ETLA Raportit
ELINKEINOELAMAN TUTKIMUSLAITOS ETLA Reports

THE RESEARCH INSTITUTE OF THE FINNISH ECONOMY 23 October 2017

No 78

Distributed Workflow
Management with
Smart Contracts

1k k%

Taneli Hukkinen® - Juri Mattila™ - Timo Seppala™

* Aalto University, School of Science, Department of Industrial Engineering and Management; firstname.lastname@aalto.fi
* ETLA - The Research Institute of the Finnish Economy, firstname.lastname@etla.fii

Suggested citation: Hukkinen, Taneli, Mattila, Juri, & Seppald, Timo (23.10.2017). “Distributed Workflow Management with Smart Contracts”.
ETLA Reports No 78. https://pub.etla.fi/ETLA-Raportit-Reports-78.pdf

This collaboration towards this research and development process was initiated in March 2016 under the BRIE-ETLA

research project and continued under the BOND research project. The authors would like to thank Anu Saarinen and
Jyrki Korhonen from Euroclear Finland, and Pirkka Frosti from Digital Living for their insightful comments and co-op-
eration whilst drafting this document.

ISSN-L 2323-2447
ISSN 2323-2447 (print)
ISSN 2323-2455 (pdf)

Table of Contents

Abstract

Tiivistelma
1 Introduction
2 From a Use Case to an Application
3 Discussion

4 Further Research

References

Appendix 1 - Running the Demo
Appendix 2 - Smart Contracts
Appendix 3 - The Status Viewer (GUI)

Distributed Workflow Management with Smart Contracts

Abstract

This report documents a blockchain application developed for the real estate sector. The application en-
ables distributed workflow management in a complicated transaction process: the selling of a share of
stocks in a housing corporation. As its core element, the application utilizes Ethereum-based smart con-
tracts to facilitate the interaction of various parties involved, as well as the Interplanetary File System
(IPFS) to combine data from a number of separate information pools. The motive for this application has
been to understand the process of developing blockchain applications with industrial partners. Moreover,
the purpose of this exercise has been to examine whether Ethereum-based smart contracts could be effec-
tively utilized for applications in industry and finance. The application and the discussions during its de-
velopment indicate that similar, market-driven workflow structures may appear in value chains where the
number of parties is high and where the sources of information are numerous yet disconnected.

Key words: Blockchain, application, distributed workflow, real-estate, Ethereum, smart contract

JEL:L1,L8,L17,L73,L85

Hajautettu tyonkulun hallinta dlykkailla sopimuksilla

Tiivistelma

Tassa raportissa esitelldan kiinteistoalalle kehitetty lohkoketjusovellus, joka mahdollistaa hajautetun tyén-
kulun hallinnan monivaiheisessa kaupankdyntiprosessissa asunto-osakkeiden vaihdantaan liittyen. Sen
keskidssa ovat Ethereum-lohkoketjuun perustuvat dlykkaat sopimukset, joiden avulla voidaan koordinoi-
da asuntokaupan prosessiin kytkeytyvien osapuolten vuorovaikutus, sekd hajautettu IPFS-tietokanta, jon-
ka avulla voidaan suorittaa datan yhdistely osaksi kauppaprosessia useista eri tietoldhteista. Sovelluksen
kehittdmisen tavoitteena on ollut ymmartda lohkoketjusovellusten kehitysprosessia yhteistydssa teolli-
suustoimijoiden kanssa. Lisaksi tavoitteena on ollut selvittdd, voidaanko &lykkaita sopimuksia hyodyntaa
kuvatun kaltaisissa sovelluksissa teollisuudessa ja finanssialalla laajemmin. Sovellus ja sen kehityksen ai-
kana kaydyt keskustelut osoittavat, etta vastaavia hajautettuja prosessirakenteita voi markkinavetoisesti
syntyd sellaisiin tydprosesseihin, joissa osallistujien lukumdara on korkea ja joissa prosessin kannalta rele-
vantti informaatio on hajallaan useissa eri tietolahteissa.

Asiasanat: Lohkoketju, sovellus, hajautettu tydprosessi, asunto-osake, Ethereum, dlykds sopimus

JEL:L1,L8,L17,L73,L85

Distributed Workflow Management with Smart Contracts

1 Introduction

The transaction of a share of stock in a housing company can be a complex process. Many dif-
ferent parties must be involved, several documents need to be collected from various places,
approvals must be given in the right order by the right people, and the whole process needs
to be accurately documented. Many of these required data reside in various legacy IT systems
— or in no IT systems at all but simply on a piece of paper. Therefore, keeping track of all the
various steps of the transaction process can be laborious and difficult.

