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Abstract:  

Our data from 351 innovating firms for the years 2001–2012 generally suggest that 

patentable ideas are strongly linked to the mobility of individual inventors, or that the 

knowledge flows transmitted are sticky inventor-specific. In other words, the larger the 

knowledge pool of an inventor entering (leaving) the firm, the more the firm’s innovation 

performance increases (decreases). However, our separate estimations for six different 

technology classes suggest that this does not apply for all technologies. Our data indicate 

that the knowledge flows are mobile inventor-specific for chemicals and pharmaceuticals 

and mechanical engineering such that the mobility of an inventor to a firm increases its 

innovation performance but the mobility of an inventor from a firm does not affect its 

innovation performance. We further find that particularly innovation coopetition (i.e., 

collaboration with a firm’s competitors) is an important source of knowledge spillovers. 

Furthermore, the magnitude of overall localized innovation activity positively relates to the 

firm’s innovation performance providing support for agglomeration externalities. 
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1. Introduction 

The role of knowledge spillovers or externalities in the generation of innovation has gained 

substantial attention in the economics and management literature (see, e.g., Jaffe et al., 

1993; Giuri and Mariani, 2013; Tambe and Hitt, 2014). The questions of the magnitude of 

knowledge spillovers and the channels via which knowledge spills from one organization to 

another are not only of interest to academics. These questions are also highly policy relevant 

as externalities provide a major justification for the allocation of publicly funded R&D 

subsidies. The argument favoring government R&D subsidies states that without these 

subsidies firms underinvest in innovation activities as they cannot fully appropriate returns 

from the output of their investment (i.e., knowledge concerning the production of new 

goods or services) due to non-rival nature of knowledge. In other words, a firm generating 

new knowledge cannot, at least not completely, preclude other parties to also use its 

privately produced knowledge for commercial purposes (e.g., via imitation). 

The trend in the empirical literature on knowledge externalities has developed from the 

aggregate or regional level analysis towards microeconomic approaches capturing the 

transfer of knowledge at the firm level and, more recently, at the innovator level. Unlike the 

previous studies, our firm-level empirical study simultaneously controls for knowledge 

spillover mechanisms at the innovator level via the mobility of employees, at the firm level 

via the innovation collaboration of a firm with external parties, and at the regional level via 

the magnitude, diversity and concentration of localized innovation activities. We aim at 

answering to the questions of what are the channels of mobility of ideas or knowledge 

generating innovations and whether and how they vary by different technology fields. 

Particularly, the inventor- and firm-specificity of innovation mobility interests us.  
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In the empirical part of the study, we use data concerning the patent filings of the Finnish 

companies acquired from the EPO worldwide statistical database. We match the companies 

included in the patent dataset to the firm-level financial statements and other background 

data (industry, geographical location, employment etc.). The combined dataset includes 351 

innovating firms and 2536 observations from the years 2001–2012. 

We find that knowledge flows generating patentable ideas tend to be generally sticky 

inventor-specific. In other words, the larger the knowledge pool of an inventor entering 

(leaving) the firm, the more the firm’s innovation performance increases (decreases). 

However, our separate estimations for six different technology classes suggest that this does 

not apply for all technologies. Our estimation results indicate that the knowledge flows are 

mobile inventor-specific for chemicals and pharmaceuticals and mechanical engineering 

such that the mobility of an inventor to a firm increases its innovation performance but the 

mobility of an inventor from a firm does not affect its innovation performance.  

Our findings also provide support for the literature arguing that a firm’s patent stock reflects 

knowledge base it can use for generating future patentable ideas, and thus a firm’s past 

patenting activity is positively related to its current patenting (see, e.g., Blundell et al, 1995, 

2002; Crepon and Duguet, 1997). We develop this idea further by distinguishing a firm’s 

intra-house patenting activities from its collaborative patenting with different parties. Our 

estimation results suggest that particularly innovation coopetition (i.e., collaboration with a 

firm’s competitors) is an important source of knowledge spillovers. Furthermore, we find 

that even after controlling for knowledge flows at the inventor-level and the firm-level (i.e., 

both the firm’s own patent stock and spillovers from its innovation collaborators) the 

magnitude of overall localized innovation activity (i.e., agglomeration externalities) positively 

relates to the firm’s innovation performance. 
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The rest of the paper is organized as follows. Section 2 briefly summarizes the main findings 

of previous studies related to our reported research. Section 3 provides conceptual and 

empirical framework for the analysis, and further introduces the data. Section 4 reports our 

empirical findings. Section 5 concludes with some policy implications. 

2. Related studies 

The economic and management literature identifies various potential channels of knowledge 

spillovers facilitating innovation: i) inter-firm mobility of employees, ii) innovation 

collaboration of a firm with external partners, and iii) spillovers arising from firms’ locational 

proximity, i.e. knowledge spillovers at the regional level.  

The early studies particularly in the fields of geographical economics and applied industrial 

organization concerning knowledge spillovers typically focused on the existence of 

localization or agglomeration externalities (see, e.g., Jaffe et al., 1993; Döring and 

Schellenbach, 2006). It was argued that geographical agglomeration of organizations (such 

as other firms, universities and research institutes) enabled knowledge to spill over from one 

organization to another, and therefore those regions with more organizations or knowledge 

concentrated were likely to have a higher economic growth than others (see, e.g., Feldman 

and Audrestch, 1999). This happened particularly due to more frequent face-to-face 

communication – that is required for the distribution of tacit knowledge - across 

geographically adjacent firms. However, the role of individuals as the transmitters of 

knowledge flows was not explicitly empirically investigated in these early studies.  

The literature has further stressed the importance of mobility of skilled workers as a key 

mechanism generating knowledge spillovers (see, e.g., Matusik and Hill, 1998). Various 

previously reported studies have emphasized the crucial role of individual inventors in the 
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firm’s innovative performance (see, e.g., Gay et al., 2008; Latham et al., 2012). Kaiser et al. 

(2013) empirically explore the impact of labor mobility in the firms’ innovation output using 

data from the population of Danish R&D active firms between the years 1999 and 2004. 

Their study concludes that labor mobility of R&D workers increases statistically significantly 

firms’ total patenting if either of the firms involved has a history of patenting activity. 

