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Abstract
Recent advances in machine learning (ML) have triggered many firms to try putting 
the technology into commercial use. However, the creation of ML-based organiza-
tional capabilities remains a major challenge. With the aim of extending our under-
standing of organizational capabilities, this paper takes a socio-technical system per-
spective on the microfoundations of capabilities, develops an integrative conceptual 
framework, and discusses the resulting insights relevant to organizational ML initia-
tives. In contrast to past IS research, our framework is more general and versatile, 
since it is not restricted to dynamic capabilities only, as well as incorporates a tem-
poral dimension facilitating the inspection of processes leading to the formation and 
change of organizational capabilities. This is illustrated with multiple propositions, 
which we develop by applying the framework to the context of organizational ML ini-
tiatives. Conceptual insights are backed with rich anecdotal evidence.

Keywords
Artificial intelligence, Machine learning meta analysis, Socio-technical systems, 
Organization
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1	 Introduction and conceptual framework
ML, which is at the core of the ongoing commercialization wave of artificial intel-
ligence (AI), is currently viewed by large organizations as the most important and 
disruptive new technology [1]. Unlike traditional approach to programming, ML is 
a category of statistical and computational techniques to learning patterns and con-
structing inductive inferences from data or experience [1], [2]. ML coupled with 
modern computing resources and abundant data have enabled computers to signifi-
cantly improve state-of-the-art performance on many tasks, including machine trans-
lation, speech recognition, image recognition, and generation of text, audio, and im-
ages [3]. These advances have triggered an increasing number of companies to try 
putting ML into commercial use [4], [5]. Despite this heightened interest, organiza-
tions face major challenges in enhancing existing or developing new capabilities with 
ML. While piloting ML is relatively easy, scaling and deployment have proven chal-
lenging [1], [5]. Ransbotham and colleagues [4] find that only one in ten compa-
nies gets meaningful value out of their ML initiatives. Clearly, creation of ML-based 
capabilities is a major challenge.

Organizational capabilities do not come into being solely based on capacities 
of a technology [6]–[9]. Instead, they require a process of practice and routiniza-
tion, which aligns not only the tasks with technological tools, but also with skills 
and roles of people, as well as with the organizational structure and communication 
flows [6], [10]–[12]. Similarly, introducing new technology to modify or develop 
an existing capability might require a period of practice and routinization before 
the new level of capability performance is reached [12], [13]. Hence, to under-
stand better the relationship between new technologies, such as ML, and organiza-
tional capabilities we need to study the process of capability formation and change, 
while explicitly recognizing the links between technology, tasks, people, and struc-
ture within which they operate. Thus, we need to shift the focus of our analysis to 
the level of microfoundations [14], [15]. Despite the calls for investigating micro-
foundations of organizational capabilities [14], [15], there is only a limited num-
ber of studies discussing this topic. Notable examples from IS domain [8], [16]–
[18] recognize that socio-technical system (STS) perspective [19], [20] is a useful 
conceptual framing to understand the interplay between digital technologies and or-
ganizational capabilities.

We define the microfoundational elements of organizational capabilities and rec-
ognized that they correspond to the building blocks of an STS. Furthermore, our anal-
ysis of organizational capabilities and STS theory literature highlighted the promi-
nence of the following characteristics shared by these perspectives: (1) routinization; 
(2) deep structure; and (3) nesting. Based on these, we propose an STS framework 
for organizational capabilities, as presented in Figure 1, and apply it in the context 
of organizational ML initiatives.
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Our generalized version of the framework includes two organizational capabili-
ties, each at a different level. These capabilities are practiced and routinized trans-
formations of inputs into outputs via the underlying socio-technical systems. The 
vertical axis represents levels in the capability structure, while horizontal axis spa-
tially distributes inputs, STS, and outputs. For the sake of simplicity, we assume dis-
crete time, thus the transformation of inputs into outputs is assumed to take place 
within a single time increment. The depth axis represents progression of these ca-
pabilities through time, which might involve changes in one or multiple elements, 
as well as bidirectional impacts between the capabilities (or their underlying STSs) 
on different levels. The proposed framework presents a simplified structure, which, 
can be extended to cover more than two levels in the capability structure, as well as 
more than one capability on each level. In the remainder of this section we apply this 
framework in the context of organizational ML initiatives and develop propositions 
based on that. In our discussion, we follow the path of an increasing organizational 
engagement with ML. We start with one-off uses of ML, then proceed to the develop-
ment and use of ML capability; creation of ML-based capabilities; learning in and im-
provement of ML-based capabilities; and conclude with full automation of a capability.

