss
(

a, ps
)

= 0. If pb < ps , there is no price that would render trade mutually beneficial. If instead 

pb ≥ ps , we know that trade takes place. In this case, we find p 
(
ab,as

) ∈ [ps, pb] by solving (13), which is a one dimensional 
maximization problem. Given T r

(
ab,as

)
and p 

(
ab,as

)
, we first determine W b

(
ab,as

)
and W s

(
ab,as

)
from (15) and (16). 

We then solve V d(a, z) for d = r, o and z = 1, 2 from (7), (8), (9), and (10).
Of course, we need to use discrete grids of possible financial wealth levels for both owners and renters. We use cubic 

splines to interpolate value functions V d (a, z) and vd (a, z) between grid points and apply linear interpolation to the match 
value functions W b

(
ab,as

)
and W s

(
ab,as

)
. Even though the match value functions feature kinks around asset levels where 

trade becomes mutually beneficial, value function V d (a, z) turns out to be concave. This is because the location of the 
kink (in terms of agent’s own asset position) depends on the asset position of the potential trading partner and the value 
function V d (a, z) reflects the expected value of W b

(
ab,as

)
or W s

(
ab,as

)
over all possible asset positions of the trading 

partner.
For a given match and a given price, we compute the surplus from trade using value functions vd (a, z) according to (11)

and (12). The minimum financial wealth levels that we may need to consider correspond to the maximum and minimum 
prices defined in (4) and (5). The minimum financial wealth is sr + υ + cmin for renters and so + κ + cmin for owners. We 
assume cmin = 0.01. In the benchmark calibration, these limits are approximately 0.21 and −20.61, respectively. These limits 
provide the lower bounds for the financial wealth grids. We set the maximum financial wealth levels in the benchmark at 
51.8 for renters and at 30 for owners. There is no mass close to these limits in the stationary distribution. The difference 
between these limits corresponds to the average house price.

We approximate the distribution by a discrete density function. The financial wealth of a household in occupancy state 
d is forced to belong to a set Ad = {ad

1, a
d
2, ..., a

d
m}. As usual, we use a lottery to force next period financial wealth to be on 

the grid Ad (see algorithm 7.2.3 in Heer and Maussner (2010).
In step iii), we first determine savings policy for all unmatched households as well as the outcome of the bargaining 

process and the associated savings policy for all possible matches. That is, we determine, among other things, T r
(

ar
j,ao

k

)
and p 

(
ar

j,ao
k

)
for all j = 1, 2, .., m and k = 1, 2, ..., m. Since T r

(
ab,as

)
is a discrete function and the price is not defined 

everywhere, we do not interpolate these functions, but solve for the outcome of the bargaining process in the same way as 
in step ii).

We then determine three transition probability matrices. The first one determines transition probabilities from a given 
current state (a,d, z) to different next period states for unmatched households. The next period financial wealth is deter-
mined by the savings policy and the income shock. With two income shocks and two tenure preference states (and the 
lottery), an unmatched household in a given state may generally move to 8 different states. The second matrix determines 
probabilities with which a potential buyer (unhappy renter) with a given financial wealth ab ∈ Ar that is matched with a 
potential seller with a given financial wealth as ∈ Ao moves to different next period states. Given the match, there are again 
generally 8 different states to which the household can move. Similarly, the third matrix determines the probabilities at 
which a potential seller that is matched with a given potential buyer moves to different next period states. Given these 
transition probability matrices and an initial density function, we iterate over the density function to find the stationary 
distribution. At this stage, we need to take into account the probabilities of different matches which are in turn determined 
by the density function. For instance, of unhappy renters in state 

(
ar

j, r,2
)

that are matched with a potential seller, fraction 

μo
(
ao

k,1
)
/

m∑
μo

(
ao

l ,1
)

are matched with a potential seller with financial wealth equal to ao
k .
l=1
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The results reported here have been computed using 150 non-linearly spaced gridpoints for financial wealth in the value 
function and 200 non-linearly spaced gridpoints for financial wealth in the density function. Before we simulate to find the 
stationary distribution in step iii), we need to determine the outcome of the bargaining process for 2002 combinations of 
seller’s and buyer’s financial wealth. Further increasing the number of gridpoints had virtually no impact on the reported 
statistics of the benchmark calibration.
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