Relatedly, Hoisl (2007) measuring the inventor productivity by the number of patents per 

inventor finds that mobility of inventors (measured by the count of firms for which an 

inventor has worked minus one) increases their productivity but, instead, increase in 

productivity tends to decrease the inventor’s probability to move from one organization to 

another.  

Similarly, the study of Latham et al. (2012) among five different countries (i.e., France, 

Germany, Japan, the UK, and the US) suggests that the average number of patents granted 

per year (over inventor’s career) tends to be higher for inventors of which inter-firm mobility 

is higher. Furthermore, their study controls for technological mobility of inventors measured 

by the count of the number of different technological fields in which an inventor has worked 

and the number of changes from one field to another (HHI at the level of six broad 

technological classes used). Their results hint that those inventors that are less 

technologically mobile or more technologically specialized tend to be more productive than 

others. 

The empirical work of Maliranta et al. (2009) suggests that the mobility of a firm’s workers 

from non-R&D activities to its R&D activities provides a more significant spillover channel 

boosting both productivity and profitability than the mobility of employees from other firm’s 

R&D labs to the firm’s own. They interpret this finding as the evidence that a firm’s own 
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workers from non R&D activities transmit relevant knowledge that can be utilized without 

much effort in the firm’s R&D department. 

Tambe and Hitt (2014) provide further evidence on the role of the mobility of specialized 

work-force in the transmission of fundamental knowledge for technological progress. Their 

empirical findings indicate that the mobility of information technology (IT) workers among 

firms notably facilitates the diffusion of know-how on the utilization of IT-related 

innovations and that these IT-specific knowledge spillovers further contribute to the firms’ 

productivity growth. In other words, the movement of IT specialists among firms is a notable 

source of productivity spillovers.  

Relatedly to our study, the strategic management and industrial organization have also 

explored the firms’ knowledge acquisition via collaboration with various parties such as 

customers, other firms and research institutes and universities. In this literature, the focus 

has been rather in the relationship between a firm’s innovation performance and its 

knowledge search strategy than in the role of knowledge spillovers (see, e.g, Laursen and 

Salter, 2006; Love et al., 2013). 

3. Mobility of innovations – conceptual and empirical framework 

3.1 Conceptual framework 

Key or prolific inventors are essential for the development, integration and accumulation of 

knowledge within the organization, and they further facilitate organizational learning in their 

employing organization. Inter-firm mobility of inventors generates an essential stream of 

knowledge transfer between organizations. This applies particularly to tacit knowledge of 

which transfer tends to require face-to-face communications. We propose, however, that 
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when an inventor enters to or leaves from a firm, there are various factors that may impact 

on whether and how this affects the subsequent innovation performance of the firm.  

The impact of the mobility of inventors on a firm’s innovation performance depends largely 

on the type of knowledge that is crucial for innovation and transferred via the inventors as 

well as on the importance of firm-specific accumulated knowledge for the firm’s innovation 

performance. We identify three cases of the relationship between different types of 

knowledge and a firm’s innovation performance. First, sticky inventor-specific knowledge 

means that the knowledge base of inventors moving into a firm (out from the firm) has a 

positive (negative) relationship with the firm’s subsequent innovation performance. Second, 

mobile inventor-specific knowledge refers to the case in which the knowledge base of 

inventors moving into a firm is positively related to the firm’s subsequent innovation 

performance, while the order of magnitude of inventors moving out from the firm does not 

notably affect the firm’s innovation performance. Third, firm-specific knowledge means that 

the innovation performance of a firm is not affected by the mobility of inventors. 

The degree of tacitness of inventor’s knowledge directly influences on its transferability to 

other R&D personality or inventors employed by the firm. When inventor’s knowledge is 

specialized and not easily transferable, hiring the inventor is likely to increase the firm’s 

innovation performance both due to her/his personal qualities (i.e. know-how, skills and 

problem-solving abilities) as well due to tacit knowledge (s)he has learned in her/his 

previous organization. Also, in this case, when the inventor leaves the company, this is likely 

to generate a decline in the firm’s innovation performance. Furthermore, the more 

productive the inventor a firm hires (loses) is, the larger an increase (decline) in a firm’s 

innovation performance. In other words, knowledge may be inventor-specific and its 

mobility strongly linked to the mobility of inventors.  
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Whether the knowledge and ideas of an inventor are easily transferable, it seems credible 

that inventors entering the firm increase the innovation of their new employer but the 

innovation performance of a firm from which an inventor leaves from, may not be strongly 

affected. This may happen as some of the inventor’s essential knowledge for generating new 

innovation can be absorbed by the firm before her skills and problem-solving abilities move 

to a new organization. In this case, inventor moving into the firm is likely to increase its 

innovation performance, while the loss of an inventor holding such knowledge may not have 

notable influence on the firm’s innovation output.  

Yet another possibility is that knowledge required for innovation tends to be strongly firm-

specific. This may be the case if the firm’s innovation output is, by and large, based on the 

accumulated firm-specific knowledge and expertise, and mobility of individual inventors 

does not substantially affect to it. In other words, neither hiring new inventors to the firm 

nor the mobility of inventors from the firm to another organization has no substantial 

influence on the firm’s innovation performance.  

We consequently propose the following three hypotheses: 

Hypothesis 1: The larger the knowledge pool of an inventor entering (leaving) the firm, the 

more the firm’s innovation performance increases (decreases). 

Hypothesis 2: The larger the knowledge pool of an inventor entering the firm, the more the 

firm’s innovation performance increases. The mobility of an inventor from a firm does not 

affect the firm’s innovation performance.  

Hypothesis 3: The mobility of an inventor to a firm or from a firm does not affect the firm’s 

innovation performance.  
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Knowledge spillovers arising from the inter-firm mobility of employees is measured by the 

inflow of (potentially patentable) knowledge at time t to firm i via the vector of inventors j 

entering the firm from other firms k:  

ܫ_ܸܰܫ_ܮܮܫܲܵ ௜ܰ௧ = ෍ ௝ܲ௞௧ିଵ௝௞  

The SPILL_INV_IN variable is the total patent pool (i.e. cumulative sum of patent applications 

at time t-1) of inventors which moved to a firm at time t. It captures the transfer of inventor-

specific knowledge moving from one firm to another.  