The objective of this study is to determine whether a blockchain-based architecture could be
employed to make the transaction process of a property more efficient and more transparent.
The idea is that by storing all the relevant data regarding the transaction into a distributed
blockchain database, the parties involved can access the transaction data and keep track of the
progress almost in real time. This, in turn, would enable the parties autonomously to take ac-
tion in the correct order of succession and at the right time, thus eliminating needless delays
and allowing increased efficiency.

This study approaches the problem with a product-centric data management mentality. The
idea behind this train of thought is that product and market data should not be asymmetri-
cally fragmented in the market but rather shared in its complete form between all the market
participants. Each product individual is represented by one matching information agent in a
multi-agent workflow information environment. The agents can be distributed between orga-
nizations and do not reside in a single system.'

2 From a Use Case to an Application

The motivation for the development of this use case and the following application has been
to investigate whether blockchain technology® could be used to create a distributed coordina-
tion and data management architecture for decentralized workflows in the real estate market,
in accordance with the product-centric information management approach.’ As its core ele-
ment, the application utilizes Ethereum-based smart contracts to facilitate the first stages of
the workflow required by the transaction of a share of stock in a housing company.* This fa-
cilitation is carried out without any of the participants involved acting as a trusted third party.

This application demonstrates that economic actors could organize their workflows in new
ways which go beyond the structures of the current industry. Furthermore, the main purpose
of this report is to document and to present the distributed workflow management application
along with its source code, including the Ethereum smart contracts written in Solidity pro-
gramming language.

The co-operation with Euroclear Finland Oy leading to the development of this demo applica-
tion was initiated in March 2016. Multiple working months of resources were contributed to-

' For product-centric information management, see Karkkdinen et al. (2003).
2 For blockchain technology, see Mattila (2016); and Mattila & Seppald (2015)
3 For the conceptualization of the use case, see Mattila et al. (2016a).

4 For smart contracts, see Lauslahti et al. (2017).

ETLA Raportit - ETLA Reports No 78

wards the collaboration from both sides. The use case on which the demo application is based
was developed according to the same methods and principles as an earlier use case from Sep-
tember 2016 which examined the applicability of blockchain technology as an architecture
solution in distributed energy systems.® Respectively, the application developed for the ener-
gy use case provided a foundation for the development of the application presented in this re-
port.®

This report consists of the following parts. The user guide for running the demo application
is found in Appendix 1. The source code of the smart contracts for the workflow architecture
is situated in Appendix 2, expressed in Solidity smart contract programming language format.
The software code for the status viewer which serves as a graphical user interface for the demo
application is found in Appendix 3, expressed in HTML and JavaScript format.

This documentation has been intended for readers with a basic understanding on the Solidi-
ty smart contract programming language and on basic web developing tools. In order to run,
the demo requires the installation of the software specified in the appendices. Respectively, it
is verified that the demo runs properly with these specified versions.

3 Discussion

Traditionally, the workflow structure in digital interactions has been facilitated, and therefore
controlled, by the service provider providing the technical architecture for the interaction.
Our use case and demo application indicate that similar, more decentralized workflow frame-
works can potentially surface in the future. These manifestations can take place at any point in
the contemporary value chains and in various established industries and markets. As a result,
the value creation and value capturing mechanisms of the contemporary players can become
faced with new competition from unexpected directions.

If parties in the economy start transacting via more equilaterally facilitated workflow struc-
tures instead of the traditional facilitations by enterprises, this will introduce some regulato-
ry issues. For example, while the facilitating enterprises have thus far acted as natural bottle-
necks in the market—as choke points for regulating the entire workflow process—the same
kinds of regulatory obligations and responsibilities may be difficult to enforce on decentral-
ized workflow facilitations.

4 Further Research

With the demo application now released, we propose the following steps of research and devel-
opment. First, we promote the construction of a lab experiment around the demo application,
with external information pools and actual transactions of shares of stock in a housing com-
pany. Second, we advocate the examination of the technical and legal restrictions for such de-
centralized workflow structures in the current technological and regulatory environment, e.g.
the scalability of distributed consensus architectures. Third, we encourage focus group studies

> For the methods of this use case development, see Mattila et al. (2016b).
5 For the energy application, see Hukkinen et al. (2017).