In this paper, we assume an STS perspective on organizational capabilities and de-
velop a conceptual framework integrating these two levels of analysis. Based on the 
extant literature, we identify strong links between STS-level microfoundations and 

Figure 1	 STS framework for organizational capabilities
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organizational capabilities. The resulting framework not only captures the tempo-
ral aspect of capability change, but also interrelationships between multiple capabil-
ities within a single organization. We then use the framework to develop insights in 
the context of organizational ML initiatives. In our discussion, we follow the path of 
an increasing organizational engagement with ML, starting from one-off uses of ML 
and ending with full automation of a capability. Based on these, we develop multiple 
propositions. The propositions are backed by and clarified with anecdotal evidence 
collected from published case studies focusing on organizational use of ML, as well 
as from an ongoing 2-year-long research involving interviews and participatory ob-
servation of a national government funded accelerator promoting and facilitating AI 
use in organizations (Accelerator name blinded for review. The accelerator primari-
ly caters to established organizations, covers the full range of ML technologies, and 
organizational ML maturity levels.)

2	 Use cases and value propositions of machine 
learning for organizations

2.1	 One-off uses of ML within an organization

ML can be used in two types of situations – one-off analysis and repeated use [31]. 
While the dominant focus in IS and business literature is on the second type, which 
corresponds to ML-based capability, one-off analysis continues to represent a mean-
ingful share of projects, in which in-house data science teams and consultants engage 
in. Therefore, our discussion covers both types of ML uses.

One-off analysis utilizing ML, in isolation, does not lend itself to routinization 
within the context of the STS performing the analysis. Hence, on the level of that 
STS, there are no new instant capabilities being created. Nor ML becomes a perma-
nent component of the technology underlying STS of the focal capability. The change 
that is brought by ML typically manifests itself at a lower-level capability and relates 
to the rearrangement of actors, technology, and structure configuration, or modi-
fication of inputs going into that system. More specifically, it is the new insight or 
knowledge that results from the use of ML and which points to the needed changes 
in inputs to the STS or STS itself. Such uses of ML potentially bring value to orga-
nizations in two ways. First, they can allow organizations to deal with one-off chal-
lenges by leveraging new insight or knowledge and existing capabilities. For example, 
when hurricane Frances was approaching Florida’s coastline, Walmart’s CIO decid-
ed to “start predicting what’s going to happen, instead of waiting for it to happen” 
and mobilized her team to identify which products would be in high demand in the 
region [32]. Subsequently, Walmart’s existing capabilities were used to top up the 
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store shelves with soon-in-demand strawberry Pop-Tarts and beer [32]. This example 
illustrates that in some cases with new insights generated through one-off ML analy-
sis organizations can leverage existing and unaltered capabilities to resolve a unique 
problem at hand or benefit from a unique opportunity. Second way, in which organi-
zations can benefit from ML powered one-off analysis is less dramatic but might be 
even more valuable. New insight or knowledge resulting from the application of ML 
might be more permanent in nature. For example, one real estate management com-
pany relied on an outdated methodology to estimate soil humidity and reimbursed 
subcontractors for part of their work based on that. (This example was provided on 
May 24, 2021, by an expert when we were validating the practical relevance of our 
framework.) When the company received a new ML-based humidity estimation meth-
od from consultants, it has turned out that many site types had a dramatically lower 
humidity than previously expected. This resulted in multimillion-dollar savings on 
future projects. In this case, ML did not enter into an on-going use by the company, 
but the insights from one-off analysis improved the overall performance of existing 
capability and created long-term positive impact on value creation.

