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Abstract

This paper analyzes the macroeconomic impact of 
Generative Artificial Intelligence (GenAI) on the Finnish 
economy, integrating recent literature and empirical ev-
idence into a quantitative multi-sector general equilib-
rium model. The results indicate that, over a ten-year 
horizon, GenAI adoption increases annual economic 
growth by less than 0.5 percentage points in the base-
line scenarios, with the potential for larger impacts—
exceeding 1 percentage point—under scenarios involv-
ing greater automation and shifts in labor and ICT factor 
shares. The model’s input-output structure reveals sig-
nificant multiplier effects, as productivity gains in one 
sector propagate to others. The service sector emerges 
as a pivotal driver of adjustment, with its adaptability 
helping to offset slower growth in sectors less amena-
ble to automation. The study acknowledges uncertain-
ties regarding the broader impacts of artificial gener-
al intelligence, emphasizing the limitations of current 
forecasts, adaptation frictions, and the importance of 
anticipatory behavior in financial markets. Overall, the 
findings underscore the transformative potential of 
GenAI, contingent upon proactive policy measures to 
foster economic growth.
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GenAI, talouskasvu ja sektorien väliset 
kerroinvaikutukset

Tämä tutkimus arvioi generatiivisen tekoälyn (GenAI) 
makrotaloudellisia vaikutuksia Suomen kansantalou-
dessa syöttämällä viimeaikaisen tutkimuksen empiiri-
siä vaikutushavaintoja monen sektorin kasvumalliin. 
Perusskenaarioissa GenAI:n käyttöönotto lisää talouden 
vuosittaista kasvua alle 0,5 prosenttiyksikköä kymme-
nen vuoden aikajänteellä. Suuremmat, joskin epätoden-
näköisemmät, muutokset työtehtävien automatisaatios-
sa voivat johtaa yli yhden prosenttiyksikön vaikutuksiin. 
Mallin panos–tuotos-rakenne synnyttää huomattavia 
kerrannaisvaikutuksia, kun tuottavuuden kasvu yhdel-
lä sektorilla välittyy muihin sektoreihin. Odotukset Gen-
AI:n vaikutuksista ovat merkittäviä perinteisesti mata-
lan tuottavuuden palvelusektorilla. Tutkimus korostaa 
mallintamisen epävarmuuksia ja ennusteiden rajoittu-
neisuutta muun muassa koskien yleistä tekoälyä ja so-
peutumisen kitkoja. Se kiinnittää huomioita myös en-
nakointivaikutukseen rahoitusmarkkinoilla.
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1. Introduction 
Among economists, there is a significant debate regarding the extent to which Generative Artificial 

Intelligence (GenAI) can drive economic growth. Proponents argue that this technology has the 

potential to fundamentally transform economic activity by extensively substituting human labor, 

thereby accelerating growth. Conversely, more cautious perspectives highlight the limitations of 

technology in assuming essential human tasks, due to technological, organizational, or ethical 

constraints. Even within a relatively short 10-year forecast horizon, estimates vary substantially: some 

studies—such as Baily, Brynjolfsson, and Korinek (2023), McKinsey (2023), Goldman Sachs (2023), and 

Aghion and Bunel (2024)—project annual growth increases well above one percentage point; others, 

including Bergeaud (2024), Misch et al. (2025), and Filippucci et al. (2024A, 2025), forecast gains below 

one percentage point; while Acemoglu (2025) suggests an increase of less than 0.1 percentage points. 

In this study, I employ a quantitative multi-sector macroeconomic model1 to synthesize prior research 

on the productivity prospects of artificial intelligence (AI) and associated sectoral economic dynamics, 

producing forecasts for economic growth and structural transformation in Finland. The versatility of 

GenAI enables its application across a broad spectrum of economic sectors, thereby introducing the 

potential for profound structural changes. Consequently, analyzing the propagation of productivity 

shocks across sectors is critical. Productivity improvements in one sector can enhance the productive 

capacity of other sectors by reducing the cost of intermediate inputs. Furthermore, patterns of 

structural change are driven by significant imbalances in productivity growth across sectors, which may 

shift as a result of the broader adoption of GenAI technologies. 

I compile sector-level GenAI productivity growth assessment by integrating data on improvements in 

worker performance, the proportion of tasks enhanced by AI, and the extent of GenAI adoption across 

firms. Impacts of GenAI are considered within a tractable reduced-form framework, that aim to 

encapsulate the essential (task-based) macroeconomic dynamics of AI. First, the transformation 

influences the nominal factor shares of labor within production functions. According to the Acemoglu 

and Restrepo (2018) task-based theoretical model, this share corresponds to the proportion of tasks 

automated relative to the total number of remaining and new tasks (Trammell and Korinek, 2023).2 

Second, both automation and the introduction of new tasks drive productivity gains by altering total 

 
1 Kuusi (2013) developed the model, and it has also been used by Ali-Yrkkö et al. (2017) and Jysmä et al. (2019). 
2 The displacement effect arises when GenAI technologies substitute for other production inputs in specific 
tasks, thereby reducing the value-added share of those displaced factors. The reinstatement effect counteracts 
displacement by generating new tasks in which alternative inputs—most notably labor—possess a comparative 
advantage. (Acemoglu and Restrepo, 2018) 
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factor productivity.3 Finally, macroeconomic composition effects emerge from the reallocation of 

activity across sectors, which differ in their susceptibility to GenAI and in their fundamental roles within 

the macroeconomy. 

A dynamic general equilibrium model with forward-looking investment decisions and the reallocation 

of labor and capital across sectors provides valuable insights into the propagation effects and 

allocative impacts of artificial AI. In this paper, I analyze the effects of GenAI under several scenarios. 

Sectoral total factor productivity (TFP) shocks are calibrated using recent literature on the productivity 

growth potential of different sectors. Following Filippucci et al. (2024B, 2025), I consider both the lower 

and upper bounds of the productivity impact distribution of the GenAI.4 Additionally, I vary the extent to 

which these impacts affect labor alone or both labor and capital. In the benchmark scenario, the 

sectoral share of automated tasks—represented by the labor share in the production function—is held 

constant; however, I also examine the growth implications of changes in this share.5 

This paper makes several contributions. The results indicate that, under scenarios emphasizing the use 

of existing TFP impact calculations, the effects on real GDP growth are at the lower end of the estimated 

range. Utilizing benchmark calibration of GenAI adaptation similar to those in Acemoglu (2025), I find 

an annual growth impact of approximately +0.14 percentage points for the period 2023–2033, 

compared to +0.07 percentage points in Acemoglu (2025). More extensive adaptation scenarios yield 

an effect of +0.44 percentage points per year, which remains moderately below the estimates reported 

by Filippucci et al. (2024B, 2025). 

When baseline adaptation is accompanied by a 1 percentage point increase in the share of automated 

tasks—corresponding to a 1 percentage point rise in the ICT factor share and a decrease in the labor 

share—the resulting impact on GDP growth becomes substantially more pronounced. Under this 

scenario, annual GDP growth reaches 3.1%, compared to 1.8% in the benchmark case. Although there 

is currently limited empirical evidence supporting permanent changes in factor shares, these results 

clearly indicate that considerable variation in estimates of the growth impact of ICT may arise from 

differing assumptions regarding the extent of automation affecting the factor shares. 

 
3 The productivity effect is observed when GenAI increases overall productivity by enabling a more flexible 
allocation of tasks among production factors. This efficiency gain contributes positively to labor demand in non-
automated tasks. 
4 I use US productivity impact data at the ISIC 2-digit industry level for Finland in my calculations. 
5 The scenarios discussed mostly assume that GenAI introduces permanent level changes in the relevant 
economic indicators over the 10-year horizon. Following this transition, exogenous variables—primarily 
productivities—resume growth at their benchmark rates, but from levels reflecting the influence of AI where 
applicable.  To analyze the impact of the longer term expectations, I also consider an alternative scenario in 
which the baseline shock persist for 20 years. I find that the impact of expectations is relatively small. 
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The general equilibrium analysis yields several interesting insights into the mechanisms of AI-induced 

structural transformation. First, the model facilitates the estimation of the capital multiplier—defined 

as the ratio of labor productivity growth to TFP growth—which appears to be moderately higher than the 

1.5 multiplier utilized by Acemoglu (2025) and Filippucci et al. (2024B, 2025). Across scenarios, the 

capital multiplier ranges from 1.75 to 1.94. This elevated multiplier contributes to a relatively greater 

estimated effect of GenAI on productivity and economic growth compared to the findings of Acemoglu 

(2025). 

Furthermore, the model’s input-output structure amplifies the impact of GenAI on productivity and 

economic growth by generating indirect growth effects.6 Building upon the growth decomposition 

framework proposed by Baqaee and Farhi (2020), I identify an input–output multiplier that emerges as 

productivity gains in one sector enhance the productive capacity of other sectors by reducing the input 

prices they encounter. This effect is particularly significant in the context of GenAI, as the technology’s 

influence extends beyond direct productivity enhancements to encompass complex shocks 

transmitted through the input–output framework as production processes are reorganized across all 

sectors. I illustrate these dynamics using a model with sectoral Cobb–Douglas production functions for 

intermediate production, which demonstrate the constancy of factor shares even amid substantial 

changes in the relative prices of intermediates, a phenomenon previously observed during the ICT 

revolution. 

Finally, the findings indicate that the service sector has significant potential for AI-driven productivity 

growth, with the capacity to generate substantial indirect effects across the broader economy. Notably, 

these advances may help counteract the persistent unbalanced productivity trends observed in recent 

decades. Simulation results of structural transformation patterns suggest that GenAI could mitigate the 

so-called “Baumol’s cost disease” in services—that is, the phenomenon in which resources are 

increasingly allocated to a stagnating service sector, thereby restraining aggregate economic growth. 

By enabling greater productivity enhancements in services, GenAI may support a more balanced 

sectoral development and contribute to higher overall economic growth. 

This paper relates to a large previous literature on the macroeconomics of the task-structure of work 

and structural change. Earlier research has demonstrated that the automation of existing tasks is 

systematically accompanied by the emergence of new, higher-productivity activities, which are initially 

performed by human workers (Goldin and Katz, 2009; Acemoglu and Autor, 2012). In considering GenAI 

 
6 Acemoglu (2025) builds on Hulten’s theorem suggesting that aggregate productivity gains are approximated by 
the value-added share weighted average of sector-level gains. However, this approximation is only first-order 
exact and can be significantly biased if large shocks or nonlinearities—such as non-unitary elasticities, network 
effects, or reallocation barriers—are present (OECD, 2024B). 
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within a reduced-form, task-based theoretical framework, this paper is closest to Filippucci et al. 