Distributed Workflow Management with Smart Contracts

to determine whether market demand for such distributed architectures could be anticipated
to take form in the future.

We hope to see similar initiatives from other research institutions and companies where demo
applications are published alongside with the source code and the relevant documentation, for
two reasons. Firstly, we believe that sharing findings and results would serve to solidify the
on-going discourse on blockchain technology. Secondly, we argue that publishing similar dis-
ruptive use cases and application demos is important to fully understand the extent of regula-
tory reconsiderations required for the effective fostering of innovations in the future.

ETLA Raportit - ETLA Reports No 78

References

Hukkinen, T., Mattila, J., llomaki, J. & Seppald, T. (2017). A Blockchain Application in Energy. ETLA Reports
No 71. <pub.etla.fi/ETLA-Raportit-Reports-71.pdf>

Karkkdinen, M., Ala-Risku, T. & Framling, K. (2003). The Product Centric Approach. A Solution to a Supply
Network Information Management Problems? Computers and Industry 52(3), p. 147-159.

Lauslahti, K., Mattila, J. & Seppald, T. (2017). Smart Contracts. How will Blockchain Technology Affect
Contractual Practices? ETLA Reports No 68. <pub.etla.fi/ETLA-Raportit-Reports-68.pdf>

Mattila, J. (2015). The Blockchain Phenomenon. The Disruptive Potential of Distributed Consensus
Architectures. BRIE Working Paper 2016-1. University of California at Berkeley.
<brie.berkeley.edu/wp-content/uploads/2015/02/Juri-Mattila-.pdf>

Mattila, J. & Seppaéld, T. (2015). Blockchains as a Path to a Network of Systems. ETLA Reports No 45.
<http://pub.etla.fi/ETLA-Raportit-Reports-45.pdf>

Mattila, J., Seppéld, T. & Holmstrom, J. (2016). Product-centric Information Management. A Case Study
of a Shared Platform with Blockchain Technology. In Proceedings of the Industry Studies Association
Conference 2016. (Mattila et al. 2016a).
<https://industrystudiesconference.org/conference/papers/download/49>

Mattila, J., Seppald, T., Naucler, C., Stahl, R., Tikkanen, M., Badenlid, A. & Seppala, J. (2016). Industrial
Blockchain Platforms. An Exercise in Use Case Development in the Energy Industry. ETLA Working
Papers No. 43. (Mattila et al. 2016b). <pub.etla.fi/ETLA-Working-Papers-43.pdf>

Distributed Workflow Management with Smart Contracts

Appendix 1 - Running the Demo

Prerequisites

This documentation has been intended for readers with a basic understanding on the Solidity
smart contract programming language and on basic web developing tools. In order to run, the
demo requires the following software to be installed. For verified functionality, the following
versions are recommended:

Ubuntu 16.04.2 LTS
TestRPC, version 3.0.4
Truffle, version 3.2.1
Node.js, version 7.9.0

The project repository is released under the MIT License' and it can be accessed at https://
github.com/hukkinj1/demo-workflow-management-in-real-estate.

Running an Ethereum client
At first, an Ethereum client needs to be run:
testrpc -d

For demoing purposes, TestRPC is a good choice for a client, for a number of reasons. First-
ly, TestRPC creates a new blockchain instance and transactions can be paid with tokens of the
said blockchain. The creator of the TestRPC session gains access to the tokens for free and
therefore transactions can be made without a cost. Secondly, by default, TestRPC is configured
in such a way that there is no block time—instead, blocks are created on demand, whenever
transactions occur. This type of a configuration is well suited for quick testing and demoing.
Finally, TestRPC can be run in deterministic mode. This means that a smart contract’s address,
for example, can be known already before deploying it in the blockchain. This makes it possi-
ble to reference the address in scripts made for testing or demoing purposes.

Deploying the smart contracts

The smart contracts written in Solidity need to be compiled and deployed to the blockchain.
This can be achieved by using a development environment for Ethereum called Truffle. A sim-
ple migration script needs to be created for Truffle, after which the contracts can be deployed
using the following command:

truffle migrate

! <https://opensource.org/licenses/MIT>

ETLA Raportit - ETLA Reports No 78

Opening the status viewer

Without a graphical user interface, none of the process steps can be visually observed in any
way. Therefore, a simple web-browser-based status viewer has been added to the demo appli-
cation. It shows the changes in the status of the different entities as a crude HTML table. The
status viewer can be accessed by opening the web page index.html in any web browser.

