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PREFACE
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his doctoraL dissertation and Heikki HiirriiLiiinen is preparing his doctoraL
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degree.

Successive directors of the Institute J Prof. NiLs MeinanderJ Prof. Ahti
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I have benefited much from the expert knowLedge of Prof. Leo TornqvistJ

first in his research seminar at the University of HeLsinki Institute of

Statistics and afte1'1JJards in many vaLuabLe discussions with him in his capacity

as the scientific adviser to our Institute.
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INTRODUCTION

The present study has two chief purposes: to consider indicators

of relative changes and apply the ideas arrived at thereby to

economic index number calculations.

In chapter 1 the concept of relative change is defined and the

properties of various indicators of relative change are examined.

The asymmetry of the customary indicator of relative change,

Hl(y/x) = (y-x)/x, and its poor decomposition properties are

well known. Obviously from force of habit, however, this

indicator is generally employed even in sophisticated analyses l ) ,

but part of the explanation may also lie in the fact that the

relative change concept has not been considered systematically

in the literature and that, in consequence, the alternatives

available to this indicator have not been sufficiently well

known.

1) E.g., the trade cycle model of the Dutch Central Planning
Bureau and the model of the Research Institute for the
Finnish Economy (ETLA), see P. Vartia (1974). For a debate
on the possible merits and dismerits of the use of relative
changes in econometric models, see P. Vartia (1976 a,b,c) ,
Kukkonen (1975, 1976a,b), Kanniainen (1976), Terasvirta (1976)
and Terasvirta and Vartia (1975).
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In theoretical considerations and in several sophisticated

models the logarithmic change, H4 (y/x) = 10ge(Y/x), is used

as an indicator of relative change. Tornqvist (1935) p. 36

already stated as his opinion that "there are no good reasons for

giving index numbers in the form of percentages, because the natural

logarithms of the indices are at least for scientists far

more interesting".

Nowadays, when even pocket calculators have keys for natural

logarithms and exponentation, the practical difficulties in using

log-change as an indicator of relative change have dissappeared.

From many a research report, however, the impression is gained

that the author has been unable to give this transformation a

clear interpretation based on the relative change concept.

The writing of research reports about models involving log-

changes is complicated by the absence of simple names for

the concepts concerned.

At this point I wish to repeat an earlier suggestion of mine

.'

that the log-change

hundred - i.e., 100

H4 (y/X) =

log (y/x)
e

log (y/x) multiplied by one
e

- be called the dynamic change

from x to y. The "unit" of this could be called 'dyn' and

ordinary change percentages and dyns would then approximately

correspond to each other for small changes
l
). As nit is used

as the "unit" for the natural logarithms and hence for the log

change, the numerical values of a relative change expressed in

1) See Appendix 5 andHerva, Vartia and Vasama (1973). Cf. P. Vartia
(1974, p. 33-35), who uses 'log-percent' instead of our 'dyn'.
Recentlytpe name 'natural percent' and the symbol ~ have
been proposed by L. Tornqvist.



7

dyns is 100 times its numerical value expressed in nits.

Certain other multiples of the log-change (e.g., 20 lo910(Y/x),

the unit of which is decibel) have an established position in

physics. The dynamic change, as contrasted to the log-change,

is suitable especially for the communication of the analysis of

economic phenomena, where the relative changes are small as a

rule (e.g., + 10 % = 9.531 dyn = 0.09531 nit = 0.8279 db).

Chapter 2 provides a survey of various views about price and

volume indices. Special attention is paid to differences

between the descriptive (or statistical) approach and the

economic theory of index numbers as presented by Samuelson and

Swamy (1974). Leontief's (1936) views about index numbers are

critically considered and some new results are presented.

Chapter 3 deals with the theory of index numbers associated

with customary period analysis. The exposition mainly follows

the test approach of Irving Fisher, the aim being to present

aXiomatically ideas that are usually understood only intuitively.

In chapter 4 we consider "practical" problems inherent in index

number construction and various strategies for constructing

index series: especially base and chain index methods. The latter

topic leads to the subject matter of the next chapter.

The theory of chain index numbers, which was developed by Divisia

and Tornqvist independently of each other, is considered in chapter

5. A precise exposition of this theory, based on "continuous time",
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presents difficulties connected with the definitions of the value,

price and quantity concepts that have been attended to hardly at

all in any of the publications I have come across.

In chapter 6 new index number formulas already derived in Y. Vartia (1974,

1975) are presented and compared, in terms of the criteria

introduced in the preceding chapters, with corresponding previously

suggested formulas. My second index, Vartia Index II, was constructed

in the beginning of 1974 as the solution to the problem set forth

and discussed by Theil (1973). Theil (1973) and Sato (1974)

derived good approximative solutions to the problem, which Theil

(1974) already regarded as unsolvable. Sato (1975, 1976)

reported its independent discovery and proved that our new ideal

log-change index is exact for all CES utility (or production)

functions.

The two new ideal log-change index numbers prove to be noteworthy

competitors of the best known index number's, e.g., Fisher's

ideal index, Stuvel's and Tornqvist's indices. Our new indices

are especially suitable for chain index calculations.

Empirical index number calculations using the most popular formulas

such as Laspeyres' and Paasche's formulas together with precicion

formulas of Fisher, Tornqvist, Theil, Stuvel and the author are

reported in chapter 7. The data consists of yearly Finnish GOP

figures by industries for 1957-72 and monthly figures of imports

of fuels and lubricants for January 1972 - September 1974, of

which the latter material is especially difficult. From the GDP

material both base and chain indices are calculated and compared.

Empirical calculations provide an illustration of the merits

and dismerits of various formulas and confirm the more theoretical

findings of the work.

.',

"



1. ON THE ALGEBRAIC THEORY OF RELATIVE CHANGES

9

Let us consider a positive (or at least non-negative) sequence

of numbers (Yt ' tEZ) representing the values of some ratio

scale variable observed in time.

TO the absolute change from the point of time t-l to the point

of time t there corresponds the difference Yt - Yt-l'

Yet, since the observed values of a ratio scale variable are

determinate only up to the unit of measurement (see Vasama and

Vartia (1971)

where a > O.

p. 49-52), Yt may be replaced as well by y' = ay ,
t t

The change in the variable, as determined from the sequence

(Yt , tEZ) will then be Yt - Yt-l = a(Yt - Yt_ll.

An essential characteristic of a relative change is that its

value is independent of the unit of measurement employed;

i.e., the relative change has the same value irrespective

of whether it is determined from (Ytl or (Y~l.
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An indicator of a relative change is defined here as a real

valued function C(x,y) defined for all positive x and y,

C: lR ~ ... lR, which has the following characteristic properties

A to D:

A. C(x,y) o if and only if .x y.

B. C(x,y) > 0 if and only if y > x.

C(x,y) < 0 if and only if y < x.

Thus the first argument (here x) represents the base value of

the variable, the second argument (here y) representing the

"new" value of the variable or the value to be compared with

the "base value".

C. C is an increasing function of y when x is fixed; and

C is continuous.

The properties A to C will be possessed by any function describing

change, e.g., the function C(x,y) = y-x.

D. Va: a>o ~ C(ax,ay) C(x,y}.

By D any indicator of relative changes will be independent of

the unit of measurement.

The following functions C(x,y}, for instance, are indicators

of relative changes.

1.

2.

(y-x}!x

(y-x)!y



3.

4.

5.

6.

11

1
(y-x)/2(x+y)

clog (y/x) when c>O
e

c(y~x)/mi~(x,y) when c>O

(y-x)/K(x,y), where K(X,y) is some mean of x and y.

A mean K(x,y) of two numbers x and y is a real valued function

K defined in a region Acm2 , which has the following properties.

(1) min(x,y) ~ K(x,y) ~ max(x,y).

(2)" K is a continuous function.

(3) Va: a>O => K(ax,ay) = aK(x,y) •

(4) K(X,y) = K(y,X).

According to this broad definition, the following, for example,

are means:

Arithmetic mean

Geometric mean

Harmonic mean

Maximum

Minimum

Moment mean of

order k

(x+y)/2

yxy

2/ (! +!)
x y

max(x,y)

min(x,y)

1
[!(xk+yk)]k

2

x>O, y>O

x>O, y>O

x>O, y>O

We define the logarithmic mean L(x,y) of positive number.s x and

y as follows:

Logarithmic mean L(x,y) (y-x)/loge(Y/x) for x "I y

x , for x y
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We have to prove that it really is a mean
l

)

Theorem 1: The logarithmic mean L(x,y) satisfies the conditions

of a mean (1)-(4) when x>O, y>O.

Proof: (1) By definition loge(Y/x) (y-x) /L (x, y) •

This applies to x = y, too.

Next use the mean value theorem
2

): for every differentiable

function f, there exists a point F; strictly between x and x+h,

htOsuch, that

f(x+h) - f(x) = fl (F;)h

Take f(x) = loge(x)

loge (y/x) loge(y) - loge (x)

Dloge (F;) (y-x)

= (y-x)/F;

Aee0rding to the mean value theorem F; L(x,y) is between x and y.

(2) L(x,y) being a ratio of continuous nonzero functions, is a

continuous function3 ) for every positive and different x and y.

We have to show only that L(x,y)~x, as x~y.

1) Prof. Seppo Mustonen has generalized in an unpublished paper the
logarithmic mean for n positive arguments.

2) See Apostol (1957) p.93.

3) See Apostol (1957) p.68.
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Using (1) we have min(x,y) ~ L(x,y) ~ max(x,y)

and therefore L(x,y)+x, as x+y, because both limits approach

each other. Thus L(x,y) is a continuous for x = y, too.

(3) L(ax,ay) (ay-ax)/loge(ay/ax)

= a L(x,y)

for every positive a, x and y.

(4) L(x,y) = (y-x)/loge(Y/x)

(x-y)/log (x/y)e

L(y,x) o

We thus have a very important representation of the log-change

(1) loge (y/x) = (y-x)/L(x,y) , y>O, x>O

This is not just an identity but it says that the log-change is

literally a relative change of the form (y-x)/K(x,y), where

K(x,y) equals the logarithmic mean L(x,y). Or simply: log-change

is a relative change in respect to the logarithmic mean.

What is essential is that L(x,y) is a mean.

It can be shown (see appendix 3) that for positive x and y, xty

(2 )

(3 )

(x;y) > L(x,y) > J;y , and thus

~ < log (1:) < y-x, according to if x< y or x>y.
(x+y ) > ex>~

2

All expressions in (2) or (3) are equal if x = y.
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Theorem 2: Every indicator C(x,y) of the relative change is a

function of the ratio y/x alone or, in other words, there is a

function H: lR+-+lRsuch that C(x,y) = H(y/x).

'.

Proof: Choosing a = l/x, we have, by 0,

C(x,y) C(l,y/x) ~ H(y/x). []

The properties A to 0, as written for H:

A' • H(~)
x o if and only if ~x 1.

B I.

C' •

H(~) <> 0 if and only if ~ > 1.x x <

H: lR+ -+ lR is a continuous and increasing function

of its argument.

0' . H(ay/ax) H(y/x).

The best method to compute the ordinary relative changeC(x,y) =

(y-x) Ix, for example, is based on the representation H(y/x) = y/x - 1.

The following important indicators of relative changes are

represented graphically in Figure 1:

(4) Hl (y/x) = y/x - 1 = (y-x)/x , H
2

(y/x) = 1 - x/y = (y-x) /y

Y/x-l v-xH3 (y/x) = 1 = 1 ' H4 (y/x) = loge (y/x) .
2(1+y/x) 2(x+y)

Note the different ranges of these indicators of relative change:

HI (y/x) E (-1, 00), H
2

(y/x) E (-00, 1), H3 (y/x) E (-2, 2) and H4 (y/x)E(-oo,
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Figure 1. Selected indicators of relative changes

relative
change H(~)

1.5

1.0

0.5
:.--_-----H2

2.0 3 .0 4 .0
o I I Y I I I I I I ~

-0.5

-1.0

-1.5

-2.0

-2.5

~
ratio (X)x

To exclude the indicators of relative change that do not

behave approximately as (y-xl/x does when y[x ~ 1, a further

requirement will be imposed: the indicators have to be normed,

and an indicator H of relative change will be called normed if

and only if

E. Hrn(H(S) )
5-+1 Hl(S)

lim(H(S)-H(l)
S+l S - 1 )

H' (1) 1 .

H(S) = clog (S), for example, will be norrned only when
e

c = 1. For instance, the indicator of relative changes

generally used in electronics

(5) db 20log
l0

(y/x) ,



16

expressing the relative change in terms of decibels, is not

normed.

Correspondingly, information may be expressed in terms of bits,

and then

(6) bit 1
log2 (Ii!,

where p = P (A) is the probability if the event A concerned.

This information measure is an indicator of the relative

difference between p and the probability 1 of the certain

event, which is not normed.

The customarily used indicator of relative change, Hl(*l

(y-x)!x, is annoyingly asymmetric. For example, the two

changes involved in the sequence x~y~x,

(7) H (Y) = y-x and H (~)
1 x x 1 Y

x-y
y

are not equal apart of the sign.

On the contrary, if the value of the variable first doubles and

then decreases to a half, there will first be an increase of

100 per cent and then a decrease of 50 per cent. Correspondingly,

the numerical value of the relative difference between two

numbers x and y will change depending on which of them is used

as the point of comparison. (In the theory of index numbers

this question is considered under the head of the "time

reversal test".)

'.
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We will define the tndicator of relative change, H(Y), asx

symmetric if and only if

F. H(i1 - H(~I
Y

For example, the indicators

(8) Hl(i1 y-x and H (Xl = y-x
x 2 x Y

are asymmetric. By contrast the indicators

(9) H3 (i1 ~ H (Yl = log (Yl
1 ' 4x e:ll;"2 (x+yl

and, in general, all indicators of type 6, or

(l0) H(Y) =:~
x K(x,yl

are symmetric (and the ones mentioned here are also normed}.

One peculiar way of making the indicators (8) symmetric is to

define

(ll) HS (i>

(

y-X when Y > 1
x' x -

y-x when Y < 1.
y' x

This is how Rao & Miller advise in their Applied Econometrics

(1971) on p. 17, the student to compute "relative changes".



18

Written in another way, H~(i} can be interpreted as the

following kind of extreme case of indicators of type 6:

( 12) Hs(i} y-x
min(x,yI

Its computational simplicity is the onl~ advantage HS possesses

in comparison with, for instance, the indicators in (9).

In what follows we shall demonstrate that the indicator

(13) H4 (i> log (Xl
e x

based on the log-change, is actually the only one recommendable

for scientific use l ) . To this end the aggregation and decomposition

properties of various indicators will be investigated.

It is interesting to compare the following indicators with one

another:

Relative change with respect

to the minuend:

Relative change with respect

to the arithmetic mean:

Logarithmic change (the relative

change with respect to the

logarithmic mean):

Hl(il-

H3(~)

H (Yl4 x

y-x
x

v-x
1
2(x+y)

log (Y} =~
e x L(x,YL

1) Some mul~iples of this indicator are widely used e.g. in electroni,
and acoustics (desibels, eg. (5» and in information theory (bits,
eq. (6». Other similar logarit~~ic 'scales' are the DIN-scale in
photography and Richter's scale in seismology measuring the energy
of earth quakes.
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As mentioned he~ore, all of these three Lndicators are

normed, but HI is not symmetric:

(141 HI (i)
y-x = _ (YJ (x-Y)

x x Y

i - H (~l when Y i l.
1 Y x

- (*1 HI (~)

In practice, however, HI is often dealt with as if it were

symmetric when Y ~ 1.x

Consider the two-stage change x~y~z and examine how the

relative change from x to Z can be expressed by the various

indicators in terms of the changes x~y and y~z. In other

words, we wish to express H(~l in terms of H(Yl and H(Zl.x x y

(15)

(16 )

H (~) = z-x = (z-y)+(y-xl
1 x x x

Z-Y + Y-x
x x

y-x + (y) (z-Y)
x x Y

H (Y) + (Y) H (~l
1 x x 1 Y

H (~) z-x (z'-Yl+(y-x)= =3 x 1 1
2:(x+z) 2:(x+zl

~ z-y
1 + -1--
2: (x+z) 2: (x+z 1

= (x+y ) H) (Y) + (y+z) H3
(~)

x+z x x+z y
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(17) z z z y
H (-} = log (-) = log (-. )4 x ex· e y x

= log (Y} + log (~L
e x e y

H4 (YI + H4(~)·x y.