(2024B), while alternative approaches have been provided by Acemoglu and Restrepo (2018), Acemoglu 

and Autor (2019), Acemoglu (2025), and Trammell and Korinek (2023) among others. 

Following methods from Acemoglu (2025), my analysis is grounded in recent micro-level findings that 

assess how AI boosts task performance efficiency. However, I do not take a firm stance on whether AI 

mainly boosts labor or capital productivity, as both are plausible. Instead, I focus on overall impacts on 

total-factor productivity and run alternative scenarios with changing labor shares and employment. 

This analysis does not address labor market imperfections, as it only considers reduced-form shocks. 

Broader employment and distributional outcomes in a unified context would require separate modeling 

approaches, such as those in Acemoglu and Restrepo (2018). 

Instead, this paper connects more closely to the macroeconomic literature that models structural 

transformation across sectors experiencing unbalanced productivity growth. Productivity differentials 

serve as a potential source of structural change (see, e.g., Baumol and Bowen, 1966; Baumol, 1967; 

Kaldor, 1966; Fuchs, 1968). Sectors with lower productivity growth must compete for the same inputs, 

particularly labor, with faster-growing sectors, resulting in an increase in the relative prices of their 

outputs. As final consumption—especially of services—is typically price inelastic, the nominal share of 

these low-productivity products tends to rise over time in consumption.  

More recently, Ngai and Pissarides (2007) and Acemoglu and Guerrieri (2008) examine how differences 

in technological progress, factor shares, and capital deepening contribute to structural change. 

Further, studies such as Oulton (2001), Martinez et al. (2010), Foerster et al. (2022), Ngai and 

Samaniego (2009), and vom Lehn and Winberry (2022) highlight the role of investment and production 

network interactions in amplifying sector-specific trend shocks. Additionally, the analyses by Baqaee 

and Farhi (2020) and Liu (2019) focus on sectoral distortions, emphasizing the complex interplay of 

factors in shaping macroeconomic outcomes. 

Recent literature provides quantitative estimates of AI-driven performance improvements at the micro-

level, often employing both human and GenAI evaluators to measure task efficiency. These works 

introduce key concepts like increase in performance in affected tasks and GenAI exposure (Briggs and 

Kodnani 2023; Felten et al., 2021; Eloundou et al., 2024; Kauhanen and Rouvinen, 2025; Teutloff et al., 

2025) and develop measures for different GenAI capabilities. Other literature such as Filippucci et al. 

(2024A), Kinder et al. (2024), Boston Consulting Group (2024), and Ernst & Young (2024) have focus on 

sectoral analysis, underscoring both the promise of substantial productivity and efficiency gains and 

the caveats of current limitations, risks, and the incomplete readiness for widespread adoption.  



6 7

GenAI, Growth, and the Multi-Sector Multipliers

While this paper focuses on the potential impacts of GenAI shocks within the context of the 

aforementioned quantitative literature, utilizing a multi-sector model, it is important to recognize that 

this approach adopts a relatively narrow perspective on the influence of artificial intelligence. The 

ongoing debate regarding the potential of artificial general intelligence (AGI) to drive endogenous 

economic growth—contrasted with more cautious growth projections such as those of Acemoglu 

(2025)—highlights the inherent challenges in forecasting the true macroeconomic implications of AGI. 

These uncertainties stem from varying assumptions about the capabilities, adoption rates, and 

integration of GenAI technologies (see Economist, 2025; Trammell and Korinek, 2023).7  

2. Collecting stylized facts 
2.1. Productivity effects 

To assess the aggregate gains from GenAI, recent studies frequently begin with micro-level 

performance data from workers and firms utilizing GenAI technologies. This line of research typically 

employs both human evaluators and AI-based tools, such as OpenAI’s GPT models, to assess the 

extent to which task completion times can be reduced through GenAI augmentation. The principal 

metric in these assessments is the share of tasks for which the completion time decreases significantly 

when leveraging GenAI large language models (LLMs) under baseline exposure conditions. Following 

Briggs and Kodnani (2023), Acemoglu (2025), and Filippucci et al. (2024A, 2024B), a baseline effect 

corresponding to a 30% increase in performance over ten years for tasks amenable to GenAI 

intervention appears to be a reasonable estimate. In line with Acemoglu (2025), I interpret these gains 

as primarily accruing to labor, while also incorporating the perspective of Filippucci et al. (2024B), who 

consider the improvements as reflecting efficiencies for both labor and capital. In practice, this implies 

that performance gains are weighted according to the nominal share of each factor in the production 

process. 

A potential limitation of these studies is their reliance on experimental settings and early adopter firms, 

which may not accurately represent broader, real-world applications. The observed effects of GenAI 

could be attenuated in more heterogeneous environments, and it is essential to account for the costs 

associated with GenAI implementation to ascertain net productivity gains. Conversely, longer-term 

advantages may emerge from the creation of new economic activities that more fully integrate GenAI, 

as well as from innovative firms adopting data-centric business models. It is plausible that future GenAI 

architectures will address current limitations, thereby enhancing capabilities and potentially 

 
7 While, this analysis concentrates on the effects of generative AI, whereas Filippucci et al. (2024B) further 
explores the integration of GenAI and robotics in future automation scenarios. 
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generating more substantial and widespread productivity improvements. Nevertheless, it remains 

premature to predict the full extent of these evolving real-world applications. 

AI exposure refers to the degree to which artificial intelligence can affect a particular job or sector 

(Felten et al., 2021; Eloundou et al., 2024). This exposure is contingent on the composition of human-

performed tasks and the extent to which GenAI can perform or assist with these activities. High levels 

of exposure indicate that a significant portion of sectoral tasks are amenable to GenAI augmentation. 

This concept facilitates the extrapolation of task-level performance gains to broader sectoral or 

macroeconomic productivity enhancements. Building on the analyses of Acemoglu (2025), Eloundou 

et al. (2024), and Filippucci et al. (2024B, 2025), the present study evaluates tasks that can be executed 

more efficiently with GenAI assistance, using assessments conducted by both human evaluators and 

AI-based tools. 

Two measures from Filippucci et al. (2024B) are employed in this analysis: (1) the proportion of tasks 

for which completion time is substantially reduced through the application of GenAI large language 

models (baseline exposure); and (2) alternative metric encompassing tasks where further 

improvements could be realized if supplementary software were developed to enhance current models 

(expanded capabilities). Incorporation of this more optimistic, forward-looking scenario is justified by 

the significant advances already documented in certain capabilities of large language models, as noted 

by Eloundou et al. (2024). Furthermore, the baseline exposure scenario assumes 23%, while the 

extended capabilities scenario assumes 40% of firms actually adopt the exposed AI over the time 

period. 

Figure 1 presents calculations of the potential productivity growth attributable to GenAI adaptation 

across the three major sectors under consideration. These calculations are based on Filippucci et al. 

(2024B) and are weighted at the sub-industry level by the average Finnish output value shares at the 2-

digit industry level post-1995, consistent with the calibration period for the sectors.8 The estimated 

productivity effects are further adjusted according to the proportion of input factors (labor and capital) 

of all nominal input costs identified as being affected by GenAI integration. 

Utilizing the United States as a reference for these calculations is well justified. Kauhanen et al. (2023) 

replicated the analysis performed by Eloundou et al. (2023) in the Finnish context and found that 

exposure to GenAI in Finland closely mirrors that of the US. Specifically, Figures 4 and 5 of Kauhanen et 

al. (2023) demonstrate that both countries display remarkably similar patterns of exposure across 

 
8 For each of the three sectors, the TFP gain is 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔 𝑥𝑥 𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝 𝑎𝑎𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠ℎ𝑔𝑔𝑝𝑝𝑎𝑎 at the sector level, 
where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔 consists of aggregation of subsectors i: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔 =
∑ 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀𝑎𝑎𝑝𝑝𝑎𝑎𝑀𝑀 𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑠𝑠𝑖𝑖 𝑥𝑥 𝐸𝐸𝑥𝑥𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑎𝑎𝑖𝑖 𝑥𝑥 𝐴𝐴𝑝𝑝𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑔𝑔 𝑝𝑝𝑔𝑔𝑝𝑝𝑎𝑎𝑖𝑖𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑎𝑎𝑝𝑝𝑔𝑔ℎ𝑝𝑝𝑖𝑖𝑖𝑖   
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sectors. This empirical alignment supports the validity of applying US-based estimates to Finland in this 

analysis. 

These findings underscore the sectoral dimension, and especially the considerable potential of GenAI 

in the service sector.  Anecdotal evidence and sectoral analyses are provided by Filippucci et al. 

(2024A), Kinder et al. (2024), Boston Consulting Group (2024), and Ernst & Young (2024), among others. 

Filippucci et al. (2024A) identify the most exposed sectors as knowledge-intensive services reliant on 

cognitive tasks, including Finance, ICT services (notably telecommunications), Publishing and Media, 

and Professional services. 

However, the potential impact of GenAI does not stop there. As noted by Kinder et al. (2024), office and 

administrative support occupations present substantial potential due to their high exposure, 

automation feasibility, and large workforce. Technological advancements have already led to workforce 

reductions in roles such as bookkeepers, legal secretaries, HR assistants, bank tellers, and payroll 

clerks, and GenAI is likely to accelerate this transition. 

Boston Consulting Group (2024) projects notable transformations within the governmental sector. 

GenAI can enhance the quality and efficiency of decision-making and improve public policies and 

program implementation. Specifically, GenAI optimizes policy design, service delivery, management, 

support functions, and regulatory compliance. Additionally, GenAI can streamline support functions 

and shared services, reducing monitoring costs, mitigating risks, and simplifying administrative 

processes to benefit citizens, businesses, and other stakeholders. Central agencies can leverage 

GenAI to develop, implement, and standardize government-wide strategies. 