Creating the assets and the agents, and establishing ownership

For the demo, agents are needed in order to facilitate a workflow between them. Furthermore,
for the purposes of facilitating the sale of a share in a housing association, the ownership of as-
sets and documents needs to be assigned to these parties. In our demo, we utilize an approach
where a master key holder has the power to establish ownerships to the system participants.

We establish a master key holder that is allowed to create owners for shares of stock, property
agents and shares of stock in housing companies in the application. By running the script 0-is-
suer.js, we create a number of owners, agents and a number of shares of stock, and we assign
the first owner to each created share of stock.

node 0O-issuer.js

const Common = require(“./common.js”);

const web3 = Common.web3;

// Create real estate owners

for (let i = 0; i < Common.accounts.owners.length; i++) {
Common .market.createOwner (Common.accounts.owners[i].id,
Common.accounts.owners[i] .pubKey, {from: Common.accounts.issuer});

}

// Create agents

for (let i = 0; i < Common.accounts.agents.length; i++) {
Common.market.createAgent (Common.accounts.agents[i].id,
Common.accounts.agents[i] .pubKey, {from: Common.accounts.issuer});

}

// Create real estates and assign their first owner
for (let i = 0; i < Common.realEstates.length; i++) {
// Creating multiple transactions in a short period of time seems to cause
// issues in TestRPC. Let’s add a short interval before creating the next
// transaction for this reason.
setTimeout (function () {
Common.market.createRealEstate (Common.realEstates[i].id,
Common.realEstates[i] .owner.id, {from: Common.accounts.issuer});
}, 1*5000) ;

Distributed Workflow Management with Smart Contracts

The script calls the subscript common.js which looks as follows:

const Web3 = require (‘web3’);
const web3 = new Web3();
web3.setProvider (new web3.providers.HttpProvider (“http://localhost:8545")) ;

exports.marketAddress = “0xcfeb869f69431e42cdb54a4f4£f105¢c19c080a601”;
exports.marketAbi = require(‘../build/contracts/RealEstateMarket.json’) .abi;
exports.market = web3.eth.contract (exports.marketAbi) .at (exports.marketAddress);
exports.web3 = web3;

exports.accounts = {

“issuer”: web3.eth.accounts[0],

“owners”: [{“1id”: 2457, “pubKey”: web3.eth.accounts[1l]}, {%“id”: 7252,
“pubKey”: web3.eth.accounts[2]}, {“id”: 8345, “pubKey”: web3.eth.accounts[3]},
{“1id”: 1361, “pubKey”: web3.eth.accounts[4]}, {“id”: 4366, “pubKey”:
web3.eth.accounts[5]}, {“id”: 6134, “pubKey”: web3.eth.accounts[6]}],

“agents”: [{“1d”: 6990, “pubKey”: web3.eth.accounts[7]}, {“id”: 2214,
“pubKey”: web3.eth.accounts[8]}, {“id”: 4868, “pubKey”: web3.eth.accounts[9]}]
}i
exports.realEstates = [{“id”: 2645, “owner”: exports.accounts.owners[0]},
{“id”: 7727, “owner”: exports.accounts.owners([1l]}, {“id”: 3444, “owner”:

exports.accounts.owners[2]}];

exports.selectedRealEstate = exports.realEstates[0];
exports.selectedAgent = exports.accounts.agents[0];

Initiating the sale of the real estate

The process of selling a share of stock in a housing company usually starts with the seller con-
tacting a property agent or agents for a listing offer. In the case of our demo application, the
seller can announce a solicitation for listing offers by initiating a transaction in the smart con-

tract designed to facilitate the workflow.

For the purposes of the demo, the smart contract should therefore be populated with at least
one request for listing offers. The script 1-initiateSale.js is used for this purpose.

node l-initiateSale

const Common = require(“./common.js”);

const market = Common.market;

market.initTransaction (Common.selectedRealEstate.id, {from:
Common.selectedRealEstate.owner.pubKey, gas: 300000}) ;

ETLA Raportit - ETLA Reports No 78

Uploading documents to the IPFS

Selling a share of stocks in a housing corporation requires a housing manager’s certificate
to be drafted.? In order to draft the certificate, the building manager must check the validity
of the required information by combining data from several public and private information
pools, e.g. the title and the mortgage register of the National Land Survey, the trade register
of the Finnish Patent and Registration Office, the housing company debt report of the credi-
tor banks, the property management planning report of the housing company in question, and
SO on.