P1. One-off use of ML within an organization does not lead to the creation of a new 
capability.

Returning to the two examples of ML use we discussed above allows us to draw 
more propositions. While these uses of ML fall into the category of one-off analysis, 
there is a stark difference between how Walmart generated the new insights compared 
with the other case. The retail giant relied on an in-house ML capability, while the real 
estate management company leveraged external ML capabilities. Thus, in both cases 
ML played a role at a higher-level than operational capabilities. It was used as a tool 
within the technology element of a higher-level STS. However, Walmart retained that 
STS within its own organization, while the other company ran one-off projects using 
external resources. Furthermore, Walmart had all the pieces of the STS needed to carry 
out the analysis in place, thus demonstrated a routinized process. Hence, we conclude 
that Walmart had an ML capability. This contrasts with the other company, which not 
only didn’t have the required resources in-house, but also had to carry out non-routine 
data collection activities to bring the project to fruition. The possession of ML capabil-
ity within an organization is an important differentiator. Organizations with such ca-
pability can not only more rapidly carry out ML initiatives, but also are likely to iden-
tify opportunities and deliver on these with higher success rate. Furthermore, multiple 
executions of one-off ML initiatives might develop or strengthen organizational ML 
capability, by increasing experience and the level of routinization within that system.

P2. One-off use of ML within an organization may lead to the enhancement of an 
existing ML capability.
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P3. Multiple one-off uses of ML within an organization may lead to the routiniza-
tion and establishment of ML capability.

2.2	 Use of ML capability

While Walmart’s use of ML in the example we used related to one-off use, the ex-
isting organizational ML capability could also be used when pioneering new or en-
riching existing operational capabilities [23]. For example, Walmart is developing 
ML-based capabilities to monitor shelves for product restocking and replenishment 
needs, as well as to spot problems, such as spills [33]. These operational capabili-
ties are being developed within their Intelligent Retail Lab, which in that context is 
the higher-level system possessing ML capability. Thus, ML capability can contrib-
ute to both one-off uses of ML as well as development of ML-based capabilities. In 
both cases, the availability of an established and routinized STS underlying ML ca-
pability provides an advantage, when compared against organizations without such 
capability. The case of early collaboration between an external team of researchers 
and the Atlanta Fire Rescue Department on Firebird serves as a good counterfactual 
illustration of how the lack of in-house ML capability can undermine ML-based ca-
pability establishment. Firebird is a “framework to help municipal fire departments 
identify and prioritize commercial property fire inspections, using machine learn-
ing, geocoding, and information visualization” [34, p. 185]. At the time of writing, 
Madaio and colleagues concluded that due to poor data sharing practices of the rel-
evant municipal departments, part of the ML development process would need to 
be redone regularly. Without that the system could not capture changes in the activ-
ities and locations of business operating in the commercial properties. Consequent-
ly, at the initial phase and due to lack of previously established ML capability, Fire-
bird turned out to be a one-off ML use, which was beneficial, although at that stage 
did not become an initially envisioned ML-based capability.

P4. Use of an existing ML capability by an organization positively influences the 
probability of successful outcomes from ML initiatives, including one-off uses of ML 
and ML-based capability development, in that organization.

However, one-off use of ML by an organization is possible even without having 
established in-house ML capability. Also, repeated use of ML, thus, an ML-based 
capability, can be developed without the possession of an ML capability. The most 
common examples falling within that category are those where ML technology is in-
corporated into the third-party tools being used within the STS underlying the op-
erational capabilities of an organization. This includes, for instance, prediction of 
sales leads conversion into opportunities by sales managers using Salesforce Ein-
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stein. While this example of tool-like use of ML within the scope of existing opera-
tional capabilities has been packaged as a service by cloud vendors, more complex 
uses of ML, which require, for instance, physical changes in equipment, can also be 
developed without an in-house ML capability. For example, a German mass produc-
er of electronic sensors and actuators has been developing an ML-based automated 
visual inspection capability for use by their quality control team by leveraging a col-
laboration with a university [35].