Ernst & Young (2024) anticipate substantial productivity gains in the healthcare sector over the coming 

decade. For example, GenAI can improve diagnostic accuracy and the quality of specialist-patient 

interactions, enhance clinical workflows via improved patient risk stratification, and support more 

effective hospital management. In the education sector, as reported by Kinder et al. (2024), teachers 

may benefit from GenAI through accelerated grading, streamlined planning, test administration, record 

maintenance, and report preparation. 

Having said that, current conditions are not yet sufficient for the widespread adoption of GenAI and the 

full realization of its benefits. Multiple risks must be addressed, including concerns related to accuracy, 

security, privacy, bias, and intellectual property rights (Boston Consulting Group, 2024). Consequently, 

the focus remains on the growth potential of technology while acknowledging the prerequisites for its 

responsible and effective deployment. 
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Finally, it is important to note that this analysis does not encompass the broader trajectory of 

automation, since the tasks influenced by GenAI are distinct from those automated through earlier 

digital technologies such as robotics, advanced manufacturing equipment, or traditional software 

systems. Eloundou et al. (2024) provide evidence of a negative statistical association between GenAI 

exposure and exposure to robots and manual routine tasks, as previously discussed by Acemoglu 

(2025). This suggests that, at present, it is feasible to delineate GenAI from prior waves of automation. 

Filippucci et al. (2024) highlight the potential for combined applications of GenAI and robotics, which 

may yield further advancements in task automation. 

 

Figure 1. Productivity gains (%) are based on Filippucci et al. (2024B), calculated as Microlevel gains x Exposure x 
Adaptation rate over 10 years for 2-digit industries. These gains are aggregated into Finland’s three main sectors using 
post-1995 output weights and further multiplied by the sector factor share of the affected input to construct the 
scenario-specific shocks. Following Elondou et al. (2024), the baseline reflects tasks where GenAI (LLMs) significantly 
reduces completion time; expanded capabilities also include tasks with potential gains if additional software is built on 
LLMs. The baseline assumes 23% of firms adopt AI, while extended capabilities assume 40%. ICT = ICT manufacturing 
and services; traditional services = other private/public services; NIT = remaining industries, excluding primary 
production. Source: Filippucci et al. (2024B), Statistics Finland and own calculations. 

2.2. Within-sector factor shares and the sectoral composition of labor 
The impact of GenAI on productivity and employment remains uncertain, as the pace and nature of 

these changes are not yet determined. GenAI has the potential to enhance employee productivity 

through improved work processes, debugging, error-checking, and facilitating skill acquisition. 

Conversely, GenAI may automate routine tasks and at least some code generation, which could result 

in job displacement. It is important to distinguish situations where GenAI complements human labor 

0

1

2

3

4

5

6

7

8

ICT Traditional services NIT

Baseline exposure Extended capabilities



10 11

GenAI, Growth, and the Multi-Sector Multipliers

from those where it substitutes for it, and to identify individuals who may be more susceptible to 

displacement compared to those likely to adapt. 

Figure 2  examines the dynamics of labor shares, defined as the proportion of total labor compensation 

relative to gross value added. As previously outlined, the displacement effect arises when GenAI 

technologies substitute for other inputs—particularly labor—in certain tasks, resulting in a reduced 

share of labor in value added. Conversely, the reinstatement effect offsets displacement by generating 

new tasks in which non-AI inputs maintain a comparative advantage. 

The Figure shows that over time the shares have remained remarkably constant in Finland. At face 

value, the evidence of relative constancy of sectoral factor shares indicates that the displacement and 

reinstatement effects cancel out in the production functions, and therefore a reasonable calibration is 

to keep the factor shares constant.  

It is important to note, however, that factors driving task composition may obscure the effects of AI. For 

instance, price substitution between factors can reduce the nominal share of inputs with declining 

prices, primarily ICT, while automation may simultaneously increase their shares. In this analysis, I 

nevertheless approximate the production functions using Cobb-Douglas specifications, wherein 

changes in the relative prices of inputs do not alter their nominal factor shares. Correspondingly, prior 

findings regarding the introduction period of the Internet indicate a broader stability of factor shares 

beyond only the ICT sector during 1995–2005, supporting the appropriateness of Cobb-Douglas as a 

production function specification, as shown in Figure 8. 

Compared to the US, the share of manufacturing value added in Finland has remained relatively stable. 

Since 1995, the labor share within U.S. manufacturing has declined to levels comparable to those 

observed in Finland. This pattern may be attributed to significant restructuring within Finland’s 

manufacturing sector following the economic downturn of the 1990s. Notable fluctuations in the ICT 

sector are likely linked to the evolving role of Nokia; during the early 2000s, Nokia’s strong profitability 

translated into substantial capital gains and a high capital share in production. Following the collapse 

of its mobile phone business, the sector’s labor share reverted to levels similar to those found in the 

broader manufacturing industry. 
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Figure 2. The dynamics of sectoral labor factor shares 1995–2023, as defined by the total labor compensation as relative 
to gross value added. ICT = ICT related manufacturing and services; traditional services = other private and public 
services; NIT = other industries, excluding primary production. Source: Statistics Finland and own calculations. 

 

Moreover, a critical aspect of assessing the impact of GenAI lies in the evolving composition of tasks. 

At the sectoral level, this phenomenon is most evident in the allocation of resources across different 

sectors. As illustrated in Figure 3 , from 1995 to 2023, sectoral changes in the composition of aggregate 

labor input have been substantial, surpassing the variations observed within individual sector labor 

shares. Notably, the most significant development is the increased share of services within the overall 

employment. 

It is important to recognize that the composition effect reflects the reallocation of value added across 

sectors, influenced by a complex interplay of factors beyond technological advancement alone. These 

include structural transformations, shifts in consumer preferences, differences in resource intensity, 

varying rates of sectoral productivity growth, and the effects of international trade on final goods. In 

analyzing the role of GenAI, it is essential to account for these additional dynamics and model the 

interactions among them. 
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Figure 3. Composition of total hours worked for different sectors 1995-2023. ICT = ICT related manufacturing and 
services; traditional services = other private and public services; NIT = other industries, excluding primary production. 
Source: Statistics Finland and own calculations. 

3. Macroeconomic model 
3.1. Outline of the model 

The outline of the model is presented Figure 4. The production side of the economy closely resembles 

Ngai and Samaniego's (2009) version of the investment-specific technological change model. However, 

the representative household is assumed to consume sector-specific goods according to a CES 

aggregator with intratemporal elasticity strictly lower than 1. This relates the model to Ngai and 

Pissarides (2007) and Acemoglu and Guerrieri (2008). Furthermore, the economy considered is open 

for international trade (Uy et al., 2013). 

The model economy consists of sectors producing ICT (ICT), non-ICT traditional products (NIT), and 

traditional services (S).9 Each sector has a unique Cobb-Douglas production function with industry-

specific factor intensity shares and total-factor productivity terms, which are calibrated using the 

National Accounts. The sectors produce sector-specific intermediate and capital goods, the difference 

being that intermediate goods have to be used during the period of its production. There are two capital 

stocks based on ICT and traditional goods.  

 
9  ICT = ICT-related manufacturing and services; S = other private and public services; NIT = other industries, 
excluding primary production. 
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The representative household is assumed to consume sector-specific goods according to a CES 

aggregator. The model provides an estimate of the welfare impact of GenAI in a frictionless economy, 

while I also test the sensitivity of results to simultaneous declines in employment. The domestically 

manufactured or imported products are always allocated to their optimal use as production factors, 

consumption goods, or exports. A representative household owns the firms and decides whether to 

consume or save firm income. The labor input and population are assumed to grow exogenously. 

The economy engages in international trade. The patterns of trade reflect the comparative advantage of 

countries in different sectors. Especially the changes in the competitiveness of trade in high-tech goods 

and services in exports is modelled closely to analyze the role of the Finnish ICT sector. Tradable 

sectors consist of heterogeneous firms and sector-specific goods are composites of firm-level goods 

produced either in a domestic country or abroad. Distribution of firm-level productivities is modelled in 

a manner that makes it easy to estimate unit costs of foreign countries and trade barriers. The 

considered economy is a small open economy: The size of the foreign market and unit costs abroad are 

taken to be exogenous, but not constant. Modeling international trade is based on Uy et al. (2013), who 

considers a version of Ngai and Pissarides (2007) in an open economy. 

The baseline growth path is calibrated to match the key structural changes in the Finnish economy. The 

total-factor productivity growth rates are close to their historical averages, the population and 

employment growth is matched with the medium-term available forecasts, and the external market is 

calibrated to match the structure of the exports and the share of imported products in the domestic 

market. The model is matched with the sectoral shifts of the consumption and value added, as well as 

movement of labor across sectors. 
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Figure 4. Outline of the multi-sector model. 

3.2. Firms 
In the open sectors (ICT and NIT), the final domestic good consists of both domestic and imported 

goods and services. The closed service sector (S) supplies domestic final goods directly. The open 

sectors are responsible for producing investment, intermediate, and consumption goods. Investment 

goods contribute to the total productive capital stocks in the economy, which consist of NIT and ICT 

capital stocks. The service sector (S) provides intermediate and consumption goods for domestic use. 

Each sector uses six inputs (𝑚𝑚𝑘𝑘)—ICT capital, NIT capital, labor, and S-, ICT-, and NIT-intermediate 

goods—to produce output via a Cobb-Douglas production function. In intermediate production, this 

function ensures factor shares stay constant even when relative prices of intermediates change 
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significantly. Figure 8 demonstrate the constancy of factor shares even amid substantial changes in the 

relative prices of intermediates during the emergence of Internet 1995–2005.10 

The total-factor productivity of a firm i is denoted as 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖. The three sectors are competitive and the 

firms maximize their profits.  In particular, the firms maximize the value of their production by adjusting 

the amounts of inputs given the prices of their final good 𝑝𝑝𝑖𝑖  and the sector-specific (denote sector by q) 

rental prices of inputs 𝑤𝑤𝑘𝑘𝑘𝑘: 

 

 max [𝑝𝑝𝑖𝑖 ∗ 𝑀𝑀𝑖𝑖 − ∑ 𝑤𝑤𝑘𝑘𝑘𝑘 ∗ 𝑚𝑚𝑘𝑘𝑖𝑖

6

𝑘𝑘=1
] = max [𝑝𝑝𝑖𝑖 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ∗ ∏ 𝑚𝑚𝑘𝑘𝑖𝑖

𝛼𝛼𝑘𝑘𝑘𝑘
6

𝑘𝑘=1
− ∑ 𝑤𝑤𝑘𝑘𝑘𝑘 ∗ 𝑚𝑚𝑘𝑘𝑖𝑖

6

𝑘𝑘=1
], (1) 

 

where 𝛼𝛼𝑘𝑘𝑘𝑘 is the nominal factor share k in sector q. The total-factor productivities do not differ across 

firms in the closed sector, but in the open sectors they vary.  