In our demo application’s workflow, the data required for the housing manager’s certificate are
requested from the information pools. The pools directly store the requested files in the Inter-
planetary File System (IPES) and enter the associated hash values into the smart contract fa-
cilitating the workflow.> To emulate this in our demo, the hashes of three random documents
followed by the hash of the housing manager’s certificate are recorded into the blockchain.

We first run the following command to set up a local IPFS node.

ipfs daemon

We then open the web user interface at http://localhost:5001/webui in browser, drag-and-drop
the information pool documents to the web user interface to upload them, and make note of
the hash values of the documents.

node 2-uploadDocument <document hash>

As the next step, the command above is executed three times, each time replacing <document
hash> with the hash of a different document. We then run the following command once to up-

load the actual housing manager’s certificate, compiled from the already uploaded documents:

node 3-uploadConfirmationLetter <document hash>

Create offers from real estate agents to sell the property

When the housing manager's certificate has been received, the real estate can be sold. In the
workflow of our demo application, real estate agents compete for who gets to sell the real es-
tate by making offers to the seller of the real estate, specifying a fee (e.g. a percentual cut) that
they'll sell it for.*

node 4-makeAgentOffer <fee>

2 Also sometimes referred to as the building manager’s confirmation letter

3 Storing the files in the IPFS and only the hash values in the smart contract is due to the very good reason that storing the entire
documents in the blockchain would be prohibitively costly and inefficient, and therefore completely infeasible. The hash value stored
into the blockchain does not give access to the actual document but it can be used to prove that the same exact document has been
approved by the identity that is supposed to issue the document.

* Inreality, other terms and conditions would obviously also apply, but for simplicity’s sake, we only apply one variable here, i.e. the
fee.

Distributed Workflow Management with Smart Contracts

To emulate this market behavior, we run the command above any number of times, each time
changing the fee variable to differentiate between offers.

Accepting a real estate agents offer

As the last step of the workflow modelled in our demo application, the seller of the share of
stocks in a housing company chooses one of the listing offers made by one of the agents. This
is emulated by executing the command below, along with the proper offer ID from the status

viewer window.

node 5-chooseAgentOffer <offer id>

ETLA Raportit - ETLA Reports No 78

Appendix 2 - Smart Contracts

The logic of the smart contract facilitating the workflow is defined in the Solidity file RealEs-
tateMarket.sol. The contract defines the public methods for initiating sales, creating housing
manager certificates, as well as creating listing offers and accepting them?®:

pragma solidity 70.4.8;
contract RealEstateMarket {

enum TransactionState { NotCreated, WaitingForDocuments,
WaitingForConfirmationLetter, AcceptingAgentOffers, OnSale, Completed }

struct Owner {
address pubKey;

struct Agent {
address pubKey;

struct AgentOffer {
uintl6e fee;
uint agentId;

struct Transaction {
string docl;
string doc2;
string doc3;
string confirmationLetter;
TransactionState state;
mapping (uint => AgentOffer) agentOffers;
uint chosenAgentOffer;

struct RealEstate {
Transaction transaction;
uint owner;

modifier transactionInState(uint id, TransactionState state) {
if (realEstates[id].transaction.state != state) {
throw;

modifier noOngoingTransaction (uint id) {

if (! (realEstates[id].transaction.state == TransactionState.NotCreated
|| realEstates[id].transaction.state == TransactionState.Completed))
{
throw;

5

The contract also includes a set of non-state-changing getter methods for testing purposes.

Distributed Workflow Management with Smart Contracts

modifier isOwner (uint id) {
if (owners[realEstates([id].owner].pubKey

throw;

modifier isAgent (uint id) {

if (agents[id].pubKey != msg.sender) {
throw;
}
}
modifier issuerOnly () {
if (issuer != msg.sender) {
throw;

modifier offerExists(uint offerld,

if (realEstates[realEstateId].transaction
== 0) |
throw;

// Mapping from real estate id to real estate
mapping => RealEstate)
// Mapping from owner ID to owner object
mapping
// Mapping from agent ID to agent object
mapping => Agent)

(uint realEstates;

(uint => Owner) owners;