It is also possible that mobile inventors transfer part of the knowledge base of their previous 

employer to the new one. We therefore test also whether there is a relationship between 

the mobile inventors’ previous employers’ patent pool and the new employer’s innovation 

performance. The transfer of firm-specific knowledge via mobile inventors is measured by 

using the variable SPILL_FIRM_IN that captures the patent pool of inventors’ previous 

employers (i.e. cumulative sum of patent applications of the previous employers of mobile 

inventors at time t-1). This firm-specific measure do not include the patents of the inventors 

moving into a firm as we aim at separating inter-firm transfer of inventor- and firm-specific 

knowledge flows.  

The second inventor-specific measure captures the outflow of knowledge at time t-1 from 

firm i via the vector of inventors j leaving the firm:  

ܷܱ_ܮܮܫܲܵ ௜ܶ௧ = ෍ ௜ܲ௝௧ିଵ௝  
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The SPILL_OUT variable is the sum of cumulative number of patent applications of inventors 

leaving the firm. It provides a proxy for innovator level knowledge that spills out from a firm 

when an innovator leaves.  

Our assumption is that innovation related to different technologies may differ in terms of 

inventor- and firm-specificity of knowledge required for them. Given the lack of prior 

research on the topic, the inventor- and firm-specificity of knowledge in different technology 

fields is an empirical question. We undertake estimations separately by each of the six 

technology classes1. In these estimations, the estimated coefficients of the SPILL_INV_IN 

variable reveal in which technology fields innovators transmit knowledge generating further 

patentable innovations. The estimated coefficients of the SPILL_OUT variable shows whether 

(patentable) knowledge related to different technology fields tends to stay or leak out from 

the firm with the innovators leaving the company. Table 1 outlines the sign of the estimated 

coefficients of the SPILL_INV_IN and SPILL_OUT variables in relation to the type of 

transferred knowledge. 

 

 

 

                                                            
1 The definitions of the technology classes are based on OECD (1994) and Mancusi (2003). Technology classes 
are 1 ”Electrical engineering”, 2 ”Instruments”, 3 ”Chemicals and pharmaceuticals”, 4 ”Process engineering”, 5 
”Mechanical engineering” and 6 ”Consumer goods and civil engineering”. Technology class 1 includes patent 
applications related to electronic devices and electrical engineering, audio visual technology, 
telecommunications, information technology and semiconductors; technology class 2 optics, control and 
measurement technology and medical technology; technology class 3 organic chemistry, macromolecular 
chemistry and polymers, pharmaceuticals and cosmetics, biotechnology, materials and metallurgy and food and 
agriculture; technology class 4 chemical engineering, surfaces, materials processing, thermal processes, oil and 
basic material chemistry and environmental technology; technology class 5 machines and tools, engines and 
pumps, mechanical elements, handling, food processing, transport, nuclear engineering and space technology 
and technology class 6 consumer goods and civil engineering. 
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Table 1. Innovation and types of knowledge 

 SPILL_INV_IN > 0 SPILL_INV_IN = 0 

SPILL_OUT < 0 Sticky inventor-specific 
knowledge 

 

SPILL_OUT = 0 Mobile inventor-specific 
knowledge 

Firm-specific knowledge 

 

Previous studies suggest that a firm’s stock of its past patents reflects knowledge base it can 

use for generating future patentable ideas, and thus a firm’s past patenting activity is 

positively related to its current patenting. (see, e.g., Blundell et al, 1995, 2002; Crepon and 

Duguet, 1997). Also, important knowledge for the generation of innovation may “spill” from 

one firm to another during the R&D collaboration. Generally, according to the resource 

based view of the management literature, a firm seeks collaboration with external partners 

that provide complementary inputs for the firm (see, e.g., Miotti and Sachwald, 2003). A 

firm’s joint innovation activities with other firms, research institutes and universities may 

provide access to knowledge and ideas leading to further innovation.  

We go into more detail in our exploration of the role of a firm’s own past innovation 

activities in the firm’s contemporary innovation behavior by controlling not only the firm’s 

own patent stock but also spillovers from the patents stocks of the firm’s external innovation 

collaborators (i.e, competitors, other firms, and universities and research institutes). We 

assume that the greater the knowledge stock of the innovation partners of a firm, the 

greater the variety of ideas and knowledge that “spills” into the firm.  

We further distinguish inter-firm collaboration between the competitors (i.e., collaborating 

firms active in the same industry with a firm, measured at 3-digit level) and other firms (i.e., 

collaborator firms that are active in different industries than a firm). In other words, we aim 
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at investigating to what extent innovation coopetition vs. inter-industry innovation 

collaboration enhances a firm’s subsequent innovation performance. At least partially 

overlapping technology base of a firm with its coopetition partner may facilitate exchange of 

information and increase mutual understanding of partners as well as the firms’ ability to 

absorb and use information they obtain from one another. Thus, innovation coopetition may 

potentially result in more patentable future ideas for a firm than innovation collaboration 

with those partners that are more distant in the end-user markets or technology-wise. On 

the other hand, when competitors do joint R&D they may exchange less information than in 

other collaborative innovation partnerships. This may happen as competitors are likely to 

have an incentive to minimize other knowledge flows benefiting the competitor in the 

product markets than those necessary for innovation collaboration. 

Furthermore, universities and research institutes may provide important scientific or 

technological knowledge for a firm’s innovation process. The literature presents various 

reasons why firms collaborate with research organizations such as access to state-of-the-art 

information, solutions to technical problems and outsourcing R&D (see, e.g., Geisler, 2001; 

Wang and Shapira, 2012). It thus seems credible that both innovation collaboration and 

innovation coopetition generate knowledge spillovers but the importance and magnitude of 

these spillovers, compared to another, is an empirical question. 

The above discussion generates two empirically testable hypotheses: 

Hypothesis 4 a. The larger the knowledge base or patent pool of a firm, the greater the firm’s 

innovation performance.  

Hypothesis 4 b. The larger the knowledge bases or patent pools of a firm’s innovation 

partners, the greater the firm’s innovation performance.  
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We use four variables for measuring the magnitude of firm’s past patenting activities. The 

variable PAT_OWN captures a firm’s cumulative number of patent applications it has filed 

solitarily at time t-1. The variables PATENT_COOP and PATENT_COLLAB capture the 

cumulative number of patent applications of a firm’s past coopetitors and other collaborator 

firms, respectively, at time t-1. The variable PATENT_RES is a cumulative number of patent 

applications of those universities and/or research institutes with which a firm has filed joint 

patent applications in the past. The idea behind generating these variables is that the 

greater the knowledge base of a firm’s innovation partners, the larger potential knowledge 

spillovers for the firm resulting in patentable ideas. 