P5. Possession by an organization of an ML-based capability does not require or im-
ply the possession of an ML capability by that organization.

2.3	 Creation of ML-based capabilities

The possession of required, yet disjoint elements of an STS is not sufficient for the 
establishment of ML-based organizational capability. What is needed beyond these 
elements is the routinization of their joint activity, to the extent that performance 
has reached sufficient level of reliability. Such level of routinization is marked by 
the achievement of stability or balance in the deep structure of the underlying STS. 
For example, in case of Firebird, due to the one-off nature of data cleaning and join-
ing [34], there was no routinization of the tasks. Thus, the organizational capabili-
ty to identify and prioritize property fire inspections was not turned into being ML-
based. A counter example is that of a global ship brokering company based in Norway, 
which developed a new ML-based capability to produce oil trade tables – “spread-
sheet documents which contain information about activities of certain ships, in-
cluding timestamps of departures and arrival, destinations, and in which ports they 
loaded or discharged cargo” [36, p. 6]. The creation of that capability required not 
only development and integration with existing systems, but also developmental it-
erations with the maritime activity researchers and redefinition of their role in the 
process. The establishment and routinization of that ML-based capability took ap-
proximately two years.

P6. Creation of a new ML-based organizational capability requires not only the pres-
ence of suitable actors, social structures, tasks, and technologies, but also establish-
ment of a balanced deep structure linking these elements into a socio-technical system.

Creation of ML-based organizational capabilities is often rooted in previously ex-
isting organizational capabilities. Therefore, ML-based capability creation can often 
be seen as development or renewal of existing capabilities [12]. Since, by definition, 
existing capabilities exhibit certain level of balance in their STS’s deep structure, in-
troduction of new technological element poses potential threat to that balance. In 
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this section we explore, in the context of first-time ML technology introduction, the 
relationship between capability performance and stability of its STS.

Returning to the example of ML-based capability of the Norwegian ship broker-
ing company, allows us to elaborate the case of STS being pushed off balance. Since 
from the initial phase of the project the intention was “to have the algorithm clean, 
prepare and classify ‘raw’ AIS data, similarly to what the researcher manually did 
to generate the tradetables” [36, p. 7], change in the role of maritime researcher 
was expected, as trade tables’ generation was the main responsibility for that job. 
Yet, at the outset it was not guaranteed that the ML-capability would have superior 
performance. Thus, unbalancing the STS of an existing capability is not a sufficient 
condition for performance improvement. This point is also illustrated by the case 
of a large European company – a member of a global fast-moving consumer goods 
group with annual revenue of over $50 billion – which aimed at removing “subjec-
tivity and bias from workforce decisions, by drawing on data science, neuroscience, 
and machine learning” [37, p. 2]. Despite ambitious hopes, the introduction of ML 
into the trainee recruitment process in Europe resulted in pushing the STS of the 
underlying capability off balance, while producing disappointing results in terms 
of improvement of fairness in the selection and recruitment process. Not only did 
some of the candidates contest the fairness of the process, but also the hiring line 
managers, the in-house AI team, and the HR managers, who originally spearhead-
ed the project. This imbalance resulted in conflicts between hiring managers, who 
couldn’t hire their preferred candidates, and HR managers defending the ML-based 
decision rationale.

P7. Unbalancing of an existing capability’s STS by introducing to it ML technolo-
gy element is not a sufficient condition leading to performance improvement of that 
capability.