(uint agents;

address issuer;

event LogCreateRealEstate(uint realEstateId,
event LogInitTransaction (uint realEstateId,
event
event
event
event
event LogAgentOffer (uint realEstateld,
event LogAgentOfferChosen (uint realEstateId,
function RealEstateMarket () {

issuer

msg.sender;

function createOwner (uint id, address pubKey)

issuerOnly ()

owners[id] .pubKey pubKey;

function createRealEstate (uint id,
issuerOnly ()

realEstates[id] .owner
LogCreateRealEstate (id,

owner;

owner) ;

LogOneDocumentUploaded (uint realEstatelId,

LogTwoDocumentsUploaded (uint realEstateId,
LogAllDocumentsUploaded (uint realEstateId,
LogConfirmationLetterUploaded(uint realEstateld,
uint offerId,
uint offerId);

!'= msg.sender) {

uint realEstateId) {

.agentOffers[offerId].agentId

object

uint ownerId) ;

uint ownerId) ;

string documentl) ;
string document2) ;
string document3) ;
string confirmationlLetter) ;

uint agentId, uintlé6 fee);

uint owner)

ETLA Raportit - ETLA Reports

function createAgent (uint id, address pubKey)

issuerOnly ()

agents[id] .pubKey = pubKey;

function initTransaction (uint id)

isOwner (id)

noOngoingTransaction (id)

realEstates[id] .transaction.state = TransactionState.WaitingForDocuments;

LogInitTransaction(id, realEstates[id].owner);

function uploadDocument (uint id, string docHash)

transactionInState (id, TransactionState.WaitingForDocuments)

if (bytes(realEstates[id].transaction.docl).length == 0) {
realEstates[id] .transaction.docl = docHash;
LogOneDocumentUploaded (id, docHash) ;

}

else if (bytes(realEstates[id].transaction.doc2).length == 0) {
realEstates([id] .transaction.doc2 = docHash;
LogTwoDocumentsUploaded(id, docHash);

}

else if (bytes(realEstates[id].transaction.doc3).length == 0) {
realEstates[id] .transaction.doc3 = docHash;
nextTransactionState (id) ;
LogAllDocumentsUploaded (id, docHash) ;

function uploadConfirmationLetter (uint id, string hash)

transactionInState (id, TransactionState.WaitingForConfirmationLetter)
realEstates[id] .transaction.confirmationLetter = hash;

nextTransactionState (id) ;
LogConfirmationLetterUploaded(id, hash);

transactionInState (realEstateId, TransactionState.AcceptingAgentOffers)
isAgent (agentId)

realEstates[realEstateId].transaction.agentOffers[offerId].fee = fee;

No 78

function makeAgentOffer (uint offerId, uint realEstatelId, uint agentId, uintlé fee)

realEstates|[realEstateId].transaction.agentOffers[offerId].agentId = agentId;

LogAgentOffer (realEstateId, offerId, agentId, fee);

function chooseAgentOffer (uint offerId, uint realEstateId)

transactionInState (realEstateId, TransactionState.AcceptingAgentOffers)
isOwner (realEstateId)
offerExists (offerId, realEstateld)

realEstates[realEstateId] .transaction.chosenAgentOffer = offerId;
nextTransactionState (realEstatelId);
LogAgentOfferChosen (realEstateId, offerId);

Distributed Workflow Management with Smart Contracts

ETLA Raportit - ETLA Reports No 78

Appendix 3 - The Status Viewer (GUI)

The status viewer is a web page which is useful for observing changes in the blockchain while
running the demo. It shows the status of the workflow process, with all the contributions to it
by the various participants. The status viewer can be run by opening the file index.html in any
web browser.

<!doctype html>

<html lang="en”>

<head>
<meta charset="utf-8">
<title>Real Estate Market</title>

<link rel="stylesheet” href="bower components/bootstrap/dist/css/bootstrap.min.css”>
<link rel="stylesheet” href="bower components/dynatable/jquery.dynatable.css”>
<link rel="stylesheet” href="status.css”>

</head>

<body>
<div>
<h3>Transactions</h3>
<table id="transactions” class="table table-bordered”>
<thead>
<th>Real Estate ID</th>
<th>Owner ID</th>
<th>State</th>
<th>Document One</th>
<th>Document Two</th>
<th>Document Three</th>
<th>Confirmation letter</th>
<th>Agent offers</th>
<th>Chosen offer</th>
</thead>
<tbody>
</tbody>
</table>
</div>