The geographical agglomeration of organizations has for long been identified as an enabler 

for the localized knowledge sharing (Jacobs, 1969; Marshall, 1920; Panne, 2004). The 

quantity of knowledge and new ideas generated in a firm’s region determines the magnitude 

of localized knowledge spillovers available for the firm (see, e.g., Acs et al., 2009). We 

control for the magnitude of local innovation activities by the variable PAT_LOCAL measuring 

the total number of patent applications of other firms (i.e., excluding firm’s own patent 

filings) in the ELY center2 in which the firm is located at time t-1. Given that we control for a 

firm’s past own patenting, this variable provides information on the importance of the 

magnitude of localized innovation activity for the firm’s innovation performance. In other 

words, this variable captures the short-term influence of localized agglomeration 

externalities. 

There has been a dispute about whether agglomeration externalities are rather intra-

industry (i.e., arise from knowledge sharing of firms in the same industry) or inter-industry 

                                                            
2 In Finland, regional division is based on the areas of the 15 Centres for Economic Development, Transport and 
the Environment (i.e., ELY Centres) which are responsible for the regional implementation and development 
tasks of the central government. 
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(i.e., arise from knowledge sharing of firms across different industries) though. Marshall 

(1920) argued that knowledge is, by and large, industry-specific. Therefore, regional 

concentration of firms in the same industry tends to generate (intra-industry) knowledge 

spillovers called (Marshallian) specialization externalities. We approach the question of 

specialization externalities from the point of view of firms’ innovation activities measured by 

patent applications in different technology fields. In other words, our underlying idea is that 

the regional specialization of firms’ in innovation activities in a certain technology field may 

generate knowledge spillovers facilitating further innovation in the same technology field. 

Our TS index captures the extent of a region’s specialization of innovation in technology C 

across six different technology classes, or the role of Marshallian specialization externalities 

in innovation production (below time index is dropped for simplicity): 

ܶܵ஼ோ = ( ஼ܲோ/ ෍ ஼ܲோ஼ )/(෍ ஼ܲோோ / ෍ ෍ ஼ܲோோ )஼  

where C denotes technology class and R denotes region. In other words, ܶܵ஼ோ measures the 

share of patent applications in technology class C in region R relative to the share of patent 

applications of technology class C of all patent applications. This measure is used in the 

estimations in which the innovation production function is estimated separately for six 

different technology classes. 

The economic literature (see, e.g., Jacobs, 1969; Glaeser et al, 1992; Neffke et al. 2012) 

suggests that there may also be local inter-industry spillovers arising from the variety and 

mix of different ideas across industries (i.e., so called Jacobian diversification externalities). 

In other words, the more diverse the local pool of ideas is, the greater number of 

innovations across industries are likely to be generated. We approach the question of 

diversity of localized ideas via the firms’ patenting activities in the region. The technological 
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diversification (TD) index capturing Jabobian diversification externalities can be written as 

follows (below time index is dropped for simplicity):  

஼ோܦܶ = 1 − ෍(஼ ෍ ஼ܲோோ / ෍ ෍ ஼ܲோோ )஼
ଶ
 

The more diversified the patenting applications of a region are across different technology 

classes the closer the value of TD is to 1. This measure is used as an explanatory variable 

both in the estimation of innovation production function for all technologies and in the 

separate estimations of innovation production functions for six different technology classes. 

The specialization and diversification externalities are measured at the regional level 

assuming that knowledge “spills over” via interaction among localized firms, but without 

controlling for the actual connections or collaboration among the firms. This is a rather 

standard approach used in the empirical literature for measuring agglomeration 

externalities. Our data, however, enables us also to detect intra-industry and inter-industry 

spillovers arising from innovation collaboration between firms. The variable PAT_COOP 

measuring the patenting activities of a firm’s innovation partners active in the same industry 

with the firm captures also partially intra-industry spillovers or specialization externalities. 

Similarly, the variable PAT_COLLAB measuring the patenting activities of a firm’s innovation 

partners active in different industries than the firm captures also partially inter-industry 

spillovers or diversification externalities. When these variables are used as the explanatory 

variables in the estimations, the estimated coefficients of the variables TS and TD show the 

impact of intra-industry and inter-industry knowledge spillovers, respectively, arising from 

other interactions among firms than formal innovation collaboration generating patentable 

innovation. 
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3.2 Data 

Our dataset comprises only innovating firms (i.e., those firms that filed at least one patent 

application during the observation period). We also exclude those firms that had no entering 

or leaving inventors in the period of study. In addition, we utilize information on only those 

patent filings in which at least one of the applicants is a company. Our patent dataset covers 

Finnish firms’ patent filings in Europe acquired from the EPO worldwide patent statistical 

database (EPO PATSTAT3). This patent database includes information on both inventors and 

applicants of the patent filings. We match the companies included in the patent dataset to 

firm level financial statements and other background data (e.g., industry, geographical 

location, employment) provided by nationwide business registers of Statistics Finland and 

Suomen Asiakastieto Oy4. These data are available only for the years 2001–2012, so the final 

combined dataset covers this period.5 All firm-specific variables are measured at the group 

level if a company is part of the group. Consistently, we exclude from the mobility variables 

intra-group transitions (e.g., mobility from a parent company to a subsidiary) of innovators. 

In total, our final sample covers 351 firms and 2536 observations.        

Table 2 shows summary statistics of the main dependent and explanatory variables. The 

sample firms filed 3.8 applications per year, on average (the variable PAT). Among 

technology classes, the firms’ annual propensity to file a patent was the highest in electrical 

engineering and process engineering (i.e., about 0.08-0.09). The cumulative sum of patent 

applications of inventors entering a new company (the variable SPILL_INV_IN) was, on 

average, 15, while the outflow of knowledge via leaving inventors (the variable SPILL_OUT) 

was clearly lower, about 7 filed patent application. The average value of the variable 

                                                            
3 For details of the database, see http://www.epo.org/searching/subscription/raw/product-14-24.html. 
4 Suomen Asiakastieto Oy is a leading private provider of firm level financial statement data in Finland.  
5 In calculations of variables related to patent application stocks we are able to utilize, however, a longer (1995–
2012) time period which facilitates us to better take into account past patenting profiles of firms and innovators. 
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SPILL_FIRM_IN is 156 reflecting notable patent pools of the mobile inventors’ previous 

employers. 