Thus, only the logarithmic change is decomposed exactly into

a sum of the component relative changes. Approximately,

however, the same is also true of· HI and H3 when all the

relative changes are small.

Let us apply e'ruations (15) ..... (17) to time series (VtL,

where v t is the value of a commodity at the point of time t

and equals the price Pt times the quantity qt

(18) v t Ptqt •

the relative
qt

H(a:--) •
"'t-l

v
We wish to express the relative change in value, H(--t-1,

v t - l
changes in price and quantity,in terms of

Pt
H(--) and

Pt-l

For the application of (151 - (171 it will be considered

that the changes in price and quantity occured step-wise:

Pt-lqt-l ~ Ptqt-l ~ Ptqt

(Compare x ~ y ~ z 1
"



(19)
v

tH ( ~--)1 v
t

_
1

P q -1 P q. 1 P q
HI ( t t. 1 + t "\:- HI ( t t )

pt-lqt-l pt-1qt-l Ptqt-l

Pt P t qt
H (--) + (--) H (--).

1 Pt-l Pt-l 1 qt-l
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This can be written in a more transparent form oy

substituting 1 + Hl (pt !pt - 11 for (pt!pt-lL to get

(20)
v

t ) =
HI (vt-l

Pt qt P t qt
HI (--) + Hl(--l + Hl (--) HI (----)·

P t - l qt-l Pt-l qt-l

The last term, or the product of the relative changes in

prices and quantities, will subsequently be reffered to as

cross term. When the relative changes are small, this term

can be neglected, and the relative change in value,

HI (vt/Vt - l ), will then equal the sum of the corresponding

changes in price and quantity.

When the changes are large, the cross term will be the main

term. The corresponding decomposition of H3 is obtained as

follows:

(21) v t )
H3 (v t-l

I.-'t-l':l.t-I+Ptqt

Ptqt-l 1 +
H3 (p

t
_

1
q t_1

ptqt 1
H3 (p

t
q t_l

= P t 1 +) H3 (p
t

_
1

qt 1
1 H3 (qt_l

P q
H

3
(-t-1 + H

3
(-t-1 + E .

Pt - 1 qt-l
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In this case the expression for the '·cros.s. term" E is more

complicated. In any event, the cross term will be one of the

third degree in the relative changes. In the case of (lG)

the following identity, derived in Appendix 1, is obtained:

{22} H {~1 = H (~l + H (~l - !H .(y1H (~l H (~1
3 x 3 x 3 Y 4 3 x 3 y 3 x

Example

x ~ y ~ z x ~ z "Cross term"
10 12 15 10 15

HI 20.00 % 25.00 % 50.00 % + 5.0 %

H3 18.18 % 22.22 % 40.00 % - 0.4 %

H4 18.23 % 22.32 % 40.55 % 0.0 %

The decomposition of H
3

is observed to be notably more accurate

than that of HI. This can be concluded directly from the

expression for the cross term.

The changes have all been expressed as percentages relative to

the mean occuring in the divisor of the indicator concerned.

Thus, in

in H3 (~)

Hl(i) the absolute change (y-x) = 2 is 20 % of x = 10;

it is 18.8 % of ~(x+y) = 11; and in H4(~) it is 18.23 %

of L(x,y) = 10.97.

As appeared also from the example, in the log-change the cross

term is identically zero. Let us also write (17) in terms of

the prices Pt and quantities qt:



(23)
v t

H (--1
4 Vt - l

p.q_ PCJ;
H ( ttl 1 +H ( ttL

4 Pt-lqt-l 4 Ptqt~l

P t qt
H: (--1 + H: (--I

4 Pt-l 4 qt-l -
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For log-changes, the relatlve change in value invariably

equals the sum of the relatlve changes in price and quantlty.

One lndicator of relative changes not yet mentioned,

(24) H6(~1 = y-x
yyx

also merits attention. H6 is bothnormed and symmetric

and, in addition, it has an interesting decomposition

corresponding to the decomposition of H
3

in (221:

(25) H (~)
6 x H6(i1 + H6(~1 + E, where

E .!.H (Y)H (~)H (~)
2 6 x 6 Y 6 x r~+~+h+~]l 2vx.y 2yyz 2VXZ

< 1 Y z z
~ SH6 {x)H6 (y)H6 (i)'

The cross term E of this indicator again contains the product

of three relative changes, just as it should, because H6 is

symmetric. In addition, the product contains as a further

factor an interesting term, involving ratios of the arithmetic

and geometric means, which can well be approximated by 1/4.

The derivation of this ldentity is presented in Appendix 1.
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To summarize,' for the logarithmic change H4 the cross term is

identically zero, for H
6

it is very small wi.th the small

values of the relative change, for H
3

the cross term is, to a

very hi.gh degree of accuracy, numerically twice the cross

term of H6 but of the opposite sign, whereas in HI the cross

term is of the second order of smallness, instead of the

third as in the two preceding cases.

Example. The indicators will be examined numerically assuming

that the relative changes are smaller than in the preceding

example.

x ~ y ~ z

minuend 10.000 11. 000

arithmetic mean 10.500 12.000

logarithmic mean 10.492 11. 973

geometric mean 10.488 11.958

x

10

HI

H3

H4

H6

~ y ~ z x ~ z

11 13 10 13

10.000 % 18.182 % 30.000 %

9.524 % 16.667 % 26.087 %

9.531 % 16.705 % 26.236 %

9.535 % 16.725 % 26.312 %

"Cross term"

+ 1.818 %

- 0.104 %

0

+ 0.052 %

x ~ z

10.000

11. 500

11.435

11. 402

'.

Note that L (x,y) R$ 2~ (x;y) ~
--~ ~

3

3,! X+Y A ( , )
\' xy ( 2 ) = T x, Y

and H (Y) 2H3 (*)+H (y)4 x R$ 6 x·_ R$ V' H (Y) 2H (y)'.
3 x 6 x

'.
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This approximation to the log-change was already known by

Tornqvist (1935), but Theil (1973), in particular, has used the

•mean T(x,y) occuring in this approximation in the index number

formula he suggested. It would seem, however, that Theil has

not considered the concept of a logarithmic mean to be important,

since otherwise he would no doubt have derived the Vartia Indices

I and II to be presented in Chapter 6. The properties of various

means are considered in Appendix 3.

It is well known that the only continuous function H:m * m. +

satisfying the functional equation H(xy) = H(x)+H(y) for all

positive x and y is H(x) = c log eX for some real constant c

the case of differentiable H is proved in appendix 2.

We conclude that the logarithmic change

(26 ) H
4

(y/x) loge (y/x)

is the only indicator of relative chanqe which is normed,

symmetric and for which the relative change x~z is decomposed

into the sum of the component relative changes x~y and y~z.

The representation of the logarithmic change given in (1)

(27) H4 (y/x) loge (y/x) ~L(x,y)

will later be put in effective use in considering the

determination of the relative change in a sum with the aid

of the relative changes in the terms of the sum. These

questions are dealt with most naturally in connection with

the index numbers.
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2.

2.1.

VARIOUS VIEWS ABOUT THE DEFINITION OF PRICE AND

VOLUME INDICES

General

Like most developed human activities scientific research is

pursued to satisfy various needs and purposes. A practically

oriented scientist may be inTerested in describing, explaining,

forecasting or controlling a real process under study. On the

other hand, a theoretically oriented researcher (e.g., a logician,

mathematician, economist or philosopher) need not have any clearly

practical aims connected with empirical data or problems; he may

be interested only in the theories or models used in some area.

These theories often begin to live lives of their own in the

researcher's mind, whose intentions may be literally philosophical.

These different attitudes have contributed to the separation

of 'applied' and 'theoretical' research from each other.

Analogically concepts are often classified into descriptive

(or empirical) and analytical (or theoretical) ones. For instance,

the arithmetic mean and the median, as calculated from observations,

are descriptive measures, while the expectation and the population

median are the corresponding theoretical concepts defined in the

model or play process under consideration. Descriptive measures

or statistics are often used as estimates of some theoretical

concepts corresponding to some functions of the population para

meters. Descriptive measures have, hO~lever, some meaning independ

ently of theoretical models: they need not be interpreted as

estimators of any population parameters.

.,

'.
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A wide variety of approaches, which are not always easy to distin

guish from one another, have been proposed for the construction

of price and volume indices, see the classical survey of Frisch

(1936) and a modern survey of Samuelson and Swamy (1974).

Nowadays most index theorists seem to prefer the analytical or

theoretical approach. Many of them do not hesitate to start from the

static demand or production theory, often with nonsaturation and

homotheticity assumptions, and 'rationalize' index number formulas

by deriving them from these and other special assumptions. These

derivations show that if our data were generated according to

their particular demand theory (where a typical consumer

maximizes his time invariant utility function under given prices

and income) then a certain index number formula would give the

same numerical results as the 'true cost of living index'.

This means that the index number formula may be practically

useful, too.

These calculations are of course valid as such but rather,

irrelevant when our data is not generated in the supposed way.

If p implies q but p is not true we do not know whether q is true

or not. The problem is therefore whether the data is generated in the

postulated way, because only then can we use the result.

It seems to be generally accepted that the standard assumptions

of the static demand theory are unrealistic, so that the theory

serves mostly pedagogical purposes.

Actually we are not concerned with a typical consumer but with a

whole population of different economic agents. This causes

the problems of agqregation over individuals, which have
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thus far remained unsolved 1). If an economic agent is

"

supposed to have his own indifference su+faces in the

commodity space these would probably change in time and depend,

e.g., on prices. This ruins most of the classical results in the

demand theory and leads to dynamic demand functions and problems

caused by taste changes 2 ) . Little is known of these things. The

qualities of the commodities change, new ones appear and old

ones disappear 3) . These complications maybe theoretically handled

by increasing the dimensions of the commodity space and allowing

corner solutions. The stochastic nature of consumer behaviour

should be taken into account by including random terms in the mOde~) .

An evident but essential complication stems from the fact that

the adopted theory (without any other complications) would usually

contain unknown parameters, so that the true cost of living index

cannot be calculated unless some of these parameters are somehow

estimated or fixed. Should The Statistical Officies therefore

estimate their demand functions to calculate consumer price indices?

What kind of demand systems should be fitted to the data? What would

be the appropriate estimation procedure?

These questions are nowadays avoided by using the simplest type of

descriptive price indices, namely, Laspeyres' indices, which

unfortunately are usually upwards biased comnared to the relevant

indices in the case of demand theory. The practical man docs not seem

to be too serious:

1) See e.g. Sen (1973, p. 1-23).

2) See e.g; Fisher and Shell (1972), Morishima and others (1973, p. 242-270) .

3) See e.g. Tornqvist (1974), v. Hofsten (1952) , Griliches (Ed.) (1971).

4) See e.g. Theil (1965,1967, p. 227-289,1970), Deaton (1974),
Diewert (1974).

'.

"
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As at least some of these complications are widely admitted to be rele-

vant it seems qUite remarkable that so much interest is still focused

on the standard mathematical game of the index theorists, which ignores

these complications. While Samuelson and Swamy (1974) declare their

belief in the economic theory in their Concluding ~'1arning, I want in-

stead to study the index number problem from the descriptive point of

. 1)Vlew.

2.2. The descriptive approach

The most generally applicable approach is the descriptive approach, for

which Frisch (1936) uses the term 'atomistic approach' and which Samuel-

son calls I statistical' . Here a price index is constructed to measure

the change in the' price level' (or the average change in individual

prices) , very little being asserted about the behaviour of individual

prices and quanti ties. This is mainly the approach of the pioneers in the

field, e.g., Walsh, Jevons, Laspeyres, Paasche, Sauerbeck, Edgeworth

and, especially, Irving Fisher.

In the descriptive approach we distinquish a historically interesting

old way of thinking, namely, a stochastic aoproach. The earliest writers

tended to conceive of price indices as some kinds of means or measures

of central tendency of the universe of price changes. Individual price

changes were regarded as random observations of this hypothetical uni-

verse. The purpose of the index formula was to eliminate the random fluc-

tuations of individual price quotations. In the stochastic approach

observed individual prfce.or volume chnnges were considered to

1) Dr. Pentti Vartia has called the descriptive approach 'theory
invariant I in contradistinction to to the' theory dependent' economic
approach. This description nicely stresses the robustness of the
descriptive approach, which does not use so many (doubtful) assump
t·ions as the economic theory. Of course both approaches have some
common theoretical elements, e. g. , values, quantities and prices
are supposed to be measured on ratio scales.
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give unreliable infornation on the average ~rice change, roughly

in the way measure~ent errors hide the true effects in ex~erimental

situations.

Sometimes one may meet the similar opinion that individual price

ratios are something unreliable and that only their averages, i.e.,

~rice indices, give some reliable information. We must state

clearly, however, that this a~?roach is only of historical interest

and that the definition of a price index cannot logically be based

on such foundations. For instance Keynes (1930) ~. 85 vigorously

criticizes the stochastic definition of a price index as bein~

'root-and-branch erroneous'. Frisch (1936) agrees with Keynes on

this point.

I. Fisher's "The Making of Index Numbers" is a landmark in the

descriptive approach. Before Fisher's work there had been a long

controversy over the proper index number formulas. The chief

argument, which I. Fisher wanted to reject, was that one index

number was fit for one purpose and another for another one. We

cite Fisher (1922) p. 231: "Unless someone has the hardihood to

espouse bias or freakishness for some "purpose" whatever formula

he advocates will insist on coinciding with whatever formula anyone

else advocates." For a reconsideration of the concept of 'bias I as

used by Fisher see Y. Vartia (1976b).

Fisher's method is based on definite criteria or 'tests' which

a good index number formula should satisfy. The most fundamentally

important test among those already treated in his earlier study,

Fisher (1911), is the 'time reversal' test. "This and the new test,

the 'factor reversal' test, are here constituted the two legs on

which index numbers can be made to walk", Fisher (1922) p. XIII.

.,
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Following Frisch (1936), we may characterize this approach

to the construction of index numbers as test theoretic.

In this approach an index number formula is a function meeting

certain desirable criteria or tests. The test theoretic approach

is transformed into an axiomatic approach by only formalizing

the tests and calling them axioms. As was provedl ) by Swamy (1965)

there are no index number formulas satisfying all of Fisher's

tests; i.e., the corresponding axioms are contradictory and the

set of indices satisfying them is empty. This situation resembles

the problem now known as 'Arrow's paradox'. It is concerned with

the construction of society's preference function out of the

preference functions of individuals. By setting up a certain

seemingly natural list of properties (axioms) which this

construction should satisfy, Arrow (1963) proved that no such

construction was possible.

As was humorously pointed out to me by L. Tornqvist, there should

be nothing especially astonishing in the fact that a set can be

made empty by increasing the list of properties its elements

should possess.