It is useful to describe the result of the optimization problem in terms of the unit cost function that 

defines the optimal unit cost of the firm i in sector q UCiq: 

 

 UCiq = 1
𝐴𝐴𝑖𝑖

∏ 𝑤𝑤𝑘𝑘𝑘𝑘
𝛼𝛼𝑘𝑘𝑘𝑘

6

𝑘𝑘=1
, (2) 

 

where 𝐴𝐴𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ∏ 𝛼𝛼𝑘𝑘𝑘𝑘
𝛼𝛼𝑘𝑘𝑘𝑘6

𝑘𝑘=1  is the total-factor productivity with additional factor-weight terms that 

arises from the optimization. In the model, the firms do not make excess profits, and thus the unit costs 

equal the unit price of the goods and services, UCi = 𝑝𝑝𝑖𝑖. The price of the intermediate goods is the same 

as the domestic final goods (combination of the domestic good and the intermediate good).   

The closed, service sector produces homogenenous goods with identical production functions at the 

firm level. The competitiveness assumption implies that UCS = 𝑝𝑝𝑆𝑆, and the optimality of the production: 

 UCS = 1
𝐴𝐴𝑆𝑆

∏ 𝑤𝑤𝑘𝑘𝑆𝑆
𝛼𝛼𝑆𝑆

6

𝑘𝑘=1
. 

 

(3) 

 
10 The assumption is not a priori inconsistent with the CES aggregate production function (see, e.g. Jalava et al. 
2006) because the demand functions in the model have the CES form, and the demand effect is similar to the 
effect that the use of the aggregate CES production function would generate. 
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In order to model international trade, I use assumptions concerning the sectoral productivity that are 

similar to Uy et al. (2013). The tradable sectors sell differentiated goods. Let us denote the sectors by q 

= [NIT,ICT], and the individual firms receive an index value 𝑖𝑖𝑞𝑞 ⋲ [0,1]. Within sectors, the firms are 

otherwise identical, but the total-factor productivities may differ. The firms may operate domestically 

or in other countries, and their products are combined symmetrically to domestic final goods: 

 𝐹𝐹𝑞𝑞 = (∫ 𝐹𝐹𝑖𝑖𝑞𝑞
𝜂𝜂𝑞𝑞

1

0
𝑑𝑑𝑑𝑑)

1
𝜂𝜂𝑞𝑞

 

 

(4) 

where 𝜂𝜂𝑞𝑞 < 1 is the elasticity of substitution between the goods. Each individual good 𝑖𝑖𝑞𝑞  is purchased 

from a country that provides it with the cheapest price, and it is imported to the purchasing country and 

used as a part of the domestic final good. The transportation involves a cost.  

When the distribution of the total-factor productivities is assumed to exhibit the Frechet-distribution—

a flexible functional form—, and furthermore, it is assumed that the purchases are always made from 

the location that has the lowest price when the price of the shipping is included, the model yields simple 

functional expressions for the key trade equations. Eaton and Kortum (2002) show that the price of 

product q in country c is a function on the transportation costs and unit prices: 

 𝑝𝑝𝑞𝑞𝑖𝑖 = 𝛾𝛾Φ𝑞𝑞𝑞𝑞
− 1
𝜃𝜃𝑞𝑞 , 

 
(5) 

where Φqc = ∑ 𝑇𝑇𝑇𝑇𝑞𝑞𝑞𝑞𝑞𝑞
−𝜃𝜃𝑞𝑞𝑁𝑁

𝑞𝑞=1 𝑈𝑈𝑇𝑇𝑞𝑞𝑞𝑞
−𝜃𝜃𝑞𝑞,  𝑇𝑇𝑇𝑇𝑞𝑞𝑞𝑞𝑞𝑞  is product q transportation cost from country j to country c, and 

𝜃𝜃𝑞𝑞 is a parameter that quantifies the importance of the relative advantage.  

Similarly, the structure of the trade can be expressed as a function of the unit costs. Under the Frechet 

distribution, the shares of the different countries c in the total demand in sector q in country j are  

 𝜋𝜋𝑞𝑞𝑞𝑞𝑞𝑞 =
𝑇𝑇𝑇𝑇𝑞𝑞𝑞𝑞𝑞𝑞

−𝜃𝜃𝑞𝑞𝑈𝑈𝑇𝑇𝑞𝑞𝑞𝑞
−𝜃𝜃𝑞𝑞

Φqi
 

 
(6) 

3.3. Household 
A representative household earns labor income and receives rental income from capital. The 

household can save or consume its income. The household saves by investing in the sectoral 
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investment goods (ICT or NIT) that accumulate into the productive capital stocks of the economy.11 The 

household maximizes the value of its consumption basket over time. The aggregate utility function 

exhibits a standard CRRA form, and the household weighs each of its member (𝑁𝑁𝑡𝑡) with an equal weight  

𝑉𝑉𝑠𝑠 = ∑ 𝛽𝛽𝑡𝑡−𝑠𝑠 𝑁𝑁𝑡𝑡
𝑈𝑈(𝐶𝐶𝑡𝑡)1−𝜌𝜌 − 1

1 − 𝜌𝜌 − 𝜉𝜉𝑆𝑆𝑡𝑡𝐿𝐿𝑆𝑆𝑡𝑡 − 𝜉𝜉𝐼𝐼𝐼𝐼𝑡𝑡𝐿𝐿𝐼𝐼𝐼𝐼𝑡𝑡 − 𝜉𝜉𝑁𝑁𝐼𝐼𝐼𝐼𝑡𝑡𝐿𝐿𝑁𝑁𝐼𝐼𝐼𝐼𝑡𝑡

∞

𝑡𝑡=𝑠𝑠
 

 

(7) 

so that the wage and the capital income, as well as the lump-sum capital tax returns equals the cost of 

investment, consumption, and the capital tax. 

∑ 𝑤𝑤𝑡𝑡
𝐿𝐿𝑖𝑖𝐿𝐿𝑖𝑖 + 

𝑆𝑆,𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝐼𝐼𝐼𝐼

𝑖𝑖
∑  

𝑆𝑆,𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝐼𝐼𝐼𝐼

𝑞𝑞
∑ 𝑤𝑤𝐾𝐾𝑘𝑘𝑞𝑞𝑡𝑡𝐾𝐾𝑞𝑞𝑞𝑞𝑡𝑡 

𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝐼𝐼𝐼𝐼

𝑞𝑞
+ 𝑇𝑇𝑡𝑡

= ∑ 𝑝𝑝𝑞𝑞,𝑡𝑡𝐶𝐶𝑞𝑞,𝑡𝑡 + ∑ 𝑝𝑝𝑞𝑞,𝑡𝑡𝐼𝐼𝑖𝑖,𝑡𝑡 
𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝐼𝐼𝐼𝐼

𝑞𝑞
 

𝑆𝑆,𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝐼𝐼𝐼𝐼

𝑞𝑞
+ ∑  

𝑆𝑆,𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝐼𝐼𝐼𝐼

𝑞𝑞
∑ 𝜏𝜏𝐾𝐾𝑘𝑘𝑞𝑞𝑡𝑡𝑤𝑤𝐾𝐾𝑘𝑘𝑞𝑞𝑡𝑡𝐾𝐾𝑞𝑞𝑞𝑞𝑡𝑡,

𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝐼𝐼𝐼𝐼

𝑞𝑞
 

(8) 

 

where 𝑤𝑤𝐾𝐾𝑘𝑘𝑞𝑞𝑡𝑡 denotes the capital k rental cost in sector q. Because the tax returns match with 

the collected taxes that for the sake of simplicity also involves the depreciation of the capital, 

the tax return, 𝑇𝑇𝑡𝑡, is 

 

 𝑇𝑇𝑡𝑡 = ∑  
𝑆𝑆,𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝐼𝐼𝐼𝐼

𝑞𝑞
∑ 𝜏𝜏𝐾𝐾𝑘𝑘𝑞𝑞𝑡𝑡𝑤𝑤𝐾𝐾𝑞𝑞𝑞𝑞𝑡𝑡𝐾𝐾𝑞𝑞𝑞𝑞𝑡𝑡 

𝐼𝐼𝐼𝐼𝐼𝐼,𝑁𝑁𝐼𝐼𝐼𝐼

𝑞𝑞
, 

 

(9) 

where 𝜏𝜏𝐾𝐾𝑘𝑘𝑞𝑞𝑡𝑡 is the tax rate of capital k in sector q. The individual decision makers take the tax rate as 

given, and since the there is a lump-sum tax return, the tax has a distortive effect in the economy. 

The labor input 𝐿𝐿𝑡𝑡 = 𝐿𝐿𝑆𝑆 + 𝐿𝐿𝐼𝐼𝐼𝐼 + 𝐿𝐿𝑁𝑁𝐼𝐼𝐼𝐼  is assumed to be exogenous and dictated by a population 

projection. The labor input is calibrated to match the potential hours of the economy. There are 

permanent wage differentials across the sectors. In the model, they are caused by differentiated 

disutility of work across sectors. 