While unbalancing of an STS by the introduction of ML is not sufficient by it-
self to generate capability performance improvement, we posit that it is nonethe-
less a necessary condition for a performance improvement that is significant. This 
is because a significant change in the relationship between inputs and outputs of 
a capability means that the focal STS needs to undergo (or has undergone) a re-
configuration allowing it to exhibit a new range of responses and emergent prop-
erties [13]. Such reconfiguration implies not only a substitution of some existing 
technology with ML, but rather a more encompassing change within the scope of 
the focal STS. The introduction of ML, in that case, leads to change in one or mul-
tiple other elements of the focal STS. Thus, changes in the other elements of the 
technology, role of actors, social and organizational structure, or underlying tasks 
are always associated with significant capability performance improvements stem-
ming from the introduction of ML. For example, the case of a Norwegian ship bro-
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kering company enriching its tradetable generation capability by introducing ML 
vividly demonstrates the change in the role of actors and the nature of tasks [36]. 
After the successful transition to ML-based generation of tradetables the maritime 
activity researchers became the “teachers and supervisors” of ML algorithm gener-
ating the tables used by the rest of the organization. In another study investigating 
the introduction of ML to Chinese e-commerce giant’s fulfillment center – Aliba-
ba’s smart warehouse [5] – the traditional areas for manual handling of goods using 
forklifts and manual labor were replaced by an automatized tridimensional store-
house, where for safety and efficiency reasons people are normally not allowed to 
enter, position of individual pallets with goods is calculated using an ML-based pre-
diction of the demand for these goods, and robots transport pallets to their destina-
tions. Once orders for goods are received, employees do not need to move around 
the warehouse to collect goods from a single order, but rather robots do that based 
on an ML algorithm’s probability estimates of various items from multiple real-time 
ordered being bought together.

P8. Unbalancing of an existing capability’s STS by introducing to it ML technolo-
gy element is a necessary condition for a significant performance improvement of 
that capability.

2.4	 Learning in and improvement of ML-based capability

Having covered the creation of ML-based capability, we shift the focus to subse-
quent improvements and learning that might take place in such capability. An estab-
lished ML-based capability must have reached certain level of reliability, has been 
practiced and routinized, and thus exhibits balance in the underlying STS. Further 
improvements in the performance of that capability are not guaranteed, despite ML 
having learning in its name. This notion is evident from even a cursory investigation 
of ML lifecycle [38], where an ML model deployed into production may go into a 
new round of learning (re-training), but does not have to. It is thus in the hands of 
those who develop the ML-based capability to determine whether, how often, and 
in what form such re-training might take place. In other words, ML model training 
and inference are two distinct phases in the model lifecycle, and at least one round 
of training (learning) must take place for an ML to be able to carry out inference in 
production. For example, a drone capable of object detection and tracking [39] has 
gone through a training phase and is able to carry out inference using on-board soft-
ware and hardware. If an organization incorporated such drone into its surveillance 
or visual inspection capabilities, it could potentially improve performance of these 
capabilities. However, continuous use of that drone would not by itself result in any 
changes in the ML algorithm embedded into the drone.
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P9. Ongoing use of an ML-based capability by an organization does not require or 
imply presence of a learning loop, which would improve performance of the ML tech-
nology within the STS of that capability.

Thus, organizations developing ML-based capabilities often recognize the need 
and require keeping ML models up-to-date and, potentially, continuously learning. 
This is especially the case in the context of high environmental dynamism. Thus, 
learning feedback loops are often integrated into the overall technology element of 
the underlying STS. They can take the form of (1) offline maintenance activity or 
(2) online updating [38]. For example, a European bank periodically retrains their 
customer service chatbot, which has been developed by an in-house team. (This ex-
ample was provided by an expert during a workshop, which took place on Novem-
ber 20, 2019.) Such offline maintenance exercise takes place approximately every 
three months and requires involvement of not only the technical team, but also cus-
tomer service agents. The retraining targets improvement of ML technology perfor-
mance related to correctly recognizing customers’ intents, as well as updates chat-
bot’s responses, which must correspond to the ever-changing offering and terms of 
the service. An illustration of an ML-based capability, which has an integrated online 
learning feedback loop, is the case of Chinese petrochemical plant using digital twin 
system to control processes of a catalytic cracking unit [40]. Within that system, re-
al-time operational data is not only used by ML to find optimal production settings, 
but also continuously serves as an input to automatic retraining of the ML model.