In the index number problem (and in the problem discussed under

the heading of Arrow's paradox}2) there have been at least two

ways of overcoming the seeming paradox caused by the empty sets.

1) E.g. Frisch (1930) and Wald (1937) have presented their "proofs",
which according to Swamy (1965) suffer from some errors.

2) See Luce & Raiffa (1966) pp. 340-1, 356-7.
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The first is to drop some of the desired properties of the

index number formulas (i.e., functions I:A+B), while their

definition set A is kept unchanged. Fisher dropped, for instance,

the 'circular property' from his list of desirable properties.

We cite Fisher (1922) p. 271: "But the analogy of circular test

with time reversal test, while plausible, is misleading. I aim

to show that the circular test is theoretically a mistaken one,

that a necessary irreducible minimum of divergence from such

fulfilment is entirely right and proper, and, therefore, that a

perfect fulfilment of this so-called circular test should really

be taken as proof that the formula which fulfils it is erroneous".

Fisher's conclusion is not accepted by some modern researchers,

who usually base their views on a different starting point, namely

the economic theory of index numbers. Samuelson and Swamy (1974)

p. 575 wrote, in commenting this conclusion of Fisher's: "Alas,

Homer has nodded; or, more accurately, a great scholar has been

detoured on a trip whose purpose was obscure from the beginning".

It is not known what are the desirable properties making Fisher's

"Ideal Index" (or its rivals) the only index having these proper

ties; i.e., we do not have different axiom systems (in this de

scriptive approach) that would characterize one and only one index

formula each. Fisher' s worJ~ was so iITIpressive that on ly little has

been added to his results on the test theoretic approach.

'.

2.3. The economic approach

The second way of avoiding the no-solution case could be called

the economic theory of index numbers or the economic apnroach.
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Instead of dropping some desirable properties of the index number

formulas, we restrict the admissible combinations of prices and

quantities by some economic theory (e.g., the static demand theory

or the production theory). By 'imagining' certain interdependencie~

between prices and quantities we restrict the definition set A of

the "index formula" I: A-+B to a much smaller but more complicated

set A' cA. The index number formula - e.g., the 'true cost of

living index' -will then be defined using the concepts of the

underlying economic theory. In special circumstances the index

number formula can be proved to have desirable properties in the

restricted set A' (but not, of course, in A), see Samuelson and

Swamy (1974) •

In the economic approach the price index has a definite economic

meaning: it answers a definite question. But this will be the case

only if the underlying economic theory is a true description

of the data generating process. In a more general situation

discussed in the descriptive approach, the definitions of the

economic theory have no clear meaning.

We are in a very problematic situation: in order to escape the

inconsistencies of the descriptive approach ("What is the right

index formula?") we hypothesize a complicated economic theory,

which can be regarded' only as an approximation to the real data

generating process. If the approximation is a poor one, our

index number calculations may be totally misleading unless

they can be interpreted using the descriptive approach, which

is luckily often the case. When the definitions of the economic

theory are carelessly used in real situations, more complications

will perhaps be introduced than eliminated:
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the best may be an enemy of the good. The usefulness of the

economic approach (and all idealized play processes or theories)

lies in my opinion in the fact that it clarifies, like good

examples, our conception of the more complicated situations met

in the real world. By examining a beautiful but restricted

theoretical world we may learn what are the minimum complications .'

found in a wider world.

To show some problems in the definition of price and volume

indices in the economic theory, we use the following definitions

given by Samuelson and Swamy (1974):

DEFINITION:Economic Price Index: This must equal the ratio of

the (minimum) costs of a given level of living in two

price situations.

The definition is concerned with only "a given level of living",

which means that the Economic Price Index is not exclusively a

function of two price situations but usually depends on the given

level of living. This definition gives two natural but usually

different pri=e indices when we want to compare prices in

two situations involving different levels of living. We quote

Samuelson and Swamy (1974) p. 568:

"The fundamental and well known theorem for the existence
of a price index that is invariant under change in level
of living Qa, is that each dollar of income be spent in
the same way by rich or poor, with all income elasticities
exactly unity (the homothetic case). Otherwise, a price
change in luxuries Gould affect only the price index of
the rich while leaving that of the poor relatively unchanged.
This basic theorem was well known already in the 1930's,
but is often forgotten and is repeatedly being rediscovered".
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The indices based on economic theory can be defined in different

notations by using, e. g., utility functions, demand functions or

indirect utility functions. In the following we will use the indifferenc

relation instead of the utility function, adopting elsewhere the

concepts of Samuelson and Swamy (1974).

*Let q be a given bundle of commodities and q any bundle of cornmod-

. * *ities indifferent to it for our consumer, q""q . Let e (p; C{ ) be

the minimum expenditure needed to buy a consumption vector q

*indifferent to q when prices are p:

*e(p; q ) min p.q

*q .....q

Ap.q

q,

By its definition, the Economic Price Index can be written as

10*P (p , P ; q ) =

1 * 0 *e(p ; q )/e(p ; q )

1 Al/ ° tlOP'q p'Yo

q2

q,

AsSamuelsonandSwamy(l974) prove p(pl,pO; q*) is independent

*of the utility level fixed by q only if the indifference contours

* *S(q ) = {qlq ..... q } are homothetic with all income elasticities

exactly unity. This guarantees that value shares do not depend

on income. The Economic Price Index satisfies the strong

proportionality test P (kpl ,pO; q *) =kP(pl ,pO; q *) for any positive k.
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1)
The definition of the quantity index is more complicated.

DEFINITION: Economic Quantity Index: This measures for two

presented quantity situations qO and ql, the ratio of the

minimum expenditure needed, in the face of a reference price

*situation p , t~ buy their respective levels of well-being.

Or in mathematical notation
q2

10*Q(q ,q ; p ) =

* 1 * °e(p ; q )/e(p ; q ) =

* 61 * 60P 'q /p 'q

qO

q,

Just like the Economic Price Index, the Economic Quantity Index

will only in the homothetic case be the same for any chosen price

*standard p . A curiosity is that the proportionality test,

Q(kqO,qO; p*)= k for any positive k, is satisfied only in the

homothetic case, see Samuelson and Swamy (1974) p. 576 or

Y. Vartia (1976d).

Let (pO,qO) and (pl,ql) be two equilibrium situations.

* ° * 1Specifying q = q and p = p we get

..

(1)
10010 1P(p ,p ; q ) Q(q ,q ; p ) 110 0P .q /p.q . .".

1) There are different definitions of the quantity index mentioned,
e.g., by Samuelson and Swamy (1974) p. 590 note 17. and p. 591.
pollak's definition happens to be the same as Leontief's (1936)
definition to be formalized later.
For the definition of a marginal price index, see Rajaoja (1958)
or Theil (1967). Rajaoja also defines a very interesting index,
the price index of the competitors of the good Gk , and proves
useful theorems. These concepts can be defined in a natural way
only using economic theory and we do not discuss them here.
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This corresponds to a similar identity between Las~eyres' price

and Paasche I s quantity indices. The identity tells us that, using

the price index corresponding to the utility level of qO and

deflating the value ratio by it, we would get not Q (ql ,qO; pO) but

1 ° 1 . 1Q(q ,q ; p ), where the new pr~ce vector p changes from one

situation to another.

* 1 *By specifying q = q and p pO we get an identity which

corresponds to Paasche's price and Laspeyres' quantity indices:

(2) 10110 ° 1 1 ° °pep ,p ; q ) Q(q ,q ; p ) = p .q /p .q

This equation shows an asymmetry similar to that in (1).

Next we derive two alternative one-sided bounds for Economic Price

. 10 ° 1 ° 00Ind~ces of Laspeyres' type P (p ,p ; q ) = e (p ; q ) /p .q

101 110 1and Paasche' s type P (p , P ; q ) = p. q /e (p ; q ).

Because e (pI; qO) is the minimum expenditure necessary to'attain the

indifference surface determined by qO we have e(pl; qO) ~ pl.qO

Here pl.gO is the total income needed to buy qO basket at pI prices.

Therefore we have for Laspeyres' price index Lp :

(3) p(pl,pO; qO) ~ pl'qO/pO'qO L
p

Similarly we get for Paasche's price index P :
p

(4) 101P (p , P ; q ) 1 1 ° 1> P .q /o'q = P- - P

These one sided bounds can be combined into a double limit generally

only in the homothetic case where the left hand sides of (3) and

(4) are equal. In the nonhomothetic case it is even possible to have

-- .-
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1 0' 0 1 0 1
(5) pep ,p ; q ) ~ L p < Pp~ pep ,p ; q )

so that the Economic Price Index need not lie between Lp and Pp '

Similar bounds are easily derived for Economic Quantity Indices

as well:

(6 )

(7)

1 0 0
Q(q ,q ; p ) ~

101Q(q ,q ; p ) >

pO.qljpO'qO

pl.qljpl'qO

L q

Pq

These bounds show that Laspeyres' price and quantity indices

Lp and Lq are usually upwards biased with respect to Laspeyres'

type of Economic Indices, while: Paasche' s indices P p and Pq are

analogously downwards biased. l ) These or other but similar

bounds (see Frisch (1936) p. 24) have been discussed in numerous

articles, and confusion is here no rarity as mentioned, e. g., by

Frisch (1936) p. 25-26 and Samuelson and Swamy (1974) p. 581.

The revealed preference theory is based on these inequalities,

see e.g. Samuelson (1947), Houthakker (1950) and Afriat (1967).

Note that the bounds (6) and (7) need not hold for all choices of

reference prices p* but only for the special choices pO and pl

The same applies to the price index p(pl,pO; q*). This seems to

be the point stressed by Leontief (1936), which we shall comment

on later.

1) In the case of production theory the inequalities are reversed,
see Samuelson and Swamy (1974) p. 589 and Fisher and Shell (1972)
p. 58.

"

"
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, d' P (1 0 0)
~n ~ces p,p; q

and p(pl,pO; ql) differ usually somewhat from each other because

they have been calculated on different utility levels. Their

geometri~ me~n i~ a Fisher type of price index, which may

be interpreted as a price index corresponding to an

utility level specified by an intermediate consumption vector q

( ) .f 1 0 0 1 0 1 1 0 -8 VP(p ,p ; q ) P(p ,p ; q ) = P(p ,p ; q),

where q. ~ r;:---;qo1
~ y'a~ q~ In the same way the quantity index

should be calculated using an intermediate price vector p ,
- .101
Pi ~VPi Pi ' such that

(9) 10- 10-P(p ,p ; q) Q(q ,q ; p) 1 1 0 0P .q /p .q

Vectors q and p exist by the mean value theorem: _~ continuous function

f: mn.... lR assumes all values between f (xl) and f (x2 ) on any contin-

t ' 1 d 2uous ard connec ~ng x an x .

These indices are symmetric in respect to situations 0 and 1,

but in time series analysis the reference quantities q and prices

p change in time. Therefore, e.g., in time series studies

p(pl,pO; q) for different pl:s is not literally a 'constant

utility price index'. These problems are often ignored in literaturE

Our analysis is in the spirit of Theil (1967). Theil proved that

the Tornqvist type of price index approximates quadratically

the Economic Price Index calculated on the utility level corre-

sponding to the geometric mean of real incomes. As the best

index number formulas - e.g. Fisher's Ideal Index, Tornqvist's

index, our new indices etc.' - may b-e shown' to approximate each

other guadratically for small relative changes in prices and
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quantities, they all give quadratical approximations to the

Economic Price Index calculated at the geometric mean of real

incomes, see Diewert (l976b) and Y. Vartia (l976b) for newer

results.

I interpret these results as speaking for the descriptive approach.

They show, it seems tome, that index formulas based on a completety

descriptive approach are able to contend successfully with the

Economic Indices on the home field of the latter: in the ideal

world of the demand theory.

It is impossible to arrange a similar c9ntest on the home field

of descriptive indices (in the general situation, where the

prices and volumes change freely), as the Economic Indices simnly

cannot be transferred to this more general world. Their definition

presupposes a connection between prices and quantities given by

economic theory.

2.4. On Leontief's quantity index

To illustrate some problems and different interpretations I want

to analyse a critical article by Leontief (1936), which seems to

contain profound but often neglected results. By formalizing

Leontief's notion of a quantity index we get a different definition

for this general concept. This should show that even in the

economic theory of index numbers there is no complete agreement

about the 'best definitions'.

'.
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Leontief's conclusions are radical: Economic price and quantity

indices are nonmeasurable magnitudes, which can be described

only a$ being larger or smaller than one. We cite Leontief

(1936) D. 48:

"A method of index number calculation based solely on a
given 'system of tastes' as represented by a succession of
indifference lines cannot possibly lead to any other result
than a series of non-measurable magnitudes. If, notwith
standing, these results are given in the form of definite
numbers, we have to discard their numerical meaning entireI}
and take into account only the respective order of magnitude
In so far as such an index number represents a ratio betweer
two composite prices or quantities, its economic signifi
cance, if it exists at all, can be represented in terms of
one of the three signs: >1, <lor = 1 (or using percentages:
>100 per cent, <100 per cent, = 100 per cent). Any further
numerical definitess which an index number seems to
convey is devoid of economic meaning. No wonder that
every attempt toward a numerical interpretation, in
the given circumstances, produce nothing but confusion".

According to Leontief's view a statement like "the volume of

consumption is 10 % greater than last year" means only that

consumption has increased. Leontief' s criticism is based on the

ordinal character of the utility function. He does not present

his conclusions as mathematical theorems but characterizes them

mostly verbally. These characterizations are perhaps excessively

radical and easily ~isunderstood.

Much of Leontief's analysis is based on lower and upper limits

of Q(ql,qO; p*). His table 1 intends to express how little can

1 ° * *be inferred about the ~n!iEeJ~n~~I!...Q(q ,q ; p ) £f_t~e ~aEi~b!.e_p_

for a fixed pair (ql,qO) when (pO,qO) and (pl,ql) are equilibrium

points and we know only which of the nine possible cases

° 1 ° ° > 1 1 1 .0 > . .Lq = P .q /p .q ~ 1 and Pq = P .q /p .q ; 1 app11es. For 1nstance

if Lq = 1.0095 > 1 and Pg = 0.9745 < 1 then we know that
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o ( 1 qO.... q, ,

function

pO) ~ 1.0095

10*Q(q ,q ; p )

101and Q(q ,q ; p ) ~ 0.9745. Thus the

* *of p may be for all p smaller than 1,

*for all p greater than one or identically one. One of the

cases applies to a fixed system of tastes.

SCHEMATIC REPRESENTATION FOR EQUATIONS (6) AND (7),

NONHOMOTHETIC
CASES

ALMOST HOMOTHETIC
CASES

"

p*

LqQ(q1. qO; p*l

..."' ,.._•._._ .
.......~ .

I

1 I.:::.:=:::...r......{........,:::::::::..::::::::::::.
Pq :

I

01 !; •
p' pOp"

Q(q1. qO; p*l

~I I
I I

01 I I •
p' pO

11 =i

Leontief gives his conclusions in his table 1 (notation ours) :

Leontief's table 1

"Upper limit" "Lower limit" The magnitudes

L =pO.ql/pO.qO 1 1 1 0 of the "true"
P =p .q /p 'q quantity indexg q

I 1 1 1

II 1 >1 >1

III 1 <1 <1

IV >1 1 >1

V >1 >1 >1

VI >1 <1 >1 (Indeter-
< minate)

VII <1 1 <1

VIII <1 >1 >1 (Indeter-
< minate)

IX <1 <1 <1
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However, Leontief's cases II, VII and VIII are impossible

if the data is generated according to the demand theory.