 
11 While the current version of the model omits investments in technology, in the previous work, Ali-Yrkkö et al. 
(2016), I have extended the model to include investments in R&D by using a variant of Acemoglu and Guerrieri 
(2006) endogenous growth model. While it is shown that the model can replicate the R&D behavior, it is notable 
that the model outcomes are similar. 
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For a single member of the household, the utility function is of the CES form: 

 𝑈𝑈(𝐶𝐶𝑡𝑡) = (𝜔𝜔𝑆𝑆 (𝐶𝐶𝑆𝑆𝑡𝑡
𝑁𝑁𝑡𝑡

)
𝜖𝜖−1

𝜖𝜖
+ 𝜔𝜔𝐼𝐼𝐼𝐼 (𝐶𝐶𝐼𝐼𝐼𝐼𝑡𝑡

𝑁𝑁𝑡𝑡
)

𝜖𝜖−1
𝜖𝜖

+ 𝜔𝜔𝑁𝑁𝐼𝐼𝐼𝐼 (𝐶𝐶𝑁𝑁𝐼𝐼𝐼𝐼𝑡𝑡
𝑁𝑁𝑡𝑡

)
𝜖𝜖−1

𝜖𝜖
)

𝜖𝜖
𝜖𝜖−1

 (10) 

 

The utility maximizing consumption basket fulfills the following optimality conditions (subindices i and 

j refer to all sectors, k refers to the capital producing sectors, and 𝑤𝑤𝐾𝐾𝑘𝑘𝑖𝑖𝑡𝑡 refers to the rental cost of 

capital produced in sector k in sector i): 

 
𝜕𝜕

𝜕𝜕𝐶𝐶𝑖𝑖𝑡𝑡
𝑉𝑉(𝐶𝐶𝑖𝑖𝑡𝑡)

𝜕𝜕
𝜕𝜕𝐶𝐶𝑗𝑗𝑡𝑡

𝑉𝑉(𝐶𝐶𝑖𝑖𝑡𝑡)
=

𝑝𝑝𝑗𝑗𝑡𝑡
𝑝𝑝𝑖𝑖𝑡𝑡

 

 

(11) 

 
𝜕𝜕

𝜕𝜕𝐿𝐿𝑖𝑖𝑡𝑡
𝑉𝑉(𝐶𝐶𝑖𝑖𝑡𝑡)

𝜕𝜕
𝜕𝜕𝐿𝐿𝑗𝑗𝑡𝑡

𝑉𝑉(𝐶𝐶𝑖𝑖𝑡𝑡)
= 𝜉𝜉𝑖𝑖

𝜉𝜉𝑗𝑗
= 𝑤𝑤𝑖𝑖𝑡𝑡

𝑤𝑤𝑗𝑗𝑡𝑡
 

 

(12) 

 
𝜕𝜕

𝜕𝜕𝐶𝐶𝑘𝑘𝑡𝑡
𝑉𝑉(𝐶𝐶𝑡𝑡)

𝜕𝜕
𝜕𝜕𝐶𝐶𝑘𝑘𝑡𝑡+1

𝑉𝑉(𝐶𝐶𝑡𝑡+1)
= 𝛽𝛽 (

(1 − 𝜏𝜏𝐾𝐾𝑘𝑘𝑞𝑞𝑡𝑡)𝑤𝑤𝐾𝐾𝑘𝑘𝑖𝑖𝑡𝑡  
𝑝𝑝𝑘𝑘𝑡𝑡+1

+ (1 − 𝛿𝛿𝑘𝑘)). 

 

(13) 

The last equation states that the differences in the equilibrium rental costs across sectors are defined 

by capital taxation: 

 
𝑤𝑤𝐾𝐾𝑘𝑘𝑗𝑗𝑡𝑡
𝑤𝑤𝐾𝐾𝑘𝑘𝑖𝑖𝑡𝑡

=  
(1 − 𝜏𝜏𝐾𝐾𝑘𝑘𝑖𝑖𝑡𝑡)
(1 − 𝜏𝜏𝐾𝐾𝑘𝑘𝑗𝑗𝑡𝑡)

. 

 

(14) 

 

3.4. Product markets and the general equilibrium 
In the general equilibrium, the price levels match demand and supply in each sector and market. A 

useful way to formalize the equilibrium is to use Shephard’s lemma. It states that the marginal unit cost 

with respect to price changes of a production factor multiplied by the total demand of the product yields 

the total demand of the production factor (Roe et al. 2010). Thus, it holds for each factor of production 

(labor, capitals, and intermediate goods of each sector) that: 
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 ∑ 𝜕𝜕
𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘𝑘𝑘

[𝑈𝑈𝐶𝐶𝑘𝑘𝑘𝑘]𝐹𝐹𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑘𝑘𝑘𝑘

𝑆𝑆,𝐼𝐼𝐼𝐼,𝑁𝑁𝐼𝐼𝐼𝐼

𝑘𝑘
 

 

(15) 

Furthermore, the volume of production in the closed service sector must match the amount of 

consumption and intermediate goods of the sector. Finally, the foreign trade is balanced, and the net 

foreign asset position is at zero. Therefore, interest rates are determined within the country. Although 

Finland maintains open financial markets, this approach is not considered restrictive because 

comparable shocks occur simultaneously in Finland and globally. 

4. Calibration 
4.1. The benchmark growth path 

The model is represented as a non-linear system of discrete time-series equations. It is solved by using 

a non-linear solution algorithm available in Matlab/Dynare. The solution consists of a transition 

between an initial steady state in 1980, and a final steady state that is gradually reached after the year 

2060. With a reasonable initiation period and discounting of future consumption, the solution provides 

a good approximation of the infinite horizon problem’s solution at the considered time interval. 

The baseline growth path is calibrated to match the key structural changes in the Finnish economy. A 

key aspect of recent Finnish history is the rise and decline of its domestic ICT cluster. The economy 

faced a major structural shock when Nokia's influence waned after 2007. In our model, Nokia’s impact 

is seen through significant R&D investment, higher incomes, and rapid ICT productivity growth, followed 

by a reversion to long-term productivity trends. The model calibrates this shock to reflect reduced 

export shares in ICT goods and services. 

The sectoral total-factor productivity growth rates are based on the average total-factor productivity 

growth rates of the sectors in 1980–2005, with later adjustments. In the data, the TFPs grow at the 

annual rates ICT: 3.3%, NIT: 0.7%, S: 0.1%.   However, in order to better match the model with the data, 

I have recalibrated the TFP growth rate of the service sector to -0.5% per annum in order to better match 

sectoral dynamics and the relative prices.  

To account for the Nokia shock, I shock the model with an additional 5% increase in the TFP at the mid-

2000s that is followed by 1.5 pps slower TFP growth in 2008–2012, as compared to the long-term trend 

(Figure 7). Finally, in order to match the role of the NIT sector, I use 0.1 pps slower TFP growth than in 

the data. All in all, the measurement of the TFP, especially in the public sector, is extremely difficult, 
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and therefore I am inclined to believe that our model calibration that is based on the market responses 

rather than the productivity statistics can provide a reasonable approximation of the TFP growth. 

The basic Input-output structure is based on the mid-2000s OECD input-output tables, again with later 

adjustments. The sectors’ nominal shares of the inputs used in the production are shown in Table 5. To 

capture trends in the shares, NIT -sector’s own intermediate goods are gradually replaced by the service 

sector intermediate goods at the rate of 0.35 pps per annum in 1995–2015 due to outsourcing of 

manufacturing sector tasks to the service sector. 

Moreover, changes in labour supply and demographics are important structural growth factors in 

Finland. An ageing population and low fertility rates are expected to reduce the labour force and working 

hours, lowering production capacity and demand for investment. These trends will also influence 

aggregate consumption and saving behaviour.  In the model, the forecasts for future population and 

labor supply is based on the forecasts of Statistics Finland (total population and the working aged 

population) until 2059, and the European Commission’s potential total hours forecast until 2022. The 

potential total hours are expected to follow the amount of working aged population after 2022. In this 

respect, I study how the recent downward revision of the employment growth in the 2018 Finnish 

population forecasts will affect economic growth. 

The labor force and the population are expected to grow at the rates forecasted by the European 

Commission’s estimate of the potential hours and the latest long-term population projection by the 

Statistics Finland from the year 2024. In particular, the potential hours grow according to the EC 

potential until 2029, and thereafter the hours are growing at the same rate as the working aged 

population in the Statistics Finland’s forecast. Finally, it is assumed that prior to the year 2008, the 

potential hours remain constant. Thus, I omit the role of the prior swings in the labor force that were 

mainly caused by the Finnish Great Depression of the 1990s.  

Otherwise, the model follows standard calibration of the Finnish economy. The depreciation rates of 

capital stocks are ICT: 24% per year., NIT:6% per year are based on the EU KLEMS database. In the NIT 

and ICT sectors the capital tax rate is set at 30 percent, while in the service sector the tax rate is 30 % 

for private services and 0 % for public services. Because I do not distinguish between private and public 

services in the model, I set the tax rate as the weighted average of these tax rates according to the 

average value-added weights of the private and public parts of the service sector in the data. In our 

previous analysis (Ali-Yrkkö et al. 2016), I show that under these tax rates the model matches relatively 

well with the actual investment rates of the Finnish economy.  

Consumption discount factor 𝛽𝛽 = 0.96 and the intertemporal elasticity of substitution 𝜌𝜌 = 2 are 

calibrated following Buera ja Kaboski (2009). The intratemporal elasticity of substitution 𝜖𝜖 = 0.5 (see, 
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Figure 9 in the Appendix) and the cost shares of the sectors are based on the domestic consumption 

data (𝜔𝜔𝐼𝐼𝐼𝐼 = 0.001, 𝜔𝜔𝑁𝑁𝐼𝐼𝐼𝐼 = 0.163, 𝜔𝜔𝑆𝑆 =  0.836).  

The parameterization of trade is based on an estimated bilateral trade model for the year 1995, and the 

trends in the competitiveness and the size of the external sector are extrapolated thereafter to match 

the share of domestic products in the domestic final good and the sectoral shares of the exports. The 

elasticity of trade parameter, 𝜃𝜃 = 8.3, is based on Eaton & Kortum (2002). The external market volume 

grows at the rate of 5 percent per annum. The foreign ICT sector’s unit costs are assumed to decrease 

steadily by 6% per annum. The foreign NIT sector’s unit cost decrease by 2.4% per annum. It is notable 

that the changes in the relative price of ICT goods follows quite closely the estimates by Jorgenson and 

Timmer (2011). 

A notable feature of the model is that the trade is assumed to be balanced. While the Finnish economy 

has experienced several periods of trade inbalances and there are extensive investments abroad, it can 

be argued that over the long-term this assumption is a reasonable one. In particular, the ratio of the 

Finnish gross national income and gross national product has been markedly stable over the long-run. 

This implies that while the option to invest in the foreign markets is used, there are no clear changes in 

the external investment behavior and thus its impact on should be more on the level of economic 

activity rather its growth.   