Table 2. Description of variables 

Variable Description Mean Std. Dev. Obs 
PAT Number of patent applications at time t 3.790 36.033 2536
PAT_TECH1 Dummy variable that gets value 1 if a firm has filed 

patent applications in  technology class "Electrical 
engineering" at time t 

0.086 0.281 2536

PAT_TECH2 Dummy variable that gets value 1 if a firm has filed 
patent applications in technology class 
"Instruments" at time t 

0.071 0.257 2536

PAT_TECH3 Dummy variable that gets value 1 if a firm has filed 
patent applications in technology class "Chemicals 
and pharmaceuticals" at time t 

0.060 0.238 2536

PAT_TECH4 Dummy variable that gets value 1 if a firm has filed 
patent applications in technology class "Process 
engineering" at time t 

0.080 0.271 2536

PAT_TECH5 Dummy variable that gets value 1 if a firm has filed 
patent applications in technology class "Mechanical 
engineering" at time t 

0.041 0.198 2536

PAT_TECH6 Dummy variable that gets value 1 if a firm has filed 
patent applications in technology class "Consumer 
goods and civil engineering" at time t. 

0.015 0.120 2536

SPILL_INV_IN Cumulative sum of patent applications at t-1 of 
inventors which moved to a firm at time t 

15.295 71.474 2536

SPILL_FIRM_IN Cumulative sum of patent applications at t-1 of 
previous employers of inventors which moved to a 
firm at time t 

156.101 878.288 2536

SPILL_OUT Cumulative sum of patent applications at t-1 of 
inventors who left a firm at time t 

7.051 30.079 2536

PAT_OWN Firm's cumulative sum of patent applications at t-1 36.573 343.5813 2536
PAT_COOP Cumulative sum of patent applications of a firm's 

past coopetitors  at t-1 
0.607 7.701 2536

PAT_COLLAB Cumulative sum of patent applications of a firm's 
past collaborator firms  at t-1 

13.006 108.257 2536

PAT_RES Cumulative sum of patent applications of those 
universities and/or research institutes with which a 
firm has filed joint patent applications  at t-1 

7.719 102.521 2536

I Log of change in intangible assets from t-1 to t 1.380 9.893 2536
PAT_LOCAL Number of patent applications of the region in 

which a firm is located at t-1 
457.226 470.726 2536

TD Diversity in the region in which a firm is located at 
t-1 

0.612 0.134 2536

TS_1 Specialization index in tech. "Electrical engineering" 
in the region in which a firm is located at t-1 

0.708 0.467 2536

TS_2 Specialization index in tech. "Instruments" in the 
region in which a firm is located at t-1 

1.546 1.450 2536

TS_3 Specialization index in tech. "Chemicals and 
pharmaceuticals" in the region in which a firm is 

1.075 0.964 2536
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located at t-1 
TS_4 Specialization index in tech. "Process engineering" 

in the region in which a firm is located at t-1 
1.235 1.076 2536

TS_5 Specialization index in tech. "Mechanical 
engineering" in the region in which a firm is located 
at t-1 

1.609 1.699 2536

TS_6 Specialization index in tech. "Consumer goods and 
civil engineering" in the region in which a firm is 
located at t-1 

2.116 3.674 2536

FOREIGN 1 if firm is foreign-owned firm at t, 0 otherwise 0.177 0.382 2536
EMP Number of employees in at t 814.080 2642.510 2536
AGE Age of firm at t 16.013 13.136 2536

 

The next four variables in the table illustrate the magnitude of a firm’s own and its partners’ 

past patenting activities. The mean value of firm’s own knowledge pool is 36.6 patent 

applications (PAT_OWN), while the firm’s coopetitors (PAT_COOP), inter-industry 

collaborators (PAT_COLLAB) and university/research institute cooperators (PAT_RES) filed, 

on average, 0.6, 13.0 and 7.7 patents, respectively.  

We further control for the agglomeration externalities by the variables PAT_LOCAL, TD and 

TS. The firm-specific control variables include the change in intangible assets (the variable I), 

the dummy variable for foreign-owned firm (the variable FOREIGN), firm size measured by 

the number of employees in Finland (the variable EMP) and firm age (the variable AGE). 

Furthermore, we also include 15 industry-specific control variables and times dummies for 

each year for the estimated models.  

4. Empirical analysis 

We first estimate the following innovation production function: 

ܣܲ ௜ܶ௧ = ଴ߙ + ூே௏಺ಿܮܮܫଵܵܲߙ ௜௧ିଵ + ிூோெ಺ಿܮܮܫଶܵܲߙ ௜௧ିଵ + ை௎்௜௧ିଵܮܮܫଷܵܲߙ + ܣସܲߙ ைܶௐே௜௧ିଵ ܣହܲߙ+ ஼ܶைை௉௜௧ିଵ + ܣ଺ܲߙ ஼ܶை௅௅஺஻௜௧ିଵ + ܣ଻ܲߙ ோܶாௌ௜௧ିଵ + ௜௧ܫ଼ߙ + ܣଽܲߙ ௅ܶை஼஺௅ோ௜௧ିଵ + ஼ோ௜௧ିଵܦଵ଴ܶߙ ௝ߙ+ ∑ ௜௝௧ܮܱܴܱܶܰܥ +௝  ௜௧     MODEL Iߝ

where PATit is the number of patent applications of a firm i at time t and CONTROL is a 

vector of other control variables. Given that the dependent variable is a count variable, we 
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use the random effects negative binomial model – that allows overdispersion of the 

dependent variable – for the estimations. 