This follows from equations (6) - (7) and the fact that

Q(ql,qO; p*) is for a fixed pair (ql,qO) and for all p*:s on

the same side of 1 unless it is identically one. Note that this

10*does not apply to pep ,p ; q ), which may well cross the 1-

surface. l ) Cases II and VIII are wrongly classified also in the

Revealed Preference table given by Diewert (1976a):

Revealed preference Table I:

P < 1 or Pq > 1 orq -
1 1 1 ° pl.ql > pl;qOp -q ~ p 'q

Lq < 1 or ° revealed Inconsistentq

° 1 < pO .qO 1 preferences havep 'q preferred to q :

ql -< qO been revealed

Lq ~ 1 Zone of 1 revealedq

pO'ql ~ pO'qO Indeterminacy preferred to qO:

ql> qO

1) This is an example of the nonsynunetry (" nonduality ") between
prices and quantities in the demand theory.
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A complete crosstabulation of the nine cases gives us a sharper

picture of the situation:

Revealed Preference Table II:

P < 1
q

P
q

1 P > 1
q

L < 1
q

L = 1
q

L > 1
q

lncon-
1 < q 0 sistent Inconsistent

q prefe- preferences
c~ences

1 -< .0 1 0 Inconsis-tentq ..., q q ""q preferences

Zone of 1 0 1 °Indeterminacy
q ;eq q > q

In Leontief's case I we have ql qO, which sharpens the Zone of

possible that

pI) ~ 1.

(which is possible in the case of demand

Indeterminacy in Table I. In Leontief I s case IV, L > 1 and P = 1,
q q

we know thattheory)

1 ° ° 1 0Q(q ,q ; p ) ~ l+€, where €=Lq-l > 0, and Q(q ,q ;

* 1 ° * 1 0Therefore Vp : Q(q ,q ; p ) ~ 1 or q ~ q . It is

ql ~ qO here, i.e., Leontief's proposition is too strong.

In the same way L = 1 and P < 1 implies ql~ qO, also here
,q q

Leontief claims too much. Note that we succeeded in evaluating

more exactly the boarderline of the Zone of Indeterminacyl) in Table I.

1) It seems that in Leontief's example on p. 51 the numbers or
the symbols or both are badly mixed up.
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Frisch (1936) states on p. 21 correctly (if inconsistent

preferences are excluded) that P
q

> 1 implies ql:>qO and L
q

< 1

implies ql< qO. Thus far everything is comprehensible, but

Leontief claims more (p. 50):

"The "true" quantity index, even if successfully obtained,
in general has still no definite numerical meaning. It
is a magnitude defined solely in its relation to unity."

I agree, if the meaning of the proposition is interpreted as

*follows: Let f(p ) be a function which is either (A) always> 1

or (B) always < 1 or (C) always = 1. Then we can infer

(A) f (p) > 1 for some p ..

* *
f (p ) > 1 for all p

(B) f (p)< 1 for some p ..

* *f (p )< 1 for all p

(C) f (p) = 1 for some p ..

f (p) = 1 for all p.

o °Itmight happen for some such f and p that f(p ) = 1.25

but for every E>Q there exists a p such that l<f(p)<l+E.

But I must disagree, if Leontief's proposition is interpreted

to mean, e.g., that in any situation (say in my fixed indifference

system describing the private consumption of 30 consumption

categories in Finland 1976-77) a result such that Q(ql,qO; pO)

= 1.25 means no more than say Q(ql,qO; pO) = 1.01; i.e.,

1 °only that q >- q
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The disagreement arises because my indifference system may be

. 1 ° ° *such that from Q(q ,q ; p ) = 1.25 I can infer that Vp:

10 * * 10 *1.2 ~ Q(q.,q ; p ) ~ 1.3 and not only that Vp: Q(q,q; p » 1.

In contrast to Leontief I would like to say: The true quantity

index Q(ql,qO; p*) has for any p* a completely definite numerical

meaning and the totality of its values for a given pair (ql,qO)

gives us the numerical limits between which any quantity comparison

lies.

It seems evident that Leontief's verbal explanation is too strong

and apt to be missunderstood. Had Leontief meant something about

which I just expressed my disagreement above, he would probably not

have presented his geometric construction of the quantity index,

which we next want to represent algebraically. Leontief considers

three commodities A, Band C and shows how, by defining a new

composite commodity I containing a fixed proportion of Band C,

the number of commodities is reduced to two, namely A and I.

Two commodities may be represented similarly by a single composite

commodity.

The idea in his construction is as follows. Choose fi,rst an

arbitrary relative combination of the commodities represented by

the vector q = (ql, ••. ,q ), where all q.>O. This vector q represents
n ~

a new composite commodity, which contains a fixed proportion of

the original commodities.

"
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Next determine how many 'units' A of q is needed to make our

consumer indifferent between Aq and a given consumption vector q:

qz

Find A>O such

that Aq ..... q.

<h

q,

This is a generalization of a method used, e.g., in the analysis

of energy consumption in which the total consumption of different

categories of energy is expressed, say, in coal equivalents.

Here the equivalence is defined usually by the energy contents

and fixed transformation coefficients are used.

We may express any two consumption vectors qO and ql in terms of

index Q(ql,qOlq) is then given by

our q-equivalents:

10Q(q ,q Iq)

0- ° 1- 1A q ..... q and A q ..... q • Leontief' s quantity

Al/AO

q,

Leontief's indexl ) is the ratio Al/A O between the amounts of the

'composite commodity' q which would just compensate the commodity

° 1bundles q and q .

1) After writing this I discovered from Samuelson and Swamy (1974),
note 17, that this is just Pollak's definition of the quantity
index, which he has given in an unpublished paper. Malmqvist
(1953) has given still another but a very similar definition,
see e.g. Diewert (1976b). All these definitions have their 'dual'
price analogs so that the economic theory has not succeeded
in giving only one 'right' definition for the 'true indices'.
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10- . 1 ° 1 ° 1 °Q(q ,q Iq»l, = 1 or <1 accordlng to whetherCJ: >q , q "'q orq:.<.q

any choice of index corrunod1ty q. This meane: th?t Q(ql,qOlq) is

itself a 'cardinal indicator of utility'; i.e., Q(q,~OI~) is for

fixed qO ann q an increasing function of the utility function

u(q) and likewise Q(ql,qlq) is for fixed ql and q a decreasing

function of u(q), compare Samuelson and Swamy (1974) p. 568.

It is easily seen that Q(ql,qOlq) is independent of q only in

the homothetic case. In this simple and unrealistic situation

Leontief's point disappears: in the homothetic case we can

express in exact figures the changes in the quantity of consump-

tion. This reveals that Leontief' s verbal conclusions are not

always true. There exist systems of preferences for which they are

valid but usually more can be said about price and volume indices

than Leontief claims.

for

"

* *If the indifference surfaces S(q ) = {qlq~q } are 'almost homothetic',

the quantity indexQ(ql,qOlq) must be 'almostquantitative'; i.e., for

a given pair (ql,qO) it varies only little when q is changed.

For instance it may happen that Q(ql,qOlq)E [1.2, 1.3] when q

gets all its admissible values and (ql,qO) is a given pair.

Doesn't this mean not only that consumption has increased (ql> qO)

but also that it has increased at least by 20 % but by not more than 30 %?

To analyse the situation we will approximate the u~perl) indifference

1 1 1 0surface S(q ) = {qJq....,q ), where q >q , both from below and above

1) By analysing conversely the lower indifference surface we
get just the converse results.
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V A
by surfaces Sand S of the same form as the lower indifference

surface S(qO). Define first a = inf Q(ql,qOlq) and a = sup Q(ql,qOlq;

over all admissible q:s. Leontief's quantity index then lies

between these limits. As Leontief stresses, in the general case

we can prove only that l~a~ a, in the homothetic case, however, we

Y {I -0 -0 0 -0have l<a=[3.Usuallyl<a<[3<oo.Nowdefine S = q 3q:q ..... q &q=aq}

A -0 -0 ° -0 -0 ° Y Y -1 1and S = {ql3q :q .... q &q=[3q } so that for all q E:S(q ), qE:S, q E:S(q,)

/:; A -0 v -1 A
and yES we have q ~q ~q ~ q.

-0 Y -1 A
If 1< a< [3<00 then q <q ~ q ~ q. We will next show that the Economic

1 0 * *Quanti ty Index Q(q , q Ip ) , too, lies between a and [3 for any p .

*Take some p

1 ° *and let Q(q ,q ;p )

* 1 * °e(p ;q )/e(p ;q )

* -1 *-0P .q /p .q ,

-1 1where q ~ q and

-0 0q ~q .

-DoL -DoL -1< -0For l~ a ~ [3 we have q ;;;:, aq' i;:) q ~ [3q hecause they lie

respectively on S(qO), s, S(ql) and ~. Taking inner products

* * -0 * -0 * -1 * -0with p we get p . q ::; a (p . q ) ~ p . q ~ 13 (p . q ). The two last

*inequalities result from the fact that the budget plane e = p . q

becomes tangent to ~, S(ql) and S in this order. The proposition

follows by dividing by p*. qO.
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2.5. Conclusion

I have briefly reviewed the main approaches to the index number

problem. The descriptive (or atomistic, statistical) approach

is usually divided into stochastic and test theoretic (or

essensially axiomatic) approaches. In this approach the problem

is investigated with no substantial help from any subject matter

theories, using only logic, mathematics, statistics and other

method sciences. On the contrary the economic (or functional)

approach regards the index number problem as a part of some economic

theory and therefore the proposed solutions waverl ) together

with the mother theory.

The subject matter of this chapter is highly controversial and

if the different approaches are difficult to separate from each

other, they are even more difficult to evaluate. The descriptive

approach is more robust than the economic approach, but the other side

of the coin is that the latter yields more exact and clearly

interpretable results if the underlying hypothesis happens to be a

correct one. The efficiency of a procedure is, of course, increased

if more correct information is used, the problem being in the

correctness of the 'information', cf Terasvirta and Vartia (1975,p.6).

1) If a solution does not find enough support in the descriptive
approach, it falls together with the mother theory. If we choose,
e.g. a special case of the r.obb-nouglas utility function as our
utility function, u(q) = (q ·q2 ... q )l/n, then the Economic Price
Index p(pl,pO; q*) is the uAwe~ghtea geometric mean of the price
ratios (p~/p9). I would not draw, like Swamy (1965), any general
conclusions trom this index number formula, which falls together
with its naive mother theory.

"
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A given method of index calculation - e.g. Fisher's index used

as a base index - may be evaluated using both approaches and

this method scores high in both cases. Therefore Fisher's index

does not need support from economic theory to be applicable.

Other methods may seem still better from some·or all angles.

Our aims is to develop further the descriptive approach, in order to see

how far we can get without anchoring our results to any particular

economic theory.
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3.

3.1.

THE DEFINITION OF INDEX NUMBER FORMULAS

AND CERTAIN DESIDERATA CONCERNING THEM

General

Irving Fisher, one of the pioneers of the study of price and

volume index numbers, developed numerous excellent index number

formulas and showed, on the other hand, the uselessness of

several other generally employed index number formulas, Here,

an attempt will be made to define axiomatically the concept

of an index number formula in such a way that at least obviously

useless formulas will remain outside its scope. Our approach

is descriptive as contrasted to the economic approach and we

try to represent axiomatically the main ideas of Fisher's

(1922) 'test approach'. Our approach is in the spirit of Swamy

(1965) and especially Eichhorn (1976), although neither of them

tries to define the general concept of an index formula.

Consider the conunodities ai' i=l, •.. ,n, which are sup1')osed to be

perfectly homogeneous and of equal quality in the course of

examination. We suppose that a complete set of prices Pi'

quantities q. and values v. = Piq . are known for the set of
~ ~ ~

conunodities A = {al, ••• ,an }:

.'



commodities:

prices:

quantities:

values:

a l ,a2 ,···,an

Pl,P2,···,Pn

ql,q2,···,qn

v l ,v2 ,···,vn
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Let us imagine that a.:s are commodities sold at a commodity
~

exchange and that the data has been converted so as to correspond

to the sales during a given period (e.g., one year). The prices

are unit prices, such as 53 pennies/litre, the quantities are

expressed in physical units or ~re dimensionless numbers and

the 'values v. = p.g. are expressed in monetary units. The
~ ~ ~

total sales of the exchange in these commodities is

(1)
n n

V = L v. = L p.q.
i=l ~ i=l ~ ~

p • q

using the inner product notation for vectors p and q.

The value share of a. is denoted by w. = vi/V.
~ ~

Assume that the data in question are known for two time periods,

•yesterday' to and 'today' t l , which need not necessarily be

equally long, provided that the data has only been converted

so as to correspond to, say, a period of a year's length.

The variables from different periods are indicated by super

scripts.

The aim is to define the "price" P and "volume" Q of the total

sales in such a way that, for both periods,

"

(2) Vk L k k = pkQk
Piqi k = 0,1
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and that the ratios

(3) pI/pO and Ql/QO ,

which are independent of the units of measurement, will indicate

the changes that have occurred in the average prices and

quantities. Provided that the decomposition (2) is known, the

ratios (3) can immediately be computed. On the other hand,

the ratios (3) do not uniquely determine the decomposition (2),

which only yields p and Q up to a multiplicative constant

("unit of measurement") •

If the 'price and volume indices' in (3) are defined in a reason-

able way and a decomposition vO = pOQO is determined in one way or

another, we may calculate pI ana Ql from

(4) pI = pO(pl/pO} , Ql = QO (Ql/QO)

It should be stressed, however, that the determination of a ratio

is not a distinctive characteristic of an index number; instead,

the problem of index numbers consists in how the decomposition (2)

should reasonably be defined. Therefore, I do not consider it

appropriate to call the price relative p~/p? of a commodity a.
~ ~ ~

a price index, as it is sometimes called.

The usual approach is to try to define the indices pI/pO and

Ql/QO directly. The idea underlying this approach is to determine

the price level, and the so-called ideal index,

(5) pOl/pO 1 ° 1 qlE..-:S- E..-.:.S....(00) (0 I)
p.q p.q
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strongly recommended by Fisher (1922), is perhaps the index

most generally regarded as the one best suitable for the purpose.

Another way of thinking, and a more fruitful one in my opinion,

is to try to determine not the price level but the relative

change in prices, as did Divisia (1925), Tornqvist (1936),

Theil (1973). The best indicator of the relative change is the

logarithmic change, with the aid of which (1) may be expressed as

(6) log (Vl/VO) log(pl/pO) + log(Ql/QO)

Tornqvist, for example, defined the log-change of the ~rice index

as a weighted average of the individual log-changes in prices

(7)
log(pl/pO) = L Ci log(pi/p~)

LC
i

where the weight Ci is in practice defined as an arithmetic

average of either old and new values or value shares.
l

) other

specifications of (7) and their variations will be introduced

and discussed later.

Next a mathematical definition of a index number formula will be

given, formulated in such a way that certain inappropriate formulas,

such as the "price index formula"

(8) 1 °Lp./Lp.
~ ~

sometimes employed, will be excluded. On the other hand, the

formula used by The Economist in 1927-1958,
1

n 1 ° Ii(9) (IT (p./p.»
i=l ~ ~

1) In Finland this formula has been used, e.g., by the following:
The Bank of Finland, see Tornqvist (1937) , The Post and
Telegraph Office, see Tornqvist (1971), the State Alcohol
Monopoly, see Nyberg (1967) and in some special studies
published by The Central Statistical Office, see Somervuori (1972)



56

based on price relatives does qualify for a price index formula.