While these examples indicate that a feedback learning loop integrated into an 
established ML-based capability can lead to performance improvement, they do not 
elucidate the magnitude of changes that are expected or feasible. To complement our 
discussion with respect to this, we turn to two currently prominent areas of ML de-
velopment – large transformer-based language models and autonomous driving. Ope-
nAI, an artificial intelligence research and deployment company released in 2020 its 
third-generation of a large language model called Generative Pre-trained Transformer 
(GPT-3) [41]. GPT-3 has captured the imagination of media and many practitioners 
by demonstrating previously unseen performance on multiple tasks. However, plots 
demonstrating improvements of GPT-3 accuracy for various tasks as a function of 
number of input parameters consistently show diminishing marginal improvements 
[41]. Hence, getting ML to perform better gets increasingly harder, as the perfor-
mance improves. This observation is consistent with the pattern of performance 
improvements in autonomous driving, where the initial successes were followed by 
mounting challenges to deal with corner and edge cases [42].

P10. Presence of an integrated learning feedback loop within an established ML-
based capability provides, at best, diminishing marginal improvements in the per-
formance of that capability.
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Flattening out of capability performance is an expected outcome for all types of 
capabilities, yet significant performance improvements may be possible even after 
reaching such plateau [12]. Hence, improvements that would exceed the rate en-
abled by the integrated learning feedback loop of an ML-based capability might take 
place in some cases. This, however, requires a new round of development that is 
substantial and, thus, creates the need to unbalance the established deep structure 
of the capability’s STS. For example, when Airbnb replaced its manual scoring func-
tion for property search rankings with a gradient boosted decision tree model, which 
is a type of ML algorithm, it experienced “one of the largest step improvements in 
homes bookings in Airbnb’s history, with many successful iterations to follow” [43, 
p. 1927]. However, the algorithm’s performance plateaued eventually. This triggered 
the team responsible for search ranking development to “trying sweeping changes to 
the system” [43, p. 1927] and introduce a new approach based on deep neural net-
works. Initially, the team aimed at “keeping everything else invariant and replacing 
the current model with a neural network” [43, p. 1934], which would retain the ex-
isting balance within the underlying STS. This, however, proved to only lower the 
performance of their search ranking capability. Only by “rethinking the entire sys-
tem surrounding the model” [43, p. 1934] were they able to gain significant perfor-
mance improvement.

P11. One-off improvements in the performance of an ML-based capability, which 
are beyond the improvement rate enabled by the integrated learning feedback loop 
of that capability, may be possible, in which case, to be realized, they require unbal-
ancing of the STS within that capability.

2.5	 Capability automation with ML

In an extreme case, ML, typically in combination with other technologies, can fully 
automate an existing capability. Such full automation requires a complete encapsu-
lation by technology of four classes of functions, which are (1) information acquisi-
tion; (2) information analysis; (3) decision and action selection; and (4) action im-
plementation [44]. Full encapsulation of a capability by technology is possible not 
only for narrow capabilities, but also in case of socially very complex and core orga-
nizational capabilities. Yet even full automation of a capability does not divorce the 
technology from socio-technical systems constituting an organization. Since STSs 
are nested structures, encapsulation of a lower-level STS into technology leaves it 
as an element of technical subsystem of a higher-level STS. Furthermore, the social 
structure and communication flows within the STS of that higher-level capability 
may be impacted. Thus, the event of capability encapsulation into ML-based tech-
nology may unbalance the STS of the capability being directly above the encapsulat-
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ed capability. A good illustration of this is provided by the case of a German banking 
group substituting its in-house capability for small private loan approval and lend-
ing term setting with an ML-based technology [45]. Initially, this capability was en-
riched by incorporating a tool providing “recommendations that loan consultants 
could change, adapt, or ignore” [45, p. 308]. Later, an enhanced version of the tool, 
which was ML-based, was implemented as a fully automated solution, which “makes 
loan approval or denial decisions, determines the terms and conditions of loans, and 
autonomously alters lending criteria based on customer behavior and current market 
changes” [45, p. 308]. Thus, the capability for small private loan approval and lend-
ing term setting was encapsulated into an ML-based solution, which became an ele-
ment of technology within the STS of the overarching loan granting capability. This 
change also brought an upheaval into the social structure within the loan granting 
capability. The loan consultants, who previously enjoyed relatively high status with-
in the bank because of their experience, required training, certification, and indepen-
dence in their work, regarded the tool as a threat to their professional role identity 
and esteem. At the same time, the ML-based tool enabled a new group of employees, 
such as those working previously at service front desks, receptions, as well as newly 
hired employees, to promptly assume the role of loan consultants. This equated to 
a significant professional identity boost for those employees. Furthermore, the use 
of ML-based loan approval tool erased the need for part of the internal communica-
tion flow, which previously served as a document verification step. Thus, the encap-
sulation of a capability resulted in this case in unbalancing of the STS underlying the 
loan granting capability of the bank.