Table 3 summarizes the estimation results. It appeared that the variables SPILL_INV_IN and 

SPILL_FIRM_IN are highly correlated (rho = 0.87) generating potential multicollinearity 

problem with unstable parameter estimates. We thus first include only one of these 

variables at a time to the model (columns 1 and 2) and then estimate the model with both 

variables (column 3). The estimation results support our hypotheses that mobile inventors 

are a substantial channel of inter-firm knowledge flows. Positive and statistically significant 

coefficient of the variable SPILL_INV_IN emphasizes the importance of inventor-specific 

knowledge transfer (column 1). Also, the estimated coefficient of the variable SPILL_FIRM_IN 

appears to be statistically significant (column 2) though it is more than ten times smaller 

than that of the variable SPILL_INV_IN. The estimated coefficient for the variable 

SPILL_FIRM_IN is not statistically significant though when inventor-specific inter-firm 

knowledge spillovers are controlled for (column 3). These empirical findings hint that the 

inventor-specific knowledge spillovers dominate the firm-specific knowledge spillovers from 

the inventors’ previous employers. It is not possible, however, to distinguish to what extent 

the importance of mobile inventor’s patent pool reflects his or her personal capabilities and 

what part is generated via learning from the inventor’s prior employer(s). 

The importance of inventors leaving a firm for its subsequent innovation performance 

further captures the transfer of inventor-specific knowledge flows. The estimated coefficient 

of the variable SPILL_OUT is negative and statistically significant in all of the estimated 

models. This means that the more prolific the inventor leaving a firm (measured by the 

magnitude of his or hers previous patenting activities), the greater the decline in the firm’s 

innovation performance. Our empirical findings indicate that individual inventors play a 
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notable role in a firm’s patenting performance, and that their mobility clearly affects 

positively to the innovation performance of their new employer and negatively to the 

innovation performance of their old employer. The estimations of the model comprising all 

technology fields thus support hypothesis 1, or reflect the features of sticky inventor-specific 

knowledge in the mobility of innovations. 

The estimated coefficient for the variables PAT_OWN and PAT_COOP are also positive and 

statistically significant. The magnitude of the coefficient of PAT_COOP is clearly larger than 

that of PAT_OWN emphasizing the importance of spillovers arising from intra-industry 

innovation collaboration. The estimated coefficient for the variables PAT_COLLAB and 

PAT_RES are not statistically significant suggesting that inter-industry innovation 

collaboration or a firm’s cooperation with universities or research institutes do not generate 

similarly the transfer of patentable ideas of knowledge across organizations. Our estimation 

results thus provide support for hypothesis 4a, and also partially for hypothesis 4b. 

Furthermore, we find that the estimated coefficient of PAT_COOP is clearly larger than the 

estimated coefficients for variables capturing inventor-specific inter-firm spillovers.6 This 

finding suggests that an increase in innovation activities of a firm’s coopetition partners 

tends to generate greater innovation spillovers than an increase in the innovation activities 

of mobile inventors. 

PAT_LOCAL which measures the magnitude of localized innovation activity for the firms’ 

innovation performance is positive and statistically significant. However, our proxy for 

Jacobian diversification externalities (TD) is not statistically significant. These findings hint 

that there are agglomeration externalities even after controlling for inventor and firm-

specific spillovers but they do not appear to link to the localized diversity of ideas or inter-

                                                            
6 The Wald tests are in all cases statistically significant at p<0.01. 
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industry spillovers. Among the control variables, firm size (i.e., the variable EMP) is positive 

and statistically significant indicating that larger firms generate more patent applications 

than smaller ones.  

Table 3. The estimation results of the random effects negative binomial model for innovation 
production function, dependent variable PAT 

  (1) (2) (3) 
  Coef./S.E Coef./S.E Coef./S.E 
SPILL_INV_IN 0.0023***  0.0027*** 

(0.0002)  (0.0003) 
   

SPILL_FIRM_IN  0.0002*** 0.0000 
 (0.0000) (0.0000) 
   

SPILL_OUT -0.0044*** -0.0050*** -0.0041*** 
(0.0010) (0.0011) (0.0010) 
   

PAT_OWN 0.0004*** 0.0006*** 0.0003*** 
(0.0001) (0.0001) (0.0001) 
   

PAT_COOP 0.0147*** 0.0120*** 0.0153*** 
(0.0029) (0.0030) (0.0030) 
   

PAT_COLLAB 0.0002 0.0005 0.0002 
(0.0004) (0.0004) (0.0004) 
   

PAT_RES 0.0001 -0.0001 0.0001 
(0.0001) (0.0001) (0.0001) 
   

I 0.0026 0.0010 0.0030 
(0.0024) (0.0026) (0.0023) 
   

PAT_LOCAL 0.0006*** 0.0006*** 0.0006*** 
(0.0001) (0.0001) (0.0001) 
   

TD 0.0419 0.0025 0.0375 
(0.3975) (0.3935) (0.3984) 
   

FOREIGN 0.1144 0.0994 0.1205 
(0.1379) (0.1386) (0.1378) 
   

EMP 0.0001*** 0.0001*** 0.0001*** 
(0.0000) (0.0000) (0.0000) 
   

AGE 0.0048 0.0079 0.0045 
(0.0047) (0.0049) (0.0047) 
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Years  Yes Yes Yes 
Industries  Yes Yes Yes 

   
Log pseudolikelihood -2878.163 -2904.459 -2877.207 
Wald(Chi2) 613.261*** 456.872*** 628.325*** 
Observations 2536 2536 2536 

Notes: The table reports the results of random-effects negative binomial regressions, standard errors 
are in parentheses. Industry and year dummies are included in all estimations. Significance levels are 
reported in superscript, where *** denotes a significance level of 1%. 

 

We further estimate the model presented in the first column of Table 3 with t-2 lagged 

values for the variables SPILL_INV_IN and SPILL_OUT to investigate whether the mobility of 

inventors affects firms’ innovation performance with a delay. Table 4 shows the estimation 

results of this model variation. The greater coefficient of the variable SPILL_IV_IN at time t-1 

than at t-2 suggests that a firm’s innovation performance is boosted more by the relatively 

recent inflow of inventors. However, the estimated coefficient for SPILL_INV_IN at t-2 is also 

positively and highly statistically significant. Instead, the estimation results concerning the 

variable SPILL_OUT at t-1 and t-2 hint that an inventor leaving a firm tends to reduce the 

firm’s innovation performance more with a two year lag than one year after the loss of an 

inventor. 