The price and volume indices could be denoted as formal ratios

(3) but to avoid possible confusion we will denote them as P~~
tl 1 1

and QtO (or shortly Po and QO) .

3.2. The definition of index number formulas

Fisher (1922) considers various index number formulas, but he does

not give any exact definition of the concept. The same is true for Frisch

(1930), Wald (1937), Swamy (1965)and Eichhorn (1976), perhaps the

most authorative investigators of Fisher's test a9[)roach. There does

not exist any generally accepted definition of the concept of

an index formula in the descriptive (statistical, atomistic)

approach. As we found out in the economic approach there are

several exact but competing definitions.

The index number formulas P~ and Q~ should be real valued functions

1010 1010 .of 4n-vectors (p,p ,q ,q) and (q,q,p,p) respect~vely

having some characteristic properties. These properties are divided

here into two groups, 'basic properties' required to be possessed by all

index formulas and I desiderata' , which mayor may not be satisfied.

We propose and use the following definition.

Definition. Index number formula:

Let n be a positive integer and f a positive real valued function

defined for all 4n-vectors (xl,xO,yl,yO) having positive components,

f:lR~n-+lR+. Suppose that f has the following basic properties:
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A. The eonwodity reversal test

v~:~ is a permutation of (xl' •.. ,x
n
): V{Xl,XO,yl,yo)EE;n:

1 ° 1 ° 1 ° 1 °f{~{x ), ~(x ), ~(y ), ~(y ) - f{x ,x ,y ,y ).

B. The unit of measurement test

n 1 ° 1 ° 4nVAEE+: Vex ,x ,y ,y ) E lR+ :

1 1 ° ° I I ° °f (Plxl ,···, AnXn ), (AIX I ,···, AnXn ), (f~, ... , f~), (f~,···' f~» =

I 0 I 0f (x , x , y , y )

c. The monetary unit test

I 0 I 0 4n
veEE+: VdEE+: Vex ,x ,y ,y ) E lR+ :

I 0 I 0 I 0 1 0
f{ex ,ex ,dy ,dy ) - f{x ,x ,y ,y ).

D. The weak proportionality test

I 0 I 0 4n
VkEE+: Vex ,x ,y ,y ) E lR+ :

o 0 0 0f{kx ,x ,y ,y ) = k.

E. The weak identity test

I ° I 0 4nVk EE +: V(x , X , Y , Y ) E E + :

o 0 0 0f (x , x , ky , y ) = I.

Then f is an index number formula.
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'.

In property A we used the concept of a permutation, which may

be defined as follows: A linear mapping $ = ($l, ..• ,$n): mn~mn

is a permutation (of the components) of its argument vector

= I for all i.

for all i, k and
n

= 1 for all k and L D.$k(x)
k=ll

x = (xl' ... ,xn ) if in every column and row of its transformation

matrix there is only one nonzero element which equals unity.

n
xElR , Di$k(x) = ° or 1 andThis means that

n
LD·$k(x)

i=ll

By giVing different interpretations to the 4n-vector (xl,xO,yl,yO)

we get price and volume index formulas.

A price index formula is a function f applied to a 4n-vector of

1010 .. 1010the form (p ,p ,q ,q ) and mapP1ng 1t to the number f(p ,p ,q ,q ).

This is a price index comparing the the price-quantity situation

1 1 .. ° ° 1 ° 1 °(p ,q ) to the sltuat10n (p ,q ). If P = kp and q = q we have

according to D: f(kpO,pO,qO,qO) = k. We sometimes use the notation

1- ° 1 ° 1 ° 1 ° tl 1.f(p ,p ,q ,q ) = pep ,p ,q ,q ), or shortly PtO or Po 1f the

arguments are determined from the situation.

A quantity index formula is a function f applied to a 4n-vector of

1010 .. 1010the form (q ,q ,p ,p ) and mapplng lt to the number f(q ,q ,p ,p ) .

This is a quantity index comparing the price-quantity situation

(pl,ql) to the situation (pl,qO). It has according to D the basic

property of a quantity index: f(kql,qO,pO,pO) = k. We use for the

quantity index f(ql,qO,pl,pO) sometimes alternative symbols

1 ° 1 ° tl 1Q(q ,q ,p ,p ), QtO or QO'

Our definition of index number formulas uses data from the two

. . t . t' (l 1)pr1ce-quantl y sltua lons p,q , ° °(p ,q ) only. Therefore a more

complet~ name for our index number formula f would be a direct

comparison (d.c.) index number formula. If we make an indirect price



via a third situation, say t 3 , by defining

P; are calculated by direct comparison index

usually depends on (p3,q3). Therefore this
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comparison of to and t l
131 3

Po = POP3 , where Po and

1number formulas then Po

P~ is usually not a d.c. index number formula between situations

to and t l · The two main strategies (i.e. base and chain methods)

for producing comparisons between various price - quantity

situations are discussed in chapter 4. The base and chain methods

are examples of how d.c. index number formulas can be used in

constructing index series. Of course more complicated strategies

for constructing index series may be imagined and even strategies

which cannot be represented using direct comparison index number

formulas only.l} We do not, however, discuss these more complicated

strategies here. 2}

t t Ll t-2 t-l t t-lI} Define P by logP 1 = -2(w. +w. }log (p./p. )
t-l t- 1 1 1 1

This P~ 1 is not a direct comparison ind~x number formula,
because-lt contains the value shares wt- from year t-2.
It may offer, however, a reasonable coffiparison of prices
bEtween t-l and t if the value shares change slowly. Chaining
P l:s provides an example of a strategy which cannot be
r~presented using direct comparision index number formulas
only. It seems to me very difficult to state in any general
terms which is and which is not a reasonable strategy if
strategies of this kind are included.

2) Note also that we have defined an index nwnber formula f al3 a function
from lRtn into ~. Any function f has many different representations, i.e.
different" formulas" , which determine the function. For instance
Laspeyres I price index formula, pIa = Lo+q9/I:oOqQ or no. 53 in Fisher's

~L.J. "1;;.M(1922) system, determines the same fUnCtlon f:=+!"->lR+ as the followinq
formulas:

Fisher's no. "formula" or the method of calculation

001 0 0 03 LPiqi (Pi/Pi}/LPiqi
10 0110 01 I

6 (V /V }!(LqiPi(qi/qi)/LqiPi i
I

17 1 0 1 0 0 1
LPiqi/LPiqi(Pi/Pi)

I1 0 1 1 1 1 0 120 (V /V }/(I:q.p./I:q.p. (q./g.})
1 1 1 1 1 1

1 0 1 1 0 160 (V /v )/(I:qiPi/LqiPi)

-"
. . 0101000Stlll other expresslons as LW i (Pi/Pi)' P .q /p -q , etc. are

easily found.



- The commodity reversal test
The time reversal test
The factor reversal test
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Perhaps the choice of our conditions can be motivated best in the

way Fisher (1922) originally did. The commodity reversal test was

introduced by Fisher p. 63 as follows

"In short, we must, in some sense, treat alike: (a)
any two commodities; (b) the two times; (c) the two
factors.
The first test is seldom if ever violated. It is mentioned
here for completeness and to afford a basis for a better
appreciation of the two less obvious tests which follow.
In order to avoid confusion the three tests will be dis
tinguished as:

"Preliminary"
Test 1
Test 2 -

Any formula to be fair should satisfy all three tests.
The requirement as to commodities is that the order of the
commodities ought to make no difference - that, to be
specific, any two commodities could be interchanged, i.e.
their order reversed, without affecting the resulting
index number. This is so simple as never to have been for
mulated. It is merely taken for granted and observed
instinctively. Any rule for averaging the commodities
must be so general as to apply interchangeably to all
of the terms averaged. It would not be fair, for instance,
arbitrarily to average the first half of the commodities
by the arithmetic method and the other half by the geometric,
nor fancifully to weight the seventh commodity by 7 and
the tenth commodity by 10 so that if the seventh and tenth
commodities were interchanged the result would be affected."

The time and factor reversal test will be commented on later when they

are introduced into our system as desiderata. The commodity reversal

test rules out formulas such as 1 1 ° 1 °Po = 0.2(PI/Pl) + 0.8(P2/P 2)
11100 .

or Po = (2Pl + 8P2)/(2Pl + 8P2). But does 1t exclude the formula

of Lowe (which is no. 9051 in Fisher's system) as well,

(10) pI
o pl.q/pO.q

where q = (ql"·' ,qn) E:lR~ is a fixed vector describing

quantities of al, ••. ,an , which q is independent of qO and ql

A common sense calculator of Lowe's index (10) of course permutes

q together with pO and pI to get
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(11) lji (pI) .lji (q) /lji (pO) .lji (q)

which necessarily equals (10). So (10) seems to satisfy the

commodity reversal test. However, we must formulate (10) accor-

ding to our definition of an index formula and a straight inter-

pretation would be a function f such that

(12) n 1 ° 1 ° 4n .3qE:ffi.+ : V (p .p ,q ,q ) E:ffi.+ .

1 ° 1 °f(p ,p ,q ,q ) 1 °p .q/p .q

But here f does not satisfy A, because q is not permuted although

pI ,po ,ql and qO were. The interpretation (12) describes

the behaviour of an unsensible calculator (e.g. electronic computer)

of Lowe's index (10). But is there any interpretation of (10) as

a function (pl,pO,ql,qO) ~ f(pl,pO,ql,qO) which satisfies (13)-(15):

(13) 101 °f(p .'p ,q ,q ) 1 °p .q/p .q

(14) 101 °f(lji(P ),lji(p ),lji(q ),lji(q ») lji (pI) .lji (q) /lji (pO) .lji (q)

(15) pl.q/pO.q = lji(pl).lji(q)/lji(pO) .lji(q) ,

where lji is a permutation.

We prove that no such fixed function f::ffi.:n~:ffi.+ exists. Equation

(15) is always trivially true. To see that (13) and (14) must be

different functions calculate the first partial derivates

10 1 0 1010"* ..01 f(x ,x ,y ,y ) for x =x =y =y =1 (a vector of un~t~es) from

(13) and (14). We get ql/Lqi and ljil(q)/Lljii(q) = ljil(q)/Lqi

respectively. These are not generally equal, unless ql= ••• =qn



62

when (10) reduces to EP~/EP? Therefore (101 does not satisfy
~ ~

the commodity reversal test unless all q.:s are equal, in which
~

case it does not satisfy the unit of measurement test. I have

found nowhere in Fisher (1922) a statement that all his formulas

9001-9051 fail to satisfy the commodity reversal test unless

the weights are equal.

The essential point in the discussion wasthatq was regarded as

independent of ql and qO. If q'is an approximation to, say, their

average ~(ql+qO) the situation changes qualitatively.

Let us again use (10) but define now

(16) qi
1 0

h(qi,qi) = 10k IWf[!2(q~+q?)10-k]
~ ~

but q. falls short of -21(q~+q?) by less than 10 %
~ ~ ~

and its values are integers 10,11, •.. ,99 multiplied. by 10k •

and INT(x) is the greatest integer m for which

110Now q.< .... (q.+q.)
~- L. ~. ~

where k is the unique integer for which _12(q~+q?)l0-kE £10,100)
~ ~

m ~ x.

So the representation of this P~ reads

(17) 1 0 1 0f(p ,p ,q ,q ) 110 010Ep.h(q.,q.)/Ep.h(q.,q.)
~ ~ ~ ~ ~ ~

This f satisfies A but is not a continuous function of ql and qO.

Partly for this reason we did not include continuity in our list

of basic properties. However, although (17) almost satisfies the unit of

measurement test it does not satisfy it exactly. Change, for

instance, only the unit of a l so that q~ changes to q~ fA and

k kPI to API .(k 7' 0,1). The only terms affected are

(18) k 10k 1 °
Plh(ql,ql)~ APlh(ql/A, ql/A) k 0,1 .
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Unfortunately these depend on A, because AP~ increases continuously

with A but h(qi/A, q~/A) decreases only stepwise. Therefore (17)

does not qualify fora price index in our system. Anyhow (17) is

always a good approximation to a good price index formula

(19) 1 110 0 1 0Po = P .(q +q )/p . (q +q )

We thus propose to regard (17) as a good approximation to a good

index formula, not as a good index formula. These complications should

show how strong such qualitative properties as A and B prove to be.

The unit of measurement test is presented in Fisher (1922) p. 420

under the head of commensurability:

"An index number of prices should be unaffected by
changing any unit of measurement of prices and quantities.

This test eliminates all the "ratios of averages" as shown
in Appendix III and also Formula 51 in our n~ered series,
together with those derived from, or dependent on 51,
viz. 52 and 521. All the other formulae obey this test,
which may be considered of fundamental importance in
the theory of index numbers."

Here Fisher fails to note that Lowe's formula (10), Le. his

formula 9051, does not satisfy the unit of measurement test.

Examples of the "ratios of averages" considered by Fisher on.' ..

p. 451-457 include, e.g., the simple averages !I:~~/.!.I:p? = I:p~/I:p? ,
n~ln'-l 11

o 1
I: (lip. ) II: (lip. )

1 1

1 lin 0 lin
(TIp.) I(TIp.)

1 1
(TI(pi/p~» lin

of which the last is an "average of ratios" as well and thus

qualifies (in this respect) for a price index formula.

Of the weighted averages, e.g.,

( 20)

1 1
I:qiPi

--1
I:qi

o 0
I:qiPi

I -0·
Lqi

1 1
I:qiPi
---00
I:qiPi

1
I:qi

I ~O
I:qi
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does not satisfy this test but in

o 1 o 0 0 1
L:qiPi L:q.p. L:q.p.

(21) / -l:...2: = -l:...2:--0- o 0 0
L:qi Lqi L:qiPi

the sum of old quantities cancels out and this removes all traces

of incommensurability, Fisher (1922) p. 455. Fisher discusses on

p. 456 the cases where averages of prices (e.g., 20) can properly

be used:

"The only cases in which it is really justifiable to use
the genuine method of taking the ratio of averages is
where the units are really or nearly commensurable. Thus,
it is entirely legitimate to obtain the index number of
various quotations of one special kind of commodity, such
as salt, by taking the average of its prices in different
markets. In such a case the precaution, so essential in the
previous examples, of forcibly altering numerator to suit
denominator, or vice versa, does not need to be taken.
The true average for each year can be taken independently
of the other years. Another case is where the commodities
are of one general group, such as kinds of coffee or fuels,
e.g. coal and coke where the same unit, such as the ton,
is used for all so that there is no danger of changing one
without, at the same time, changing the others equally.

The most interesting practical examples, however, are the
average wage of different but similar kinds of labor and
the average price of different but similar kinds of
securities, in which cases the objection of incommen
surability applies but not very strongly. In the stock
market the average price of stocks is taken, the "common
unit", if it may be so called, being the 'par value'."

Fisher thus argues that, e.g., (20) is a proper index number

formula if "the units are really or nearly commensurable". This

is the central problem of the quality changes, which cannot be

pushed aside as easily as Fisher does. We cannot approve (20)

as a proper price index (in our axiomatic system), but it may offer

a good approximation to proper price indices under some

circumstances. Without attempting a satisfactory treatment

'.
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of these most interesting and difficult problems we want to make

the following remarks. Let us imagine that the commodities

al, ... ,an for which the 'price index' (20) has been calculated are

various kinds of coke of, say, SITe subgroup 321.8 as in our imports

example in chapter 7. Their quantities ql, .•• ,qn are measured

in tons, so that (20) is the ratio of new and old average unit

values per ton or, equivalently, the value ratio divided by total

new and old quantities expressed in tons. If (20) is accepted

as a price index, this means that the ratio of the new and old total

quantities in tons,

(22 ) 1 0Lq.!Lq.
1 1

shouldbe accepted as a proper quantity index corresponding to it.