<l==
<div>
<h3>Balances</h3>
<table id="balances” class="table table-bordered”>
<thead>
<th>Identity</th>
<th>Account</th>
<th>Balance</th>
</thead>
<tbody>
</tbody>
</table>
</div>
==

<script src="bower components/jquery/dist/jquery.min.js”></script>
<script src="bower_ components/bootstrap/dist/js/bootstrap.min.js”></script>
<script src="bower components/dynatable/jquery.dynatable.js”></script>
<script src="bower components/web3/dist/web3.min.js”></script>
<script src="bower_ components/moment/min/moment.min.js”></script>
<script src="market-address-and-abi.js”></script>
<script src="status.js”></script>
</body>
</html>

Distributed Workflow Management with Smart Contracts

The HTML-webpage calls for the script status.js which looks as follows®:

if (typeof web3 !== ‘undefined’) {
web3 = new Web3 (web3.currentProvider) ;
} else ({

// set the provider you want from Web3.providers

web3 = new Web3 (new Web3.providers.HttpProvider (“http://localhost:8545")) ;

let transactions = [];
var dynatable = $(‘#transactions’) .dynatable () .data(‘dynatable’);

web3.eth.contract (marketAbi) .at (marketAddress) ;

market =
market.LogCreateRealEstate () .watch (function(error, result) {
if (l!error) {
let newOffer = result.args;
newOffer.state = “No ongoing transaction”

console.log (newOffer) ;

transactions.push (newOffer) ;

updateDynatable (dynatable, transactions);
} else {console.log(“error”);}

1)

market.LogInitTransaction().watch (function(error, result) {
if (!error) {
let newOffer = result.args;
let 1 = transactions.findIndex ((obj

=> obj.realEstateld.equals(newOffer.realEstatelId)))

if (i !'== -1) {
transactions[i] .state = “1/4 Waiting for documents”;

updateDynatable (dynatable, transactions);

1)

market.LogOneDocumentUploaded () .watch (function (error, result) {
if (!error) {
let newOffer = result.args;
let 1 = transactions.findIndex ((obj

=> obj.realEstateld.equals (newOffer.realEstatelId)))

if (i l== -1) {
transactions[i].documentOne = makeIpfsLink (newOffer.documentl) ;

updateDynatable (dynatable, transactions);

1)

result) {

market.LogTwoDocumentsUploaded () .watch (function (error,
if (!error) {
let newOffer = result.args;
let 1 = transactions.findIndex ((obj

=> obj.realEstateld.equals(newOffer.realEstatelId)))

if (i !'== -1) {
transactions[i] .documentTwo = makeIpfsLink (newOffer.document2) ;

updateDynatable (dynatable, transactions);

6 The HTML-page also utilizes some JavaScript-libraries which can be installed using the Bower package manager.

ETLA Raportit - ETLA Reports

result) {

market.LogAllDocumentsUploaded () .watch (function (error,

if ('error) {
let newOffer = result.args;
let 1 = transactions.findIndex ((obj
=> obj.realEstatelId.equals (newOffer.realEstateId)));
makeIpfsLink (newOffer.document3) ;

if (1 !== -1) {
transactions[i] .documentThree
“2/4 Waiting for confirmation letter”;

transactions[i].state
transactions) ;

updateDynatable (dynatable,

}
result) {

)i
market.LogConfirmationLetterUploaded () .watch (function (error,

if ('error) {
let newOffer = result.args;
let 1 = transactions.findIndex ((obj
=> obj.realEstatelId.equals (newOffer.realEstatelId)))

if (1 !'== -1) {
transactions[i].confirmationLetter
makeIpfsLink (newOffer.confirmationLetter) ;
“3/4 Waiting for agent offers”;

transactions[i] .state
transactions) ;

updateDynatable (dynatable,

)
result) {

market.LogAgentOffer () .watch (function(error,

if ('error) {
let newOffer = result.args;
transactions.findIndex ((obj

=> obj.realEstatelId.equals (newOffer.realEstateId)));

let 1 =
if (1 !'== -1) {
if (typeof transactions[i].agentOffers === ‘undefined’) {
transactions[i].agentOffers = “7;

transactions[i] .agentOffers

}

transactions[i].agentOffers

+ JSON.stringify ({“Offer Id”: newOffer.offerId,

newOffer.agentId, “Fee”: newOffer.fee});
transactions) ;

updateDynatable (dynatable,

}
}) i
market.LogAgentOfferChosen () .watch (function(error, result) {
if (!error) {
let newOffer = result.args;
transactions.findIndex ((obj
obj.realEstateId.equals (newOffer.realEstateId))) ;

let 1 =
=>
if (1 !'== -1) {
transactions([i] .chosenOffer =
“4/4 On sale”;
transactions);

newOffer.offerId;

transactions[i] .state
updateDynatable (dynatable,

“Agent Id”:

No 78

Distributed Workflow Management with Smart Contracts

Aikaisemmin ilmestynyt ETLA Raportit-sarjassa (ennen ETLA Keskusteluaiheita)
Previously published in the ETLA Reports series (formerly ETLA Discussion Papers)

No 62 Jyrki Ali-Yrkko — Petri Rouvinen - Pekka Sinko — Joonas Tuhkuri, Suomi globaaleissa arvoketjuissa.
30.11.2016. 41 s.

No 63 Joona Widgrén, Google-haut Suomen asuntojen hintojen ennustajana. 14.12.2016. 37 s.
No 64 Rita Asplund - Antti Kauhanen - Pekka Vanhala, Tyopankin kautta tydllistyminen. 20.12.2016. 19 s.

No 65 Annu Kotiranta - Mika Pajarinen - Petri Rouvinen, Alkuvaiheen koko, osakeyhtiomuoto ja
kasvuhakuisuus selittdvat nuorten yritysten toteutunutta kasvua. 22.12.2016. 12 s.

No 66 Annu Kotiranta — Mika Pajarinen — Petri Rouvinen, Milta startupit ndyttavat tilastojen valossa?
22.12.2016.17 s.

No 67 Annu Kotiranta - Mika Pajarinen - Petri Rouvinen, Onko uusyrittdjyyden luonne muuttunut?
22.12.2016. 47 s.

No 68 Kristian Lauslahti - Juri Mattila - Timo Seppdld, Smart Contracts - How will Blockchain Technology
Affect Contractual Practices? 9.1.2017. 27 s.

No 69 Jyrki Ali-Yrkkd - Juri Mattila — Timo Seppdld, Estonia in Global Value Chains. 11.1.2017. 24 s.

No 70 Jyrki Ali-Yrkko - Tero Kuusi — Mika Maliranta, Miksi yritysten investoinnit ovat vahentyneet?.
16.2.2017.73s.

No 71 Taneli Hukkinen - Juri Mattila - Juuso llomdki - Timo Seppdild, A Blockchain Application in Energy.
3.5.2017.22s.

No 72 Mika Maliranta - Nelli Valmari, Suomen teollisuustuotannon uudistuminen tuotantolinjatasolla.
15.6.2017. 18 s.

No 73 Mika Maliranta - Roope Ohlsbom, Suomen tehdasteollisuuden johtamiskdytantdjen laatu.
27.9.2017.30s.

No 74 Annu Kotiranta - Timo Seppdld - Antti-Jussi Tahvanainen — Markus Hemminki - Juri Mattila -
Samuli Sadeoja - Tea Téhtinen, Roadmap for Renewal: A Shared Platform in the Food Industry.
2.10.2017.51 s.

No 76 Jyrki Ali-Yrkkd - Tero Kuusi, Shield the US from Imports! GDP Impacts on Finland and
Other European Union Member States. 4.10.2017. 24 s.

No 77 Mika Pajarinen - Petri Rouvinen - llkka Ylhdinen, Tuottavuuskehityksen eriytyminen:
Karkaavatko eturintaman yritykset muilta? 13.10.2017. 12 s.

Sarjan julkaisut ovat raportteja tutkimustuloksista ja valiraportteja tekeilld olevista tutkimuksista.

Julkaisut ovat ladattavissa pdf-muodossa osoitteessa: www.etla.fi » julkaisut » raportit

Papers in this series are reports on research results and on studies in progress.

Publications in pdf can be downloaded at www.etla.fi » publications » reports

ETIA Puh. 09-609 900
Elinkeinoelaman tutkimuslaitos www.etla.fi
The Research Institute of the Finnish Economy etunimi.sukunimi@etla.fi
Arkadiankatu 23 B

00100 Helsinki

ISSN-L 2323-2447, ISSN 2323-2447, 1SSN 2323-2455 (Pdf)