Table 4. The role of time lags of SPILL_INV_IN and SPILL_OUT 

  Coef./S.E 
SPILL_INV_IN 0.0025*** 

(0.0002) 

SPILL_INV_IN (t-2) 0.0011*** 
(0.0002) 

SPILL_OUT -0.0012 
(0.0019) 

SPILL_OUT (t-2) -0.0051** 
(0.0020) 
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PAT_OWN 0.0004*** 
(0.0001) 

PAT_COOP 0.0121*** 
(0.0030) 

PAT_COLLAB 0.0001 
(0.0004) 

PAT_RES 0.0000 
(0.0001) 

I 0.0029 
(0.0023) 

PAT_LOCAL 0.0006*** 
(0.0001) 

TD 0.0151 
(0.4041) 

FOREIGN 0.1420 
(0.1381) 

EMP 0.0001*** 
(0.0000) 

AGE 0.0046 
(0.0047) 

Years  Yes 
Industries  Yes 

Log pseudolikelihood -2860.376 
Wald(Chi2) 663.641*** 
Observations 2528 

Notes: The table reports the results of the random-effects negative binomial regression, standard 
errors are in parentheses. The explanatory coefficient vector is similar to Column 1 in Table 3 except 
that there are time lags of t-2 of SPILL_INV_IN and SPILL_OUT. Significance levels are reported in 
superscript, where *** denotes a significance level of 1% and ** denotes a significance level of 5%. 

 

Second, we empirically analyze whether the dynamics of knowledge spillovers differ across 

six technology classes and what implications different spillover channels have on the firms’ 
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propensity of patenting in different technology fields. We estimate the following innovation 

production function separately for the six technology classes (k): 

ܣܲ ௜ܶ௞௧ = ଴ߙ + ܫ_ܸܰܫ_ܮܮܫଵܵܲߙ ௜ܰ௞௧ିଵ+ߙଶܵܲܮܮܫ_ܱܷ ௜ܶ௞௧ିଵ + ܣଷܲߙ ைܶௐே௜௞௧ିଵ + ܣସܲߙ ஼ܶைை௉௜௞௧ିଵ ܣହܲߙ+ ஼ܶை௅௅஺஻௜௞௧ିଵ + ܣ଺ܲߙ ோܶாௌ௜௞௧ିଵ + ௜௧ܫ଻ߙ + ܣ଼ܲߙ ௅ܶை஼஺௅ோ௜௞௧ିଵ + ோ௜௞௧ିଵܦଽܶߙ ௞ߙ+ ∑ ܶ ௜ܵ௞௧ିଵ +௞ ௝ߙ ∑ ௜௝௧ܮܱܴܱܶܰܥ +௝  ௜௞௧     MODEL IIߝ

 

Here, the dependent variable PATikt is a dummy variable which is 1 if a firm has applied for a 

patent in technology k in year t and 0 otherwise. We further also control for the localized 

specialization of innovation in technology class k by the variable TS.7 We use the random 

effects probit model for the estimations as the number of patent applications per firm is 

typically either 0 or 1. Consequently, for most technology fields, the dependent variable 

does not have sufficient count variable structure to allow the estimations of the negative 

binomial model. Table 5 presents the estimation results. 

The estimation results of the model comprising all technologies presented in Tables 3-4 

suggest that knowledge of new patentable ideas tend to be sticky inventor-specific. The 

results reported in Table 5 indicate however that there are differences across technology 

classes. The variable SPILL_INV_IN is positive and statistically significant in the estimations 

for all technology classes except for consumer goods and civil engineering (for which the 

coefficient is not estimable as the variable gets value 0 in all cases). The estimated 

coefficient of SPILL_OUT is negative and statistically significant for electrical engineering, 

instruments and process engineering hinting that the knowledge flows crucial for patentable 

ideas are sticky inventor-specific; the results regarding these technology classes are thus 

similar to the model comprising all technologies.  

                                                            
7 Estimation results of Table 3 show that the inventor-specific knowledge spillovers dominate the firm-specific 
knowledge spillovers from the inventors’ previous employer. Therefore, the variable SPILL_FIRM_IN that is 
highly correlated with the variable SPILL_INV_IN is dropped here from the estimations.  
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Instead, we cannot reject the hypothesis that the coefficient of the variable SPILL_OUT is 

zero for chemicals and pharmaceuticals, mechanical engineering, and consumer goods and 

civil engineering. This finding, along with a positive and statistically significant coefficient of 

SPILL_INV_IN, suggests that the knowledge flows are mobile inventor-specific for chemicals 

and pharmaceuticals and mechanical engineering. Due to lack of data concerning the 

inventors entering the firms that file patents in the consumer goods and civil engineering 

technology class, we cannot make definite conclusions about whether the patentable ideas 

tend to be based rather on mobile inventor-specific knowledge flows or firm-specific 

knowledge.  

Table 5. The estimation results of the random effects probit model for a firm’s propensity to patent 
by technology classes 

  PAT_TECH1 PAT_TECH2 PAT_TECH3 PAT_TECH4 PAT_TECH5 PAT_TECH6

  

Electrical 
engineering 

Instruments Chemicals and 
pharmaceuticals

Process 
engineering

Mechanical 
engineering 

Consumer 
goods & 
civil eng. 

  Coef./S.E Coef./S.E Coef./S.E Coef./S.E Coef./S.E Coef./S.E 
SPILL_INV_IN_k 0.0005*** 0.0014** 0.0010*** 0.0003*** 0.0020** 

(0.0001) (0.0006) (0.0002) (0.0001) (0.0008) 

SPILL_OUT_k -0.0075*** -0.0047** -0.0004 -0.0016** -0.0036 -0.0028 
(0.0020) (0.0021) (0.0003) (0.0006) (0.0023) (0.0034) 

PAT_OWN_k 0.0023*** 0.0027*** 0.0005*** 0.0007*** 0.0006** 0.0007** 
(0.0005) (0.0008) (0.0002) (0.0002) (0.0003) (0.0004) 

PAT_COOP_k 0.0071 -0.0088 -0.0081 0.0001 0.1068 
(0.0081) (0.0119) (0.0063) (0.0009) (24.9523) 

PAT_COLLAB_k 0.0000 0.0028 -0.0003 0.0001 -0.0001 
(0.0000) (0.0019) (0.0004) (0.0001) (0.0004) 

PAT_RES_k -0.0116*** -0.0002 0.0000 -0.0004 
(0.0030) (0.0002) (0.0002) (0.0014) 

I 0.0009** 0.0009** 0.0000 -0.0005 0.0006** 0.0000 
(0.0004) (0.0004) (0.0003) (0.0003) (0.0003) (0.0001) 

PAT_LOCAL_k 0.0000 0.0000 0.0000*** 0.0000*** 0.0000 0.0000 
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

TD_k 0.0273 0.0087 0.0205 0.0993** -0.0178 -0.0036 
(0.0561) (0.0388) (0.0383) (0.0466) (0.0267) (0.0124) 
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TS_k 0.0718*** 0.0020 -0.0003 0.0092** 0.0001 0.0008* 
(0.0224) (0.0033) (0.0040) (0.0038) (0.0019) (0.0004) 

FOREIGN -0.0032 -0.0031 0.0019 -0.0127 -0.0003 0.0019 
(0.0153) (0.0133) (0.0118) (0.0137) (0.0089) (0.0040) 

EMP 0.0000** -0.0000* 0.0000 0.0000 0.0000 0.0000 
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

AGE -0.0007 -0.0005 -0.0002 0.0002 0.0004 0.0000 
(0.0005) (0.0004) (0.0003) (0.0004) (0.0003) (0.0001) 

Years  Yes Yes Yes Yes Yes Yes 
Industries  Yes Yes Yes Yes Yes Yes 

Log 
pseudolikelihood -491.941 -495.087 -405.794 -475.519 -319.533 -138.060 
Wald(Chi2) 193.910*** 111.750*** 120.260*** 103.350*** 75.820*** 49.790*** 
Observations 2536 2536 2536 2536 2536 2536 

Notes: The reported coefficients are marginal effects of random-effects probit regressions; standard 
errors are in parentheses. In SPILL_INV_IN_k, SPILL_OUT_k, PAT_OWN_k, PAT_COOP_k, 
PAT_COLLAB_k,  PAT_RES_k, PAT_LOCAL_k, TD_k and TS_k the letter k refers to the same technology 
class (1-6) as is the technology class of the dependent variable. The blank coefficient cells of the 
variables indicate that there are no non-zero values of those variables and they are excluded from 
the regression. Industry and year dummies are included in all estimations. Significance levels are 
reported in superscript, where *** denotes a significance level of 1%, ** denotes a significance level 
of 5% and * denotes a significance level of 10%. 

 

The formal firm-level intra-industry and inter-industry innovation collaborator variables do 

not appear generally statistically significantly in the estimated technology-specific equations. 

From the regional level variables the estimated coefficient of the variable PAT_LOCAL is 

positive and statistically significant only for chemicals and pharmaceutical and process 

engineering reflecting the presence of agglomeration externalities in these technology fields. 

The variable TD reflecting the localized diversity of patentable ideas gets a positive and 

statistically significant coefficient for process engineering. The variable TS capturing regional 

specialization in each technology class is positive and statistically significant in electrical 

engineering and process engineering and also weakly statistically significant (i.e., at 10 

percent level) in consumer goods and civil engineering. 
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5. Conclusions 

This paper has used data from 351 innovating firms for the years 2001–2012 to study the 

roles of inventor-specific knowledge flows, spillovers from inter-organization innovation 

collaboration and agglomeration externalities in a firm’s innovation performance. Our 

empirical findings generally suggest that patentable ideas are strongly linked to the mobility 

of individual inventors, or that the knowledge flows transmitted are sticky inventor-specific. 

In other words, the larger the knowledge pool of an inventor entering (leaving) the firm, the 

more the firm’s innovation performance increases (decreases). This means that the tacit 

knowledge of prolific inventors is not easily transferable to the new organization.  

We find though that among certain technology fields knowledge is more easily transferable 

via the mobile inventors. For chemicals and pharmaceuticals and mechanical engineering, 

the entry of inventors to a firm increases its innovation performance but the firm’s 

innovation performance is not notably affected when the inventors leave the company. In 

other words, in these technology fields, it seems that firms hiring inventors can absorb some 

of the inventor’s essential knowledge required for generating patentable ideas such that the 

loss of inventors does not deteriorate the firm’s innovation capabilities.  

Interestingly, the strongest spillovers seem to be the intra-industry ones that are generated 

in the formal innovation collaboration between competitors. This empirical finding supports 

the idea that the exchange of information and ideas for innovation are facilitated by the 

collaborating partners’ overlapping technology bases. Furthermore, it seems that regional 

specialization or Marshallian intra-industry externalities matter for the generation of new 

technologies in certain fields of engineering (i.e., electrical engineering, process engineering, 

and consumer goods and civil engineering). Our data thus suggest that the majority of intra-
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industry spillovers across firms leading to patentable ideas happen in direct firm-level 

collaboration but also Marshallian specialization externalities play role in the generation of 

new technologies in certain technology fields. Furthermore, the magnitude of overall 

localized innovation activity is generally positively related to the firm’s performance 

providing further support for the existence of agglomeration externalities. 

We find no evidence of significant spillovers arising from either formal inter-industry 

innovation collaboration or a firm’s innovation collaboration with universities or research 

institutes. At the regional level, the localized technological diversity of ideas is generally 

neither statistically significantly related to a firm’s innovation performance. Our data thus 

finds no support for Jacobian externalities. Knowledge flows rather tend to transfer from 

one firm to another via the mobility of individual inventors and via the formal intra-industry 

collaboration.  

From the point of view of technology policy, our findings indicate that encouraging intra-

industry innovation collaboration or innovation coopetition can be an efficient means to 

facilitate the exploitation of knowledge spillovers. Our study hints that R&D subsidies 

targeted for joint intra-industry innovation projects may be justified due to knowledge 

spillovers. However, we cannot make any strong statements on this question as our 

empirical analysis focuses merely on the significance of different channels of knowledge 

spillovers in the firm’s innovation performance, and it does not assess the economic value or 

magnitude of those spillovers. 

Also, in our empirical analysis, we use a rather narrow, though commonly used and 

important measure of a firm’s innovation performance (i.e., the number of patent 

applications). However, there are a wide range of non-patentable innovations such as 

organizational and marketing innovations that are out of the scope of our analysis. 
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Therefore, the estimation results should be interpreted with caution. It is possible that the 

importance of different spillover channels varies by the type of innovation. Hopefully future 

empirical work sheds light on this question as well as on the economic value of knowledge 

spillovers. 
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