It is easier and more natural to discuss the merits and dismerits

of the 'quantity index' (22) than those of the 'price index' (20).

If coke were perfectly homogeneous material then there would not

exist any aggregation problems and (22) would be the proper

quantity relative for coke. If the prices of these 'various kinds'

of coke, al, •.• ,a , are identical, p~ = p~
n 1 ]

and j, then there is really no !h~oEe!i£a!

and p? = p~ for all i
1 ]

reasons for the separation

of al, ••• ,an , although it may arise from !n~t!t~tional or other

£r~c~i£a! reasons. In this case we have

(23)
1 0 1 1 0 1

Lqi!Lqi = LqiPi!LqiPi
1 101q .p !q .p

1
because Pi p~ for all i and j and similarly

]

(24) 1 0
Lqi!Lqi

1 0 00
LqiPi!LqiPi

1 000q .p !q .p
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if p~ = p~ for all i and j. Thus if various kinds of coke are

perfectly homogeneous in their qualityl) which should be reflected in

such a way that their prices are equal, then (22) would equal both

Paasche'sand Laspeyres' quantity indices (or in fact any reasonable

quantity index: we have no index problem in this case) .

If the old (or new) prices for various kinds of coke differ only

little because of minor quality changes or for other reasons,

then (23) or (24) are true only approximately. Their right hand

sides continue to be proper quantity indices, but their calcula-

tion would be actually futile, because (22) would give

practically the same results. The situation changes drastically

if the units of measurement of some a.:s are changed to say
~

kilograms and others are kept unchanged. Then the terms of (22)

are empirically meaningless sums of numbers expressing quantities

of a. in tons or kilograms. Equations (23) and (24) are no
~

longer even approximately true, while their right hand sides remain

unchanged becausePaasche's and Laspeyres' indices satisfy the

unit of measurement test.

1) We do not discuss the problems caused by, e. g., regional differences
in prices.

'0
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Our analysis is completely different to that of Samuelson and

Swamy (1974) p. 571, who claim that "the literature, from Fisher

on, including Samuelson (1967, p. 25) and swamyl) (1965, p. 620),

is inadequate on the dimensional invariance test". They appeal to

dimensional analysis and require that appropriate dimensional

constants be added to price and quantity indices. But

this means that. if the units af measurement in the variables

1 0 1 0 .,
p , p , q , q are changed, the lndex functlon f should be changed

accordingly. As they admit, "once one has introduced the appropriate

dimensional constants, we impose thereby no restrictions on the

functional form of the index number." Their analysis (containing

a bad misprint in the example they give)· is in my opinion unsatisfactory.

Why not write the 'dimensional constants' explicitly in the

functional form of the index number, so as to get a function

satisfying our unit of measurement test? What is the use of their

'test' which is satisfied by any index number formula?

Thus we see that great precision is needed in formulating these

'common sense' requirements. We otherwise easily find 'common sense'

in connections where it is apparently lacking, e. g. unsensible use of (22 J

is either approved or ruled out from considerations as Samuelson

and Swamy (1974) do.

1) Swamy (1965) considers only the case A1= ••• =A n as Eichhorn (1976)
has also noted, this being in my opinion the inadequacy of Swamy 's
treatment.



68

The monetary unit test is here expressed as a sYmmetrical property

al though a change in the monetary unit in fact changes only

prices while quantities remain unaffected. The natural interpre

tation of C is in the case of a price index P (cpl ,cpO ,ql ,qO) =

p(pl,pO,ql,qO) and in the case of a quantity index Q(ql,qO,dpl,dpO)=

1 °10.Q(q ,q ,p ,p ). Both these speclal cases of C could have been

represented (in our axiomatics, which includes the unit of measurement

test B) in the following equivalent form

, 1 ° 1 ° 4n 1 ° 1 °C VmElR+: V(x,x,y,y )ElR+ : f(rnx ,mx,y,y) 1 ° 1 °f(x ,x ,y ,y ).

For, according to B, by setting A
l

= ••• =::1.. . n lid we have

(25) 1 ° 1 °f(x /d,x /d,dy ,dy ) 101 0f(x ,x ,y ,y )

and using C' and inserting m cd we get

(26) 1 0 1 0f(cx ,cx ,dy ,dy ) 1 ° 1 0f(x /d,x /d,dy ,dy ) 1 ° 1 0f (x ,x ,y ,y ) .

This implies our original C.

We have chosen very weak forms of the proportionality and identity tests

for our axiomatics. Usually stronger forms are introduced; e. g. ,

Fisher (1922) p. 420 formulates his proportionality test as follows:

"An index number of prices should agree with the price
relatives if those agree with each other."
"The test of proportionality is really a definition of an
average. It is fulfilled among the primary formulae by all
the odd numbered formulae. But none of the even numbered
formulae fulfill it (except Laspeyres' and Paasche's,
which are also odd numbered)."

Fisher's proportionality test is much stronger than ours as it

. 0010 1 0requlres that f(kx ,x ,y ,y ) = k for all y and y . These other

proportionality tests will be presented here as desiderata.

.'
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The identity test is not explicitly presented in Fisher (1922),

but it follows in a strong form

(27) 1 0 1 0 4n 0 0 1 0V(x ,x ,y ,y ) ElR+ : f(x ,x ,y ,y ) 1

from Fisher's proportionality test. The identity test is explicitly

mentioned by Frisch (1936) as p~ = 1 (in our notation) ,

which obviously means a very weak form

(28) V (xl 0 1 0 4n 0 0 0 0,x,y,y)ElR+ : f(x ,x ,y ,y) 1 .

This is implied, e.g., by our proportionality test D. Our formulation

E is slightly stronger and it will guarantee some useful properties

for the collection F of all index number formulas f. Both D and E

are implied by the following proportionality testl )

(29) + + 1 0 1 0 4n 0 0 0 0VkElR : VmElR : V(x ,x ,y ,y )ElR+ : f(kx ,x ,my ,y ) k ,

which we shall, however, present as a desideratum. Note that even

the identify test (28) is violated by some functions regarded some

times as index number formulas. Calculate the price change p~ via

using Paasche's index: p~=(p3.q3/pO.q3).

" 0 1 1 01S not equal to one although p =p and q =q

h " d" 3 1a t 1r p01nt as PO·P3
1 1 3 1 .(p .q /p .q ). Th1S

as required by (28). In the same way we can show that, e.g., the chain

index p~=p~pi need not be unity although p2=pO and q2=qO.

1) This is proposed by Y. Vartia (1976a). Eichhorn (1976) p. 255
mentioned a similar propor~ionality test, where in addition k = m.
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Next we investigate some closure properties of our collection

F of all index number formulas satisfying our definition. Let

fEF. Then f(pl',pO,ql,qO)=p~ is a price index formula. If prices

and quantities are interchanged we get a quantity index

110 1 °QO=f(q ,q ,p ,p ) calculated from the same formula. We have

formulated our axions soas to apply both to price and

quantity index formulas. Therefore, e. g., the monetary uni t test

was formulated symmetrically in x:s and y:s.

In fact our system of indices is constructed so that

any cif our formulas fEF is applicable both as a price and a quantity

index formula. The important arguments' in f(xl,xO,yl,yO) are

the first ones, here the x: s, which determine the main properties

of the index number formula. If we take an fEF and define a function

- 4n - 1 ° 1 0' 1 ° 1 ° -f:lR+ -.lR+suchthatf(x,x,y'y)= f(y,y,x,x), then f~F.

This function f is not an index number formula, because

- ° ° ° ° - ° ° ° °f(kx ,x ,y ,y ) = 1 and not k and f(x ,x ,my ,y ) = k and not 1

as they should be according to D and E.

But if we divide the value ratio pl.qljpO.qO by the quantity

index Q~ = f(ql,qO,pl,pO} we get a new function

"

(30) - 1 ° 1 °f (p ,p ,q ,q ) 110 ° 1 ° 1 °= (p .q jp .q )jf(q ,q ,p ,p )

which should qualify for a price index formula. Fisher (1922)

p. 125 calls this formula the factor antithesis of f. The procedure

(30) applies to quantities in the same way as to prices and the same

function f is defined.

"
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An essential feature in our axiomatics is that F is closed

under the operation of calculating (defining) a factor anti-

thesis of a formula:

Theorem 1. Let fEF and define a function f: IR 1n"'IR + as follows:

( 31)
1 1 0 01 0 1 0 4n - 1 0 lOx .y Ix .y

V(x,x,y,y)EIR+:f(x,x,y,y)= 10 1 0
f(y ,y ,x ,x )

Then fEF. (This index number formula f is the factor antithesis

of f.)

Proof: As already stated, f is defined in IR ~n and is a real

valued and positive function, because it is a ratio of such

functions. We have to show that f satisfies the properties A-E.

Let kE IR + and

- 0 0 0 0f (kx , x , y , y )

A.

B-C.

D.

1 1 0 0 1 0 1 0 .x .y Ix·y and f(y ,y ,x ,x ) satisfy the comrnod1ty

reversal test and thus their ratio is independent of

1 0 1 0the permutation of the argument vectors x ,x ,y ,y

1 1 0 0 1 0 1 0A change of units leaves x .y Ix .y , f (y ,y ,x ,x )

and, thus, their ratio invariant.

1 0 1 0 4n(x , x , y , y ) € IR + • Then

o 0 0 0 0 0 0 0= (kx .y Ix .y )/f(y ,y ,kx ,x )

o 0 0 0k/f(y ,y ,kx ,x ).

- 000 0We see that f (kx ,x ,y ,y ) = k if and only if

o 0 0 0f(y ,y ,kx ,x ) = 1.
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(This is precisely the reason why we have added the weak

identity test E to the basic properties, cf.

Y. Vartia (1974).) The property E is the weakest identity

test which guarantees that f satisfies D.

E. Let kElR + and

- 0 0 0 0f(x ,x ,ky ,y )

1 0 1 0 4n(x , x , y , y ) E lR + . Then

o 0 0 0 0 0 0 0(kx .y Ix .y )/f(ky ,y ,x ,x )

k I k

000 0because f(ky ,y ,x ,x )

1,

k according to E. o
'.

Corollary: The weak factor reversal test.

- 1 0 1 0 4nVfEF: 3fEF: V(x ,x ,y ,y ) ElR + :

1 0 10- 1 0 1 0 110 °f(x ,x ,y ,y )f(y ,y ,x ,x ) = x .y Ix .y .

This (or something similar to it) is sometimes called the product test

see Tornqvist (1974) and Eichhorn (1976). Usually the meaning

of the weak factor reversal test as a test or a criterion for

index numbers is unclear. For instance, Diewert (1976b,p. 115)

uses the equation P~Q~ =vl/VO merely as a means of defining

a quantity index (or just a function) Q~ when P~ is given.

This kind of equation is not a test. We have formulated

the weak factor reversal test as a test for the collection F

of index number formulas.

If we change the time periods in a price index formula

11010 .. ° 010 1Po = f(p ,p ,q ,q ) we get a pr1ce 1ndex PI = f(p ,p ,q ,q )

measuring the relative price change from t l to to. By taking

the reciprocal of this number, l/P~ = I/f(pO,pl,ql,qO),

a new function f is defined ..
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which should qualify for a price index formula measuring

the relative price change from to to t
l

• This function f is

called by Fisher (1922) p. 118 the time antithesis of the

original formula f. The procedure applies toquantities as well.

In our axiomatics the time antithesis of any formula fEF

qualifies for an index number formula.

Theorem 2. Let fEF and def ine a function f: ]R ~n"']R + as follows:

(33) 1 0 1 0 4n - 1 0 1 0vex ,x,y ,y )ElR+ : f(x ,x ,y ,y) o 1 0 1l/f(x ,x ,y ,y ).

Then fEF. (This index number formula f is the time antithesis

of f.)

Proof: There is no difficulty to show that f satisfies the properties

A-C.

D. Let kElR + and

- 000 0
f (kx , x , y , y )

1 0 1 0 4n
(x , x , y , y }ElR + • Then

000 0l/f(x ,kx ,y ,y }

1 0 0 0 0 0l/f(k z ,z ,y ,y }, where z

1= l/(k)' from 0

k

= kx
O

The proof for property E is similar. o
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Our theorems 1 and 2 allow us to use the time or factor antithesis

of any of our formulas fEF because these are index number

formulas in our system. The following theorem shows that every

mean K(f l ,f2 ) of index number formulas f
l

and f 2 is itself an

index number formula:

Theorem 3. Let f
l

EF and f 2 EF. Then K(f l ,f
2

} EF where K(x,y)

is a mean of positive real numbers x and y.

Proof: A mean K(x,y) of positive real numbers is a function

K: lR ~-+lR + having the properties

A.

B.

2 .
V(x,y)EJR+: m1.n (x,y)~ K(x,y) < max(x,y).

K is a continuous function

c. 2VaEJR+: V(x,y)ElR+: K(ax,ay) aK (x,y) .

D. 2V(x,y)ElR+: K(x,y) K(y,x).

Let f l and f 2 be index number formulas and K any mean defined

(at least) for positive x and y. Let kEJR+ and (xl ,xO,yl ,yO) ElR1n.

Then the tests A"'"C are clearly satisfied. The test D is satisfied

. 0000 0000because, 1.f f l (kx ,x ,y ,y ) = k and f 2 (kx ,x ,y ,y ) = k, then

their mean K(f l ,f2 )

test is similar.

k because of A. The proof for the weak identity

D
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Fisher uses particularly the geometric mean G(x, y) = vxy to rectify

his formulas f with their time or factor antitheses, see Fisher

(1922) p. 136. The reason for using the geometric mean in

averaging, instead of, e. g., the arithrnetic or harmonic mean, is that

the geometric mean of f and i, which are time (factor) antithesesi

of each other, always satisfies the time (factor) reversal test.

We proceed to formulate these and other desiderata which a good

index number formula ought to satisfy.

3.3. Desiderata concerning index number formulas

Desideratum 1. The time reversal testl ):

(34)
1 0 1 0 4n 0 1 0 1

vex ,x ,y ,y )ElR+ : f(x ,x ,y ,y)
1 0 1 0l/f(x ,x ,y ,y ).

This means that if the time periods are interchanged the index

changes into its resiprocal, which is a property of price and

quantity relatives. In other words an index number formula f

ought to equal its time antithesis f. If the periods are treated

asymmetrically as, e. g. , in Laspeyres I price index formula

( 35) 1 0 1 0f(p ,p ,q ,q ) 1 0 0 0p .q /p .q

the time reversal test is not satisfied.

1) Also called the point reversal test, Frisch (1936); and the
inversion criterion, Tornqvist (1935, 1974).
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Desideratum 2. The factor reversal test:

(36) 1 ° 1 0 4n 1 ° 1 0 1 0 1 ° 1 1 0 0"vex ,x ,y ,y }Em+ : f(x ,x ,y ,y ) ·f(y ,y ,x ,x )=x .y /x .y .

This corresponds to Tornqvist's (l974) multiplication and symmetry

criteria. Written in prices and quantities this reads

(37) 1 ° 1 0 1 ° 1 0f(p ,p ,q ,q )f(q ,q ,p ,p ) 110 0P .q /p .q .

Here f(pl,pO,ql,qO) = P~ is a price index calculated from formula

f, and f(ql,qO,fl,pO) = Q~ is a quantity index calculated from the

same formula f. The factor reversal test says that the product of these two,

1 1 , 110 0
POQO' should be the value rat~o p .q /p .q • In other words an

index number formula f should equal its factor antithesis t.