4.2. AI shocks 
I have constructed four alternative scenarios. In each scenario, I shock the economy in the time-period 

2023–2033. In the first scenario I assume baseline GenAI adaptation of Filippucci et al. (2024B), 

depicted in Figure, and focus its impact on labor. In this scenario, the TFP shocks are 0.05%, 0.04%, 

and 0.09% annually, for ICT, NIT, and traditional services, respectively, taken that the impact of GenAI 

only affects the labor input. We maintain the production function factor shares constant.  

In the second scenario I assume baseline GenAI adaptation, but allow the impact on both labor and 

capital. In this scenario, the corresponding TFP shocks for ICT, NIT, and traditional services are, 0.09%, 

0.05%, and 0.13% annually, respectively. In the third scenario, I consider the extended GenAI capacities 

and focus the impact again on labor. In this case the TFP shocks are 0.10%, 0.10%, and 0.29% per year. 

In each case, I assume a corresponding productivity impact on the foreign ICT and NIT sectors. From 

the Finnish perspective, sufficient variables to characterize model dynamics are the average unit price 

changes in the foreign sector. In each simulation, I assume the same TFP productivity shock that affects 

the domestic sector. I use Filippucci et al. (2024B) capital multiplier 1,5 to receive an approximation of 

the labor productivity impact. Finally, I employ a price elasticity of productivity shocks from Filippucci 
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et al. (2024B) model with flexible movement of resources across the economy (Appendix Figure A.7). 

Following this procedure, I approximate a 1.15% price reduction for each 1 percentage point TFP gain 

in the Foreign sector.   

Finally, my fourth scenario considers the impact of factor share changes. While I consider the 

constancy of the factor shares as a reasonable baseline assumption in the three first scenarios, in this 

scenario I let the factor share of labor to gradually decline by 1 percentage point while increasing the 

factor share of ICT intermediates by corresponding 1 percentage points to maintain constant returns to 

scale production function. The change occurs in the period 2023 to 2033 at a constant pace 1/11 

percentage points per year for both inputs.  

In the absence of clear guidance on how to adjust foreign sectors for a similar change, I do not make 

changes to its production function. Therefore, the scenario includes a competitiveness effect arising 

from the difference in the domestic and foreign effects of AI.  

It is worth noting that in all scenarios employment remains at full level. However, I acknowledge that 

GenAI may have a lowering impact on aggregate employment and also consider the possibility of an 

additional decline in employment (-1%) as an alternative version of the fourth scenario. 

5. Results 
5.1. Benchmark economic dynamics 

I first report the behavior of the model in 2000–2022 and use it to assess the model performance prior 

to the GenAI shocks. Figure 5 shows the benchmark real GDP growth path of the model and compares 

it to the actual GDP volume growth in the years 2000 to 2022. The figure suggests that it matches rather 

well with the aggregate volume growth of the Finnish economy, while not taking into consideration 

short-term shocks: The upturn before the 2008 financial crisis and the Covid-19 years 2020–2022.  
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Figure 5. The baseline growth path of the multi-sector model and the actual real GDP growth for Finland. Source: 
Statistics Finland and own calculations. 

 

Figure 6. The key structural changes of macroeconomic variables in the model vs. the data. The relative prices are the 
prices of a sector’s consumption aggregate as relative to the price of the consumption aggregate of the traditional 
manufacturing sector. The consumption shares are the sectoral nominal share of the total consumption. The 
employment shares are the sectoral share of the total working hours. The domestic shares are defined as the value of 
domestic production as relative to the total value of domestic demand. The share of ICT in total exports is the share of 
ICT goods and services in the total exports. Source: OECD, Statistics Finland and own calculations. ICT = ICT related 
manufacturing and services; traditional services = other private and public services; NIT = other industries, excluding 
primary production. 
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Furthermore, Figure 6 reports the key structural changes of the macroeconomic variables for 1990 to 

2017, where I have collected the structural change data. It shows that the model replicates dynamics 

concerning (1) the relative prices of the sectors; (2) the consumption shares of the sectors,  the 

production shares of the three sectors; (3) the value added shares of the sectors; (4) the employment 

shares of the sectors;  (5) the domestic content of the domestic final good; and (6) the share of ICT 

goods and services of the total exports. All in all, given that the model fits relatively well to the structural 

changes, I am confident in using its projections to forecast GenAI related growth and structural changes 

2023–2033. 

5.2. Growth impacts of AI 
Table 1 presents a comparative analysis of economic growth and the contributions of domestic sectors 

under different scenarios. In the benchmark scenario, real GDP growth is 1.86%, and labor productivity 

growth is 1.41%. When the economy adjusts for labor exposure alone, real GDP growth rises to 2.00%, 

representing a 0.14 percentage point increase in annual growth.12 

When both labor and capital adjustments are factored in, real GDP growth increases further to 2.08%, 

with labor productivity growth reaching 1.63%. This marks a difference of +0.22 percentage points for 

real GDP growth compared to the benchmark. 

With extended capacities enabled by GenAI, which enhance labor productivity, real GDP growth climbs 

to 2.30%, accompanied by labor productivity growth of 1.81%. This reflects a notable improvement of 

+0.44 percentage points in GDP growth and +0.43 percentage points in labor productivity growth 

relative to the benchmark. 

These results are somewhat larger than those reported in Acemoglu (2025), where the benchmark 

impact is estimated at 0.07 percentage points per year, compared to 0.14 percentage points in my 

modeling. This discrepancy likely reflects, in part, a greater capital multiplier in my framework—that 

is, a larger effect of TFP shocks on labor productivity through capital accumulation—as well as 

differences in the composition of intermediate goods, which provide a general equilibrium channel 

that amplifies the aggregate effect of GenAI. Conversely, when considering the combined impact on 

both capital and labor, the most comparable reference is Filippucci et al. (2024B). Here, my estimate 

is moderately lower (+0.22 percentage points) relative to their reported value of +0.36 percentage 

points.13  

 
12 The EC potential total hours time series projects an increase in potential hours over the 10-year period, which 
results in a positive employment impact in the scenarios.   
13 While the underlying GenAI shock are similar, there may be several contributing factors to dissimilarities in 
their propagation to the economy. On one hand, their consumption function creates possibility for a larger 
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I return to these differences in the following subsection. 

 

  Real 
GDP 

growth 

Labor 
productivity 

growth 

Contributions of 
domestic sectors 

  ICT NIT Services 
Benchmark      
   1.86 1.41 1.2 0.5 0.2 
1.Baseline exposure, only labor      
  2.00 1.55 1.2 0.5 0.3 
Difference 0.14 0.14 0.0 0.0 0.1 
2.Baseline exposure, labor and capital      
  2.08 1.63 1.2 0.5 0.3 
Difference 0.22 0.22 0.0 0.1 0.1 
3.AI, extended capacities, only labor      
  2.30 1.84 1.2 0.6 0.5 
Difference 0.44 0.43 0.0 0.1 0.3 

4.Baseline exposure, only labor, 1pps increase in ICT factor share / decline in labor share 
  3.14 2.64 1.6 0.9 0.7 
Difference 1.28 1.23 0.4 0.4 0.5 

 

Table 1. A comparative analysis of 2023–2033 real GDP growth, labor productivity growth, and the contributions of 
domestic sectors under different scenarios. ICT = ICT related manufacturing and services; traditional services = other 
private and public services; NIT = other industries, excluding primary production. Source: Own calculations. 

The results indicate that alterations in factor shares can produce substantial impacts on economic 

growth. Specifically, when the labor factor share declines by 1 percentage point in favor of increased 

ICT utilization—effectively representing the automation of 1% of all tasks within the economy—real 

GDP increases by more than 1 percentage point annually relative to the benchmark, ultimately reaching 

a growth rate of 3.14%.14  

In this final scenario, it is important to note that a simultaneous decline in employment is not 

considered, which would otherwise attenuate the growth effect. Instead, the model assumes that the 

economy adjusts to maintain full employment. Nevertheless, given the magnitude of the projected 

growth increase, the effect would remain substantial even if accompanied by a significant negative 

employment impact. To further explore this, an alternative scenario combines the 1 percentage point 

shift in factor share toward ICT with a constant annual decrease in total labor input of 0.1% during 2023–

 
multiplier effect through more price-elastic demand, while their production input-output structure is likely to be 
less prone to multiplier effects through less elasticity. 
14 The effect may be partially explained by an increase in the competitiveness of the domestic sector as relative 
to the foreign sector. The corresponding structural changes are described more closely in the subsection  
“Structural changes in key variables”. 
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2033, resulting in a cumulative reduction of 1% in working hours. This adjustment yields a 

corresponding decrease in economic activity of approximately 0.1 percentage points over the same 

period. While this growth impact is modest, a decline in employment would undoubtedly raise critical 

questions about the redistribution of the benefits associated with AI-driven technological 

advancements. 

From an anticipatory standpoint, the behavior of financial markets offers valuable insights, as the 

framework also provides estimates of the real interest rate impact of GenAI (Figure 10 in the Appendix).  

If a significant impact of GenAI on productivity were widely expected, one would anticipate a 

pronounced rise in real interest rates, driven by an immediate increase in willingness to consume and 

simultaneous increase in the need to finance investments. In the model, the anticipatory real interest 

rate hikes range between ca. 0.1 percentage points in the baseline adaptation scenario (1) to ca. 0.5 in 

scenario with the labor shares changing (4).  

The scenarios so far have assumed that the AI shock provides a level shift in the affected variables, after 

which the changes remain in effect, while growing exogenous variables continue to grow afterwards 

according to their benchmark growth rates, but with level shifts occurring from the AI shock. I also 

consider an alternative scenario, where the baseline scenario (1) dynamics continue for 20 years, that 

is, there is an anticipation of further productivity growth.  

The scenarios discussed thus far assume that the AI introduces permanent changes in the relevant 

economic indicators over the 10-year horizon. Following this transition, exogenous variables—primarily 

productivities—resume growth at their benchmark rates, but from revised initial values reflecting the 

influence of AI where applicable.   

To analyze the effects of expectations beyond the 10-year horizon, I also consider an alternative 

scenario in which the baseline productivity growth from scenario 1 continues for 20 years. This means 

that ongoing productivity gains driven by GenAI are anticipated over a longer period. The analysis 

reveals that such long-term expectations have a secondary—but noticeable—impact on economic 

growth: projected growth decreases by 0.02 percentage points per year over the initial 10-year horizon, 

alongside a slight increase in real interest rates. 
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5.3. Growth decompositions 
Sectoral growth contributions 

I first continue to inspect results in Table 1. A simple growth decomposition follows from the standard 

Törnqvist indexation of value added to different sectors: 

 

 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑃𝑃𝑡𝑡  = ∑ 1
2 (𝑠𝑠𝑠𝑠𝑠𝑠𝐴𝐴𝑡𝑡

𝑠𝑠𝑠𝑠𝐴𝐴𝑡𝑡𝑖𝑖∈𝐼𝐼
+ 𝑠𝑠𝑠𝑠𝑠𝑠𝐴𝐴𝑡𝑡−1

𝑠𝑠𝑠𝑠𝐴𝐴𝑡𝑡−1
) 𝛥𝛥𝛥𝛥𝑠𝑠𝐴𝐴𝑡𝑡,    (16) 

where 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑃𝑃𝑡𝑡 is the relative change in real GDP and 𝛥𝛥𝛥𝛥𝑠𝑠𝐴𝐴𝑡𝑡 the corresponding changes in the real value 

added, and 𝑠𝑠𝑠𝑠𝑠𝑠𝐴𝐴/ 𝑠𝑠𝑠𝑠𝐴𝐴 is the nominal value-added share of the sector in total value added.  

In the scenario characterized by baseline exposure affecting only labor, ICT contributes substantially 

to growth, accounting for 1.2 pp, while NIT and service sectors add 0.5 pp and 0.2 pp, respectively. 

Relative to the benchmark scenario without a GenAI shock, the positive growth impact is primarily 

attributed to the NIT and services sectors. Across alternative scenarios, the relative sectoral 

contributions to growth remain largely consistent. However, in the extended capacities scenario, the 

growth contributions from the NIT and service sectors increase to 0.6 pp and 0.5 pp, respectively, 

further underscoring their significance in overall economic growth. Notably, the services sector exhibits 

the most pronounced increase in its contribution. 

Finally, when there is a 1 pp shift in the factor share towards ICT in the fourth scenario, the surge 

originates from all sectors of the economy. 

Growth accounting and the capital multiplier 

To deepen the analysis, a standard Solow growth decomposition is employed, where labor and capital 

input growth are weighted by their respective Törnqvist weights, and TFP is calculated as the residual. 

Notably, in contrast to the Filippucci et al. (2024B) multi-sector framework, the TFP component in this 

approach can be measured directly, removing the need for additional assumptions regarding the 

capital multiplier—that is, the effect of a TFP shock on capital accumulation. 

Table 2 provides results under varying scenarios of exposure to GenAI in columns 1–4. The growth 

accounting decomposition suggests that TFP shows consistent growth across the scenarios, starting 

from 0.68 in the benchmark scenario and reaching a peak of 1.0 under AI's extended capacities to labor.  
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  VA growth accounting TFP decomposition Real output growth 

  TFP 
ICT 
capital 

NIT 
capital Labor Direct 

Input-
output 

Comp-
osition 

 ICT NIT Services 

Benchmark 
  0.7 0.3 0.6 0.3 0.0 0.5 0.1 8.8 1.4 1.0 

1.Baseline exposure, only labor 
  0.8 0.3 0.6 0.3 0.1 0.6 0.1 8.6 1.7 1.1 
Difference 0.1 0.0 0.0 0.0 0.1 0.1 0.0 -0.3 0.3 0.1 

2.Baseline exposure, labor and capital 
  0.9 0.3 0.6 0.3 0.1 0.6 0.1 8.9 1.7 1.2 
Difference 0.2 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.4 0.2 

3.AI, extended capacities, only labor 
  1.0 0.3 0.6 0.3 0.3 0.7 0.1 8.7 2.1 1.4 
Difference 0.4 0.0 0.0 0.0 0.2 0.2 -0.1 -0.2 0.7 0.4 

4.Baseline exposure, only labor, 1pps increase in ICT factor share / decline in labor share 
  1.7 0.3 0.8 0.3 0.1 0.6 1.0 12.2 3.2 2.1 
Difference 1.0 0.1 0.2 0.0 0.1 0.0 0.9 3.4 1.8 1.1 

 

Table 2. Solow growth decomposition, TFP growth decomposition by Baqaee and Farhi (2020), and sectoral real output 
growth in different scenarios for 2023-2033. ICT = ICT related manufacturing and services; traditional services = other 
private and public services; NIT = other industries, excluding primary production. Source: Own calculations. 

The capital multiplier, measured as the ratio of labor productivity growth to TFP growth within the 

model, indicates moderately higher values than the 1.5 multiplier employed by Acemoglu (2025) and 

the Filippucci et al. (2024B). Across various scenarios, the capital multiplier ranges from 1.75 to 1.94, 

which partially accounts for the larger impacts observed compared to Acemoglu (2025). 

Input contributions remain relatively stable across scenarios. Changes in ICT capital are modest, 

increasing by only 0.01 in each case, suggesting that GenAI exposure has a limited effect on ICT capital 

investment. Instead, gains are primarily realized through total factor productivity. NIT capital maintains 

a significant role in all scenarios, exhibiting slight increases—up to 0.04—under the extended GenAI 

capacities to labor scenario. Meanwhile, labor input demonstrates minor fluctuations, with the largest 

decrease (-0.02) occurring under extended GenAI capacities to labor. 

A factor shift leads to higher TFP and capital deepening, with economic growth driven by both types of 

capital. Table 6 shows that while NIT capital investment rates moderately decline in the service and ICT 

sectors, the NIT sector increases its own NIT capital investments. 
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Direct and indirect sources of growth 

According to the approach used by Filippucci et al. (2024B) and Baqaee and Farhi (2020), the growth 

rate in aggregate TFP can be decomposed into direct and indirect components as follows: 

 
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 = ∑ 𝑠𝑠𝑠𝑠0𝑉𝑉𝑉𝑉

𝑠𝑠0𝑉𝑉𝑉𝑉
𝑖𝑖∈𝐼𝐼

  𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖   + ∑(  𝑠𝑠𝑠𝑠0𝑌𝑌
𝑠𝑠0𝑌𝑌 −   𝑠𝑠𝑠𝑠0𝑉𝑉𝑉𝑉

𝑠𝑠0𝑉𝑉𝑉𝑉 )
𝑖𝑖∈𝐼𝐼

  𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖   +  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶  

 
(17) 

where 𝑠𝑠𝑖𝑖0𝑉𝑉𝑉𝑉
𝑠𝑠0𝑉𝑉𝑉𝑉   are the initial nominal value-added share of sector I and 𝑠𝑠𝑖𝑖0𝑌𝑌

𝑠𝑠0𝑌𝑌  is the initial Domar weight - 

defined as sector i's nominal gross output over GDP. 

The direct effect is the sum of the sectoral productivity gains with each sector weighted by its value-

added share. The input-output multiplier, on the other hand, is constructed by first computing the sum 

of the sectoral productivity gains with each sector weighted by its gross sales over GDP (i.e., its Domar 

weight) and then subtracting the direct effect. 

The input-output multiplier arises as one sector’s productivity gains also helps to expand the productive 

capacity of other sectors by lowering the input prices that they face. Finally, the composition effect is 

derived by subtracting the sum of the direct and indirect effects from the overall macroeconomic effect. 

In this I follow Baqaee and Farhi (2020) who interpret Baumol’s growth disease as the discrepancy 

between within-sector productivity growth, aggregated at fixed nominal output shares and actual 

aggregate productivity growth. 

The direct effects of TFP rose from 0.03 in the benchmark scenario to 0.25 in the scenario where GenAI 

extended capacities impact labor, indicating the direct association between GenAI and changes in 

productivity. The input-output effect plays a significant role, peaking at 0.72 with expanded GenAI 

capabilities. This aligns with Ngai and Samaniego (2009), who highlight the importance of input-output 

structures in assessing productivity shocks. Sectors with higher TFP growth, especially when used as 

intermediates, drive economic growth. Table 2 shows that ICT output growth, driven by lower prices, 

substantially impacts overall real output across sectors. 

Special attention should be placed on the propagation in case of GenAI. Its impact does not only involve 

technological change, but results in complex shocks through input-output framework as production is 

reorganized in all sectors. 

Conversely, the residual composition effects remain minimal across scenarios, except in the case 

where factor shares are permitted to adjust. In this context, the findings diverge from those of Filippucci 

et al. (2024B), which identified substantial contributions from the composition effect. 
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In their model, the elasticity of substitution among intermediate products is very low; in situations 

where intermediate goods behave almost as perfect complements, the Baumol effect component 

becomes both negative and pronounced. However, empirical data on the Finnish sectoral structure at 

the three-sector aggregation level indicate that substitutability is considerably higher—approaching 

that of a Cobb-Douglas production function.  

Factor shares in Finnish sectoral production have remained relatively stable, even amid significant 

changes in relative factor prices, particularly the declining price of ICT during the first phases of the 

Internet (Figure 8). My approach aligns more closely with the methodology of Ngai and Samaniego 

(2009), whose objective is to explain the growth effects of intermediate products within a framework 

that accommodates rapid changes in the relative prices of those intermediates. Having said that, it is 

probable that incorporating a more detailed sectoral structure, as in Filippucci et al. (2024B) and 

Baqaee and Farhi (2020), would further enable the analysis of sectoral distortions in propagation, which 

may attenuate the impact of GenAI through the input-output framework. 

Finally, when factor shares are allowed to adjust in the fourth scenario, the composition effect 

becomes strongly positive. The modifications in the production function induced by the GenAI shock 

generate a significant growth effect that is not captured by the initial direct or input-output components 

of the decomposition. 

5.4. Structural changes in key variables 
To further contextualize the analysis, it is essential to examine the primary determinants of structural 

transformation within the economy. A review of previous research on economic growth during the 

information age reveals that sectoral performance has been heterogeneous, with certain sectors 

exhibiting limited productivity improvements while others have experienced substantial gains due to 

digitalization and automation. 

This uneven growth trajectories have significant implications for aggregate macroeconomic 

performance, as sectors compete for common inputs—most notably labor—and productivity 

advancements in select sectors may contribute to cost increases in others. In particular, the slower 

productivity growth observed in traditional services sectors has driven increases in their relative prices. 

As demand for these services tends to be price, their share in total production and resource utilization 

has increased over time, exerting downward pressure on aggregate productivity growth rates. 
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Price of final product 
relative to NIT, 1995 = 

100 

Domestic product 
nominal share in 

final product 
Share of 

ICT in 
exports    ICT Services  ICT NIT 

Benchmark      
  23.7 157.9 76.7 48.2 27.6 

1.Baseline exposure, only labor      
  23.6 157.4 76.0 48.5 26.6 
Difference -0.1 -0.5 -0.7 0.4 -1.0 

2.Baseline exposure, labor and capital      
  23.6 157.5 76.8 48.3 27.6 
Difference -0.1 -0.5 0.1 0.1 0.0 

3.AI, extended capacities, only labor      
  23.6 157.6 76.7 48.2 27.6 
Difference 0.0 -0.3 0.1 0.1 0.0 

4.Baseline exposure to labor, 1pps increase in ICT factor share / decline in labor share 
  23.5 159.3 78.0 48.9 28.4 
Difference -0.2 1.4 1.3 0.7 0.8 

 

Table 3. Relative prices, average domestic value share in the sales of final product, and the average share of ICT in the 
value of all exports 2023-2033 in different scenarios. ICT = ICT related manufacturing and services; traditional services 
= other private and public services; NIT = other industries, excluding primary production. Source: Own calculations. 

Based on the modeling results, GenAI produces a distinct pattern in relative prices. As presented in 

Table 3, both the services and ICT sectors exhibit a decline in price growth relative to the NIT sector. 

This outcome represents a reversal from the traditionally increasing price trends in the service sector 

and mitigates some of the Baumol-disease effects observed in conventional growth models.  

It is noteworthy that the shocks introduced in these scenarios lead to observable shifts in Finland’s 

external competitiveness, as evidenced by changes in the domestic product share of final goods and 

the relative contributions of NIT and ICT products to exports. The resulting changes remain modest. This 

outcome is consistent with the calibration strategy of the first three scenarios, which aim to provide 

comparable shocks to both domestic and foreign sectors. 

In the first scenario, there is a slight decline in the ICT sector and a corresponding increase in the NIT 

sector, indicating a moderate shift in Finland’s comparative advantage toward NIT activities. In the 

fourth scenario, which involves changes in factor shares, there is an improvement in the international 

competitiveness of both NIT and ICT products. This enhancement may further amplify the productivity 

effects associated with the factor share change, although the magnitude remains moderate. 
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Finally, I investigate changes in the sectoral shares of nominal consumption and total hours in different 

scenarios. I find that the overall shifts in consumption are small, indicating an increase in the nominal 

consumption in the NIT consumption and decline in the service consumption. This results directly from 

the changes in relative prices of the products. 

Interestingly, the share of total working hours allocated to services increases. However, given the 

findings concerning consumption shares, this change does not stem from the traditional inelastic 

consumption (Baumol effect) but rather results from alterations in the input-output structure. 

 In the final scenario, a change in factor shares is considered. When labor intensity decreases across 

all sectors, a compositional effect emerges: the relative price of traditional services rises, and labor 

shifts toward these activities. This scenario effectively illustrates the dynamics of GenAI-driven 

substitution and reinstatement effects. While the substitution effect reduces demand for labor as 

automation advances, the reinstatement effect counteracts this displacement by generating new tasks 

within the service sector, ultimately increasing overall labor demand. 

 Share of total nominal consumption Share of total working hours 
   ICT NIT Services  ICT NIT Services 

Benchmark 
  1.0 26.1 72.9 7.5 26.0 66.5 

1.Baseline exposure, only labor 
  1.0 26.2 72.8 7.4 26.0 66.6 
Difference 0.00 0.07 -0.08 -0.03 -0.05 0.07 

2.Baseline exposure, labor and capital 
  1.0 26.1 72.9 7.5 26.0 66.5 
Difference 0.00 0.02 -0.02 0.00 -0.04 0.04 

3.AI, extended capacities, only labor 
  1.0 26.2 72.8 7.4 26.0 66.6 
Difference 0.00 0.07 -0.08 -0.03 -0.05 0.07 

4.Baseline exposure, only labor, 1pps increase in ICT factor share / decline in labor share 
  1.0 26.0 73.0 7.8 25.5 66.7 
Difference -0.01 -0.09 0.09 0.35 -0.52 0.17 

 

Table 4. Sectoral shares of nominal consumption and total hours in different scenarios. ICT = ICT related manufacturing 
and services; traditional services = other private and public services; NIT = other industries, excluding primary 
production. Source: Own calculations. 
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6. Conclusions 
This study employed a quantitative multi-sector macroeconomic model to analyze the economic 

impact of Generative Artificial Intelligence (GenAI) on the Finnish economy. The methodology integrates 

sector-level GenAI productivity growth estimates within a dynamic general equilibrium framework, 

considering displacement, productivity, and reinstatement effects in a reduced-form framework.  

The results indicate that, over a 10-year horizon, GenAI can contribute less than 0.5 percentage points 

to annual economic growth, based on recent empirical evidence concerning the extent of GenAI 

adoption. Within this framework, I demonstrated how larger effects could arise from more pervasive 

automation, particularly if the nominal labor share of production were to decline. In the baseline 

scenario, an increase in total factor productivity (TFP) driven by GenAI adaptation, combined with a one 

percentage point reduction in labor share or a corresponding rise in the ICT share, would yield an annual 

growth impact of a bit over 1 percentage points. 

While the present analysis centers on the potential impacts of GenAI shocks in the context of the 

existing literature, it is important to note that this perspective remains relatively narrow regarding the 

broader influence of AI. The ongoing discourse on the prospects of AGI and robotics—when contrasted 

with the more conservative growth assumptions applied here—underscores the challenges inherent in 

accurately forecasting the full macroeconomic implications of AI. 

From an anticipatory standpoint, the model-based behavior of financial markets offers valuable 

insights. If a significant impact of GenAI on productivity were widely expected, one would anticipate a 

pronounced rise in real interest rates, driven by an immediate increase in both propensity to consume 

and the need to finance investments. In the model, the anticipatory real interest rate hikes range 

between 0.1–0.5 percentage points. Given that large market responses have not materialized to date, 

expectations for macroeconomic growth effects from GenAI seem to remain moderate in the financial 

markets.  

Another interesting insight is that the input-output structure of the model generated significant 

multiplier effects, amplifying the impact of GenAI on productivity and economic growth. Productivity 

gains in one sector enhance the productive capacity of other sectors by reducing the input prices they 

encounter, thereby creating indirect growth effects. Moreover, the modeling outcomes highlighted 

considerable compositional shifts within the economy toward sectors characterized by lower 

productivity, in which the adoption of advanced technologies is constrained. The deployment of GenAI 

holds promises to mitigate these trends.  
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Notably, the service sector emerges as a pivotal driver in the economic adjustments associated with 

GenAI adoption. The findings indicate that AI-induced productivity improvements within services can 

help counterbalance the effects of conventional unbalanced growth patterns, thereby enhancing 

overall economic performance. 

From a policy perspective, the potential for AI to stimulate economic growth and mitigate stagnation 

seems considerable. Even under the baseline scenario, the additional annual growth contribution of 

0.1 to 0.2 percentage points for 2023–2033 represents a meaningful increase for economic and fiscal 

policy planning. However, realizing these benefits necessitates the implementation of well-designed 

policies that facilitate the effective integration of GenAI across a range of sectors. Although this study 

did not specify an optimal policy mix, it highlights the critical need for a comprehensive policy 

framework to maximize the potential of GenAI and promote sustained economic resilience. 
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Appendix 
 

 
 

Figure 7. The TFP growth in the Finnish ICT sector and the long-term trend. Source: Statistics Finland and own 
calculations. 

  ICT NIT S 

ICT-capital 0.03 0.01 0.02 

NIT-capital 0.12 0.12 0.17 

Service intermediate goods 0.20 0.17 0.27 

Labor 0.18 0.24 0.39 

ICT intermediate goods 0.35 0.02 0.05 

NIT intermediate goods 0.12 0.44 0.10 

 

Table 5. Factor shares in sectoral Cobb-Douglas production functions. ICT = ICT related manufacturing and services; 
traditional services = other private and public services; NIT = other industries, excluding primary production. Source: 
Own calculations. 
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Figure 8. Nominal factor-share changes during the mid-1990s to mid-2000s period of the ICT revolution. Source: OECD, 
Statistics Finland and own calculations. 
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Figure 9. A fitted line to the consumption data with the intratemporal elasticity of substitution receiving the value 0.5. Y-
axis: the logratio of real consumption between traditional services and manufacturing. X-axis: the log-ratio of prices 
between traditional services and manufacturing. Source: Statistics Finland and own calculations. 

 
Figure 10. One-year real interest rate in different scenarios for different years. Period t marks the starting year of the 
GenAI shock (2023). Source: Own calculations. 
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NIT sector 
investment per 
GDP, 

Service sector 
investment per 
GDP 

 ICT sector 
investment per 
GDP Aggregate investment per GDP 

  
 ICT NIT  ICT NIT  ICT NIT ICT 

capital 
NIT 
capital Total 

Benchmark  
  0.4 3.2 1.6 8.7 0.6 1.8 2.5 13.7 16.2 

Baseline exposure, only labor  
  0.4 3.2 1.6 8.6 0.6 1.8 2.5 13.6 16.1 
Difference 0.0 0.0 0.0 -0.1 0.0 0.0 -0.01 -0.15 -0.2 

Baseline exposure, labor and capital  
  0.4 3.2 1.6 8.5 0.6 1.8 2.5 13.5 16.0 
Difference 0.0 0.0 0.0 -0.2 0.0 0.0 -0.01 -0.23 -0.2 

AI, extended capacities, only labor  
  0.4 3.2 1.6 8.4 0.5 1.7 2.5 13.3 15.8 
Difference 0.0 -0.1 0.0 -0.3 0.0 0.0 -0.03 -0.44 -0.5 

Baseline exposure, only labor, 1pps increase in ICT factor share / decline in labor share 
  0.3 3.0 1.6 7.7 0.6 1.9 2.5 12.6 15.2 
Difference 0.0 -0.2 0.0 -1.0 0.0 0.2 0.0 -1.1 -1.1 

 

Table 6. investment rates in the scenarios. ICT = ICT related manufacturing and services; traditional services = other 
private and public services; NIT = other industries, excluding primary production. Source: Own calculations. 
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