P12. Automation of a capability through its encapsulation into an ML-based tech-
nology transforms it into an element of the technical subsystem belonging to the STS 
of a higher-level capability.
P13. Automation of a capability through its encapsulation into an ML-based tech-
nology may transform it into an element of the structure within the social subsys-
tem belonging to the STS of a higher-level capability.
P14. Automation of a capability through its encapsulation into an ML-based tech-
nology may unbalance the STS of a higher-level capability.

3	 Discussion and implications

This paper extends the current debate on organizational capabilities. The topic con-
tinues to attract attention of IS and strategic management scholars. Despite this in-
terest, understanding of microfoundations underlying organizational capabilities is 
still limited. This is especially the case in the context of organizational initiatives, 
which aim at integrating disruptive digital technologies, such as ML, into their capa-
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bility portfolio. Evidence from empirical surveys on ML use by organizations show 
that only one in ten ML initiatives meaningfully contribute to value creation [4]. 
Thus, practitioners are also facing challenges in this context. With the aim of extend-
ing our conceptual understanding of organizational capabilities, this paper takes an 
STS perspective on the microfoundations of capabilities and discusses the resulting 
insights relevant to organizational ML initiatives. By conceptualizing organization-
al capabilities as practiced and routinized transformations of inputs into outputs via 
underlying socio-technical systems, which are nested in layers and evolve over time, 
our framework enables a granular insight into the process of digital technology in-
tegration into the capability portfolio of an organization. Our contributions arise 
from the integration of insights from organizational capabilities and STS theory lit-
eratures, as well from the derivation of propositions centering on the context of or-
ganizational ML initiatives.

With respect to practical implications, our framework and propositions provide 
several insights, which might be counterintuitive to professionals with limited experi-
ence in ML initiatives. For example, use of ML in an organization does not imply that 
the organization has ML capability or has created any new capability (P1 and P5); 
there is no free lunch with ML – significant performance improvement of a capability 
thanks to ML requires significant changes in the STS underlying that capability (P8); 
ML does not learn by default, once it is put into production (P9); feeding more da-
ta into ML leads to, at best, gradually decreasing performance gains (P10); and, full 
automation of a capability does not completely eliminate the need for people (P12).

3.1	 Future research

Future empirical research can build on our work in several ways. First, in the context 
of ML, future research can test hypotheses drawn from our propositions and iden-
tify boundary conditions. Second, our conceptual framework is not limited to ML 
context, thus, can be used in future studies investigating more broadly the impact 
of digital technologies on organizational capabilities. Third, by explicitly linking mi-
crofoundations to organizational capabilities, the framework allows investigation of 
technology impact on employees and jobs. Overall, such empirical research will not 
only advance our understanding of organizational capabilities, but also in the con-
text of ML, will help guide managers and their decisions relating to this transforma-
tional technology.
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