Fisher's method of 'rectifying' formulas is based on the following

theorems.

Theorem 4. Let f
l

EF and f
l

be its time antithesis. Then

Vflt
l

EF and satisfies the time reversal test.

Proof: £1 EF by theorem 2 and Jflfl EF by theorem 3. Denote

f 2 = v'fli l '·

1 ° 1 °Then f
2

(x ,x ,y ,y )

1

1 ° 1 ° 010 1 2[flex ,x ,y ,y )/fl(x ,x ,y ,y )]

'.
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1
010 1 1 0 102

l/[fl(x ,x I¥ IY )/fl(x ,x I¥ IY 1]

The time antithesis of f 2 is by definition

- 1 0 1 0 010 1f 2 (x ,x ,y ,y ) = 1/f2 (x ,x ,y ,y )

1 0 1 0
f 2 (x ,x ,Y IY )

Therefore f 2 I the time antithesis 0 f f 2 I equals f 2 I which means

that f 2 satisfies the time reversal test. o

Theorem 5. Let f l EF and f
l

be its factor antithesis. Then

Vflfl EF and satisfies the factor reversal test. Theorem 5 is

proved in the same way as theorem 4.

The best index number formulas - e.g., Fisher's ideal

index, the index suggested by Stuvel (1957) and our new indices -

satisfy both time and factor reversal tests.

In the case of the next desideratum we have several alternatives.

We have already included the weak proportionality test 0 in our

definition of the index number formula. Here we add some stronger

formulations of this test, which Fisher (1922) p. 420 states in

the case of price index as follows: "An index number of prices

should agree with the price relatives if those agree with each

other" •
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Desiderata 3. Proportionality tests:

PTI:

PT2:

PT3:

PT4:

PT5:

PT6:

000 0f(kx ,x ,y ,y J

o 0 0 0f(kx ,x ,my ,y )

o 0 I 0f (kx , x , y , y J

I 0 0 0
f(kx ,x ,y '~ )

I 0 0f(x ,x ,y ,y )

I 0 0 0f(kx ,x ,my ,y )
I 0 0 0f (x ,x ,y ,y )

1 0 1 0f (kx , x , y , y )
1 0 1 0

f (x ,x ,y ,y )

k

k

k

k

k

k

PT7:
1 0 1 0

f(kx ,x ,my ,y ) = k
1 0 1 0f(x ,x ,y IY )

2 n
PT8:Vy ElR +:

I 0 2 0f(kx ,x ,y IY )
1 0 1 0f (x IX ,y ,y )

k

These statements shall be valid for all positive k and m and

I 0 1 0 4n
for all (x ,x ,y ,y )ElR+ •

These are only some of the most interesting possibilities. Here

PTI is our weak proportionality test D. PT2 implies PTI and the

weak identity test E in our definition of the index number

formula. It is easily seen that PT3~PT2~PTl and PT7~PT6-PT5~PT4~PTI.

Also, PT5 implies PT2 but not PT3 as may be shown by counter-

examples. Neither does PT4 imply PT3. We shall not investigate
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these interesting problems here but only point out, without proofs,

that Laspeyres' formula satisfies all these proportionality

criteria, Paasche's, Fisher's and Vartia II formulas satisfy

all of them up to PT7, Stuvel' s formula satisfies PTI-PT3 but Vartia

Index I satisfies only PTI and PT2, see Y. Vartia (1976a).

Note that, e.g., Tornqvist (1973,1974) gave theverystrongversionPT 8.

The Economic Quantity Index Q(ql,qO; p*) defined in chapter

2 satisfies Q(kqO,qO; p*): k only in the homothetic case when

prices and quantities change proportionately together. This

corresponds to PT2 as written for quantity' indices:

(38) 1 ° 1 ° 4nVkElR+: VmElR+: V(q ,q ,p ,p )ElR+ :

1q ° 1kq & P = °mp ~ Q~ = k.

If PT3 is interpreted to mean that

'l'b' . t' (0 0)any two equl 1 rlum sltua lons p ,q

00*Q(kq , q ; p 1 = k for

and (pl,kqO), then it is

not satisfied, see Samuelson :md Swamy (1974) • The Economic

1 ° * 1 ° *Price Index P (p ,p ; q ) always satisfies even P (kp ,p ; q )

1 ° *kP(p ,p : q), which corresponds to PT8.

Taking two price indices P~ and P~ and dividing them we get

a comparison between the prices p2 and pl: P~ = P~/P~. The base

test says that this should be independent of the data from the

base period to' see Eichhorn (1976). In addition, however,

we impose the natural requirement that P~/P~ should be a price

index formula:
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Desideratum 4. The base test:

Let fEF. This f satisfies the base test if and only if

o 0 2n 1 1 2n 2 2 2n(39) 3fEF: 'v'(x ,y )ElR+ : 'v'(x ,y )ElR+ : V(x ,y )ElR+ :

2 0 2 0 1 0 1 0f(x ,x ,y ,y )/f(x ,x ,y ,y ) - 2 1 2 1
f (x ,x ,y ,y ).

This is a very strong requirement, which, e.g., implies by

. . 21 d 2 k llnsertlng y =y an x = x

(40)
1 010f (Joe , x , y , y )

1 0 1 0f (x ,x ,y ,y )
k

or PT6 for f. The best descriptive index number formulas do not

satisfy this test. In

110as Po = p .q/p .q and

practise formulas using constant weights, such

1 1 0logP
O

= Lc.log(p./p.), Lc.=l, seem to be
1 1 1 1

of the type satisfying (39). As we have shown, however, they

do not sat~sfy the unit of measurement and commodity reversal

tests and are therefore no d.c. index number formulas.

The base test as well as all the proportionality tests are

weaker than the next desideratum, which especially some index

theorists starting from the economic approach regard as highly important.

see Samuelson and Swamy (1974) p. 575-6. In their opinion "the

circular test is as required as is the property of transitivity

itself". Fisher, however, dropped this circular property from

his list of desirable properties of index numbers, as

already stated in chapter 2.
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Desideratum 5. The circular test:

(41) V (xO ,yO) ElR :n: V(xl ,yl) ElR :n: V(x2 ,y2) ElR :n:

2 ° 2 °f (x ,x ,y ,y ) 1 ° 1 ° 2 121f (x ,x ,y ,y 1 • f (x ,x ,y ,y l.

This test is sometimes called the chain criterion and presented

simply as P~ P~P~ for price indices.

The best index number formulas fail to meet this desideratum,

this being because the shares w. (tl will change over time.
~

To circumwent this problem the chain method to be described

in the next chapter may be used. The suggested solution is that

the direct comparison tO~t2 should not be made at all but, instead,

the price change P~ should be computed with the aid of the partial

component comparisons P6 and pi, by chaining the price indices

and defining P~ = p~pi. This works in time series where we have

a definite ordering between the periods. The length of the

consecutive periods has, however, an effect on the results.

This solution is at variance with the one suggested by Fisher,

who was of the opinion that a cost-of-living index, for instance,

should always be computed using a base method: the cost of

living in anyone year should invariably be compared with the

cost of living in the base year. As a matter of fact, this

procedure is being applied in almost all countries of the world.
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Yet, rather than being interested to know how the cost of

living in a particular year relates to that of the base year

we are usually interested in, for instance, the year-on-year

changes in the cost of living. If the chain method is used,

the movement of the cost of living will be determined precisely

on the basis of these changes. It is to be expected that

increasing acquaintance with the problems of index number

calculations will be accompanied with an increasingly widespread

use of the chain method. An elegant justification of the chain

method is provided by Divisia-Tornqvist's integral formula to be

presented in chapter 5.

The determinateness test is formulated by Fisher(1922) p. 420

as follows: "An index number of prices should not be rendered

zero, infinity or undeterminate by an individual price becoming

zero". Frisch (1936) formulated it analogously but demanded

more: " ... by an individual price or quantity becoming zero".

Swamy (1965) p. 620 innocently demanded even more: "If any

argument in f(pl,pO,ql,qO) becomes zero or infinite, then f

must not vanish, become infinite, or become indeterminate". (Here

we have used our notation for the price index formula). A similar

formulation was used by Samuelson and Swamy (1974) p. 572, but they

"do not like this test" as Eichhorn (1976) notes. Swamy's

requirement that even an infinite price or quantity should

not affect P~ badly seems inappropriate. E.g. Laspeyres',

Paasche's and Fisher's indices, for instance, do not satisfy Swamy's

requirement~ Perhaps Swamy had the price or quantity relatives in mind?

We adopt Eichhorn's (1976) rather weak formulation, which

is strqnger, however, than Fisher's original formulation.
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Desideratum 6. The determinateness test:

.10 1 aIf any scalar argument ~n f(x ,x ,y ,y 1 tends to zero, then

f(xl,xO,yl,yO) tends to a unique positive real number.

This is satisfied by, e.g., Laspeyres', Paasche's, Fisher's,

Stuvel's and Vartia I and II indices, but Tornqvist's index

does not satisfy it. The Economic Index Numbers also sometimes

violate this criterion.

We should have at least two commodities in order to impose this crite-

rion: its idea is that one (or a few:) exceptional commodities ought

not influence the price index 'too much'. It is difficult to

formulate this fully satisfactorily because it is a kind of common

sense requirement, see Y. Vartia (1976a). We return to this

problem in chapter 6 in a more concrete situation, where we

investigate whether a formula reacts qualitatively correctly to

extreme price and quantity changes.

Next the price index formula f(pl,pO,ql,qO) will be written

in another form, which reveals that it depens exclusively on

the price and quantity ratios p~/p?, q~/q~ and the value shares
~ ~ 1 ~

a a a
wi = vi/V. The same applies to the quantity index formula

1 a 1 a
f(q ,q ,p ,p ) because of sYmmetry.

It will first be noted that the 4n.numbers

(42 ) 1 a 1 a
Pi' Pi' qi' qi i 1,2, •.. ,n

and the 4n+l numbers
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(43) 1 0 1 0 000
Pi/Pi' qi/qi' wi,qi' V i 1,2, ... ,n

determine each other uniquely. In the latter set of data we

need, in addition, e.g. the old total value v O = LV~ as only

n-l of the value shares are mutually independent. We may thus

write

".

(44 ) 1 0 1 0f (p ,p ,q ,q ) - 1 0 1 0 0 0 0,.
q(Pi/Pi,qi/qi,wi,qi'v 1 = l, ... ,n).

By virtue of the unit of measurement test, g does not depend

on the q~:s, which may all be put equal to unity, say, without

affecting the other arguments of g. Furthermore, by the

monetary unit test, g does not depend on VO. It has thus been

shown that any price index formula can always be written in

the form

(45) 1 0 1 0 1 0 1 0 01"f(p ,p ,q ,q ) = g(Pi/Pi,qi/qi' wi 1 l, ... ,n).

In this expression all the arguments indicated are needed,

n+n+(n-l)=3n-l of them being independent of one another. From

(45), a price index formula must not depend on anything but

the price relatives, the quantity relatives and the old value

shares, and of course, on magnitudes that can be computed with

the aid of them. The following magnitudes, for example, may be

determined by means of the arguments of g:

(46) the value ratios 1 0
vi/vi

1 0 1 0
(Pi/Pi) (qi/qi

'



(47) the ratios

(48) the total value ratio

v~/vo
1

Vl/VO

100
"= (V./V.)W.

111

L(V~/VO)
1
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(49) the new value shares 1 001 1 °w. = w. (V /v ) (v./v.).
1 1 1 1

It is shown by straight calculation that the price relatives

p~/p?, value shares w~ and w? and the total value ratio vl/vO
1 1 1 1

determine the arguments of g in (45) and vice versa. Therefore

(50) VfEF: 3q>: q> is a function from lR ~n-l to lR +:

1 ° 1 0f (p ,p ,q ,q ) 1 0
q>(Pi/Pi' 1 °wi'wi , vl/voli l, ... ,n).

By interchanging prices and quantities any quantity index

formula has the representation

(51) 1 0 1 °f (q ,q ,p ,p ) 1 °q>(qi/qi' 1 °wi' wi' vl/voli l, ... ,n).

The function q> satisfies the analogs of the commodity reversal

test A, the proportionality test D and the identity test E,

the formulation of which is straightforward. We will call q>

an index number formula as well.

In consequence, any price and quantity index formulas may be

expressed in terms of the arguments of q> indicated in (50)

and (51). It should be noted that the magnitudes given in them
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are dimensionless numbers independent of the monetary unit

used in valuing the commodities a. or the units of measurement
~

used to express their amounts.

Thus far, only the general relativity or covariance principlel )

of scientific theories has been applied here, a principle that

Albert Einstein formulated for physics as follows: "The laws

of physics should be expressed by means of equations that are

invariant under any transformation of the space-time coordinates".

For example, Paasche's price index depends exclusively on the

magnitudes involved in (50):

'.

(52)
1 1

E.-...:.L 01
p .q

1 1 0-1l/Lw. (p./p.)
~ ~ ~

This is also how Paasche's index is usually computed.

The desiderata 1-6 put forward above relate to the properties

of index numbers in pair comparisons to ~tl and in combinations

of pair comparisons, in which only one and the same, given

set of commodities A = {al ,a
2

, ••• ,a
n

} is dealt with throughout.

The desideratum that the index numbers be consistent in

aggregation is one that has more rarely been considered, and

it has to do with the partition2
) Al, •.. ,A

K
of the commodity

1) Laurikainen (1968) pp. 58-66.

.'

2) Sets

only

Al; ... ,A~ make up a partition of the set A if and

K
if A = U A and i~j ~ A.nA. = ¢.

k=l -lc ~ J
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set A and the properties of the index numbers computed for the

various subsets Ak . In order for us to be able to formulate

this desideratum, which is mathematically somewhat more

complicated than those considered above, somewhat greater

notational precision is necessary.

Initially, however, the desideratum concerned will be described.

One way of computing the value of, say, a quantity index for a

given commodity set A is to do this in two stages. First, the

subgroup quantity indices may be evaluated for each subset ~

of the partition Al' ...~ of the commodity set using the index

number formula f chosen. Following this, a total quantity index

will be computed from these subgroup indices, by employing the

same index number formula.

An index formula is consistent in aggregation if the value of

the index as computed via such intermediate stages necessarily

coincides with the value obtained by applying the same index

number formula directly to the total commodity set A.

The practical idea behind the consistency in aggregation is

to simplify the computation of the total quantity index and

to provide at the same time a set of subindices which determine

the total index. The concept of 'consistent aggregation' used

by Theil (1967) p. 159 differs from our concept in

that Theil's 'partial index' for Ak is not restricted to be

a function of the subset data only but depends in a complicated

manner on the total value shares w. = v. /V and not only on v. /Vk .
--- l. l. l.
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It seems to me that Theil's 'consistent aggregation' is not

a property of an index number formula but a method of aggregation.

Shouldwe be smart enough, any formula whatever could be aggregated

consistently in this way. We return to these questions in chapter 6.

Figure 1. A partition Al, ..• ,P.x of the set A

In order to avoid confusion with some former concepts of

consistency in aggregation, this desideratum will be given an

exact formulation, which extensively uses the representations

(50)-(51).

Denote the value of the quantity index defined for the total

set as follows

"

(53) Ql
o

1 0 1 1 0 0 1 01
~(qi/qi' vi/V ,vi/V' V /V {ai}cA)

For each subset ~ of the partition Al, ..• ,Ak the quantity

indiced will be defined correspondingly:

(54) Q~(k) 1 0 1 1 0 0 1 0\
~(qi/qi,vi/Vk,vi/Vk' Vk/Vk {ai}cAk )

These formulas are formally identical with (53). Only the set

A has been replaced by the subset Ak and, as a consequence,

the total values in the set A have to be replaced by the

corresponding "conditional" total values in the set Ak :



(55) v L v -+ V
a.EA i k

1.

LVi'
aiEAk
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This of course changeS the value shares and value ratios into

the corresponding ratios as determined in the set A
k

"

After this the subsets A
k

will be considered as if they were

individual commodities, and a quantity index will be computed

with the aid of them for the set A:

(56)
-1
QO

1 1 1 0 0 1 0\
~(QO(k), Vk/V , Vk/V , V IV AreA).

Using this notation, it is possible to formulate the desideratum

exactly:

Desideratum 7. Consistency in aggregation:

Let A " .. ,A be any partition of the commodity set A.
1 K

1Then we ought to have QO
-1 1 0 1 0 4n
QO for all (q ,q ,p ,p )€lR+ "

Consistency in aggregation is formulated analogically for

a price index formula, so that it will be a property of f€F or of

the corresponding ~" Consistency in aggregation is a desirable

property of the price and volume indices to be computed for,

e.g., various commodity groups in national accounting. Provided

that the index formula employed is consistent in aggregation,

the index for a given total group may be computed directly

from the indices for its subgroups, and, conversely, the
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index for any total group is interpretable as one computed

starting from the original commodity level.

It should be pointed out that both Laspeyres's and Paasche's

indices are consistent in aggregation, whereas Fisher's ideal

index is not exactly so. The value series of national accounting

valued at fixed prices form a most simple system consistent

in aggregation. The explanation of this consistency lies in

the fact that these series may be computed employing either

Laspeyres's volume index of Paasche's price index. The

widespread use of these two indices is due largely to their

aggregation properties, although this has not often been

realized. Other indices of the aggregative type, such as,

e.g., f(pl,pO,ql,qO) = pl. (ql+qO)jpO. (ql+qO), are not usually

consistent in aggregation.

Of the Vartia Indices I and II to be derived in chapter 6,

the first is consistent in aggregation whereas the second is

not. Vartia Index I and Stuvel's (1957) index are the only

known indices which are consistent in aggregation and

satisfy, in addition, both the time and the factor reversal tests.

It should finally be mentioned that, when use is made of an

index number formula consistent in aggregation, it will be

possible to systematize the price and volume calculations

of, say, national accounting in a simple way. As appears from

(54)-(56) the computer programs may be made in such a way

that, in proceeding toward increasingly aggregative commodity

levels, the same index computation program can always be

employed, using only the price, quantity and value ratios

calculated at the preceding stage.

'.
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In Finland, for instance, the methods of computation employed

in national accounting for the present are "mixed methods"

of a kind, in which different index number formulas are used

for different commodity groups and in which they are combined

into total indices by means of constant-price value series.

Regarding the reliability and interpretation of the results

these methods are satisfactory at best.
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4.

4.1.

VARIOUS STRATEGIES FOR CONSTRUCTING INDEX SERIES

Problems of the index series construction
'.

The reliability of index numbers in intluenced by numerous

factors. L. Tornqvist (1971) p. 53 treats these under two heads:

1) Choice of the method of calculation

2) The data at disposal and lack of data

Here 1) includes the choice of the formula and choice between

the base and chain methods. These two choices are independent of

each other and therefore it may be misleading to classify the

alternatives as Tornqvist (1971) p. 53 does: "The choice of the

method of calculation is necessarily a question of judgement.

The alternatives will in such a case in practice be Laspeyres',

Paasche's and Fisher's methods and some chain index method as

the Divisia-Tornqvist method" (underlining ours) .

We have elsewhere, see Y. Vartia (1976c), presented a list of 8

'practical' problems1 ) to be solved when starting to calculate,

e.g., a consumer p~ice index. Here we will generalize the problem

and consider the calculation of any price index whatever. We

present a list of 10 questions to which, at least, answers should

1) v. Hofsten (1952) gives another list of important problems.
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be found. These must form a totality which fits the purpose of

the index. First the intended use of the index has to be decided on.

This decision involves at least the following problems:

(1) Characterization of commodities: What is the general characteri
zationOfthe set A of commodities whose prices interest us here?

(2) Reference group of economic agents: What will be the group of
economic agents (e.g. consumers, producers) from whose point of
view the prices are examined?

(3) Length of the time periods: What is the common length of the
periods to,tl , ... for which the index will be calculated?

We might be interested, say, (1) in the prices of different qualities

of paper produced in Sweden and try to measure (2) their average

relative change from the point of view of British paper importers

(3) quaterly.

Next we list some rather technical problems which have to be solved

in order to produce the information necessary for the calculation

of the price index. They arise from the fact that the concept of

a 'commodity' is not given a priori but must be defined meaningfully

according to the situation.

(4) Index commodities: ·How to classify the commodities in A into
disjoint subsets or index commodities Al •... ,Ak in such a way
that the quality of each index commodity Ak will stay reasonably
stable and the necessary information about it can be estimated?

(5) Price information: How to collect for every period tm enough
price information from the commodities in A, so that the proper
price ratios for the Ak:S can be estimated?

(6) Proper weights: How to collect for some period(s) enough information
so that proper weights (e.g. means of value shares) for the index
commodities can be estimated?

We might use (4) the relevant subgroups of SITC as the operational

equivalents ~ of the various qualities of paper and (5) the official
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data collected by the British foreign trade authorities to

calculate the price for Ak as an average unit value.

Here no problems in (6) are present, because the imported quantities

of Ak are usually known for every quarter. The price ratios must

often be estimated from samples, while the quantities have to be

estimated by using expensive market surveys. Price quotations are

often only available for some sUbgroups of Ak:S, so that the

estimation of the price ratios for the Ak:S is an index problem

in itself.

Now we have attained the situation from which the theory of index

numbers usually starts: for every subset Ak there exists a price

Pk and a quantity qk for every period. In chapter 3 we supposed

that the complete data is at our disposal. Now we may state shortly

the main problem in our study discussed in chapter 3:

(7) Index number formula: How to choose an index number formula
in such a way that the information at our disposal will be
well utilized?

If we know quantities for Ak only for some periods we cannot use

precision formulas of e.g. Fisher or Tornqvist but we have to be

satisfied e.g. with Laspeyres' index formula. We have to stress

that the various problems we have presented here are strongly

interrelated. Some solution for all of them must, however, be found.

But any formula may be applied to calculate price changes over

various periods so that the general strategy for constructing

the index series is still open:

(8) Strategy for constructing the index series: How to choose the
general strategy for constructing the index series from availabl
binary comparisons between various periods?
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The usual strategies are the 'straight solution' offered by the

base method and the chain method. But there are more complicated

strategiesl ) which use e.g. increasing symmetrical time intervals

(to-h, to+h) centred at some time period to and which utilize in

certain cases the information better than, e.g., Laspeyres' index

t +h
pta does.

a

But there are often special problems caused by e.g. quality changes

and new or disappearing commodities:

(9) Quality changes: How to take into account the quality changes
in our index commodities Ak ?

(10) New and disappearing commodities: How to handle new or disappearing
commodities?

Here we have interpreted the question of quality changes as a

technical problem related to the partition Al, •.. ,A
k

of our A.

In some partition of A we might have serious quality changes, which

would disappear to a great extent if finer partitions were used.

For instance, in our imports data in chapter 7 we have used subgroups

of the Standard International Trade Classification (SITC) which in

the case of solid fuels contain quite heterogeneous subgroups e.g.

coke. These interesting but difficult problems will not, however,

be discussed here. Instead, we shall make some short comments about

the two rival solutions of (8), namely, the base and chain methods

and suppose as before that our data is complete.

1) I wish to thank L. Tornqvist for pointing out this.

See also Allen(1975) p. 145-176.
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4.2. Base and chain methods

The ordinary strategy for calculating the average price change

from the base period to to the comparison period t l is to compare

them directly with each" other. This is the straight strategy of

calculating base indices P~ and Q~. This method is sometimes used

even when periods to and t l are far from each other. For instance

in Finland still in 1976 production price indicesl ) are calculated

by comparing monthly price quotations with the mean prices of 1949.

The production price index for exported goods is calculated as a

weighted average of price ratios the weights being proportional

to the fob values of exports in 1949. It is evident that Laspeyres'

index used in this way cannot give accurate results, because it

completely ignores the changes in the quantities of exported goods.

Only if the quantities q~ in 1976 are almost proportional to
1

those in 1949 will it work well. The difficulties would become quite

evident if we wished to compare modern times with ancient ones,

by calculating the change in prices over, say, 3000 years. We would

have very few commodities common to both periods. Only chaining

would make some sensehere2), compare e.g. Samuelson and Swamy (1974)

p. 587 and Tornqvist (1974) p. 34 and 68. The same applies where

the consumer's preferences or the environment is rapidly changing

as e.g. in times of war.

1) See Sahavirta (1970).
Their exact meaning is difficult to comprehend.
~o simple answers to, e.g., points (1) and (2) are available.

2) Keynes' (1930, p. 109) opinion is different: "If we want to compile a
consumption Index-Number for the value of gold or silver money over
the oast 3000 yeCirs, I doubt if we can do better than to base our comnosite
on the price of wheat and on the price of a day's labour throughout that
period. We cannot hope to find a ratio of equivalent substitution for
gladiators against cinemas, or for the conveniences of being able to
buy motor-cars against the conveniences of being able to buy slaves. "
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Fisher's (1922) arguments in favour of the base method as against

the chain method p. 312 are shortly:

"On the whole, therefore, the fixed base system (at
least as applied to formula 353) is slightly to be
preferred to the chain, because,
(1) it is simpler to conceive and to calculate, and
means something clear and definite to everybody;
(2) it has no cumulative error as does the chain system
(as is shown by comparison with Formula 7053);
(3) graphically it is indistinguishable from the chain
system.

His chief argument (2) against the chain method, it seems to me,

is a mistaken one. It is true that the chain method gives results

different tOFisher's formula 7053, which is a combination (average)

of Fisher's ideal indices computed in respect to six base years,

see Fisher (1922) p. 301 We give Fisher's figures for 7053

and 353 or Fisher's ideal index calculated both by the base

method and by the chain method:

year t 1913 1914 1915 1916 1917 1918

7053 100.00 100.09 99.96 114.03 161. 53 177.90

353, Base 100.00 100.12 99.89 114.21 161. 56 177 .65

353, Chain 100.00 100.12 100.23 114.32 162.23 178.49

But we cannot infer from this that the chain figures are in

error: It is perhaps formula 7053 that has a small cumulative

error, compare Frisch (1936) p. 9.

Fisher (1922) p. 308 lists (after asserting that "the chain

system is of little or no real use") the chief arguments in

favour of the chain method:
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(1) That it affords more exact comparisons than the fixed base
system between the current year and the years ~mme£iat~l~

preceding in which we are presumably more interested than
in ancient history;

(2) that, graphically, the year-to-year lines of the price
curve have the correct current directions, whereas in the
fixed base system the year-to-year lines are slightly
misleading, merely connecting points each of which is really
located relatively to the base or origin only, and not to its
neighbors; and

(3) that it makes less complicated the necessary withdrawal, or
entry, or substitution of commodities, as time and change
constantly reqUire.

He admits that it gives the correct comparisons for all consecutive

years but, in his opinion, when these are chained together the

comparison is not the best one any longer. The best comparison

between every two years is the direct comparison between them in

Fisher's opinion, see Fisher (1922) p. 299. This would be too simple

and most of the modern index theorists do not share Fisher's

opinion. The question whether preference should be given to the

base or to the chain methods cannot be answered in any simple way,

and at an abstract level this problem is in the backround in many

notable articles, see e.g. Solow (1957), Richter (1966), Jorgenson

and Gri1iches (1967), Christensen and Jorgenson (1970), Merrilees

(1971), Hulten (1973) and Usher (1974). However the variation in cha:

figures calculated from good formulas is usually smaller than that

in the base figures of the same formulas.

Consider next the chain indices. For the sake of concreteness

we will use our GDP price indices of chapter 7 as an example.

Any chain index pi964 may be calculated by first calculating

year-on-year indices P~-l and chaining these according to the formula



- n k(6) pt = Pk-l for t = 1965,1966, •..
1964 k=1965

(7)
-t

for t = 1964P1964 = 1

-t r1 k(8). P1964 = 1/ Pk - l for t = 1963,1962, •..
k=1963

Another way of expressing the same thing is to dE;!fine pt~~:

calculate pi964: s recursively, using the equations
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1 and

(9)

(lO)

-t+l _ -t t+l
P1964 - (P1964 )· (P t ) , forward step: t~1964

-t-l _ -t t
P1964 - (P1964)/{Pt-l) , backward step: t<1964

However the most elegant definition - and a general one - of a chain

index P= from year s to year t is as follows:

ell)

(12)

-t
log Ps

-t
log P s

s+l s+2 tlog P
s

+ log P s +l + .•. + log Pt - l , s<t.

-s
- log Pt ' s>t

-t
the time reversal property P

s

To get the log-change of prices from year s to year t (as calculated

by the chain in~ex) just add together the consecutive yearly log

changes of prices. l ) This construction guarantees that every chain

-t -k-tindex has the circular property Ps = PsPk for all s, k and t and

l/P~ for all sand t, irrespective

of the choice of the d.c. index number formula f used in P~_l:s.

But there is nothing to guarantee that the weak identity property,

1) This is essentially the same as Frisch's (1936) definition.
See also Banerjee (1975) p. 55.
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. t s d t k s, I' p- t 1 th k
~.e. p = p an q = q ~mp ~es s = , or e wea

t ' l't t' t k s d t s. l'propor ~ona ~ y proper y, ~.e. p = p an q = q ~mp ~es

pt = k, is satisfied. The same applies to the Divisia - Tornqvist's
s

integral formula, to be considered in the next chapter, as e.g.

Tornqvist (1974) p. 30 has noted.

The formula (11) corresponds to time intervals (s,s+1),

(s+l, s+2) , ..• , (t-l, t) which may be, e.g., consecutive years

as they are in our chain index calculations in chapter 7.

But we may in principle divide the years into quarters, quarters

into months, months into days, etc. and calculate a chain index

for every partition of our time period. In practise calculations

of this kind become soon impossible because of lack of data

for short periods. But let us imagine that we have

hypothetical values v. (t) and quantities q. (t) which are
~ ~

continuous functions of time t E (a,b); Le., for every commodity

a. we have two continuous functions v. and q. which map the
~ ~ ~

time interval (a,b) to nonnegative real numbers. Put p. (t) =
~

v, (t)/q. (t) and suppose that q. (t) = 0 only when v. (t) = 0
~ ~ ~ ~

so that p. (t) is defined for all points where q. (t»O. For any
~ ~

time interval (t-T/2, t+T/2)c(a,b) define

"

(13)

(14)

(15)

t+T/2

v:(t) = 1J viet) dt
~ T

t-T/2

t+T/2
T IJ qi(t) dtq,(t) =-
~ T

t-T/2

T T T'p, (t) = v. (t)/qi (t)
~ ~
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Here v~Ct), q~Ct) and PiTCt) are the average value, quantity and
1 1

price of commodity a i for period of length T and centred at t.

Figure 1: Definition of qICt).

HT ITfR%\S-'l::~:~;?............... , .............. .............. .............. .
o •••• ~ • • • • .. •• • ••••

::::::::::'" ('t')":::::::::~ T(t)
.:::::::::: qj :::::::::~ qj.......... '1' ........... .. ........... ... ........... .. ........... .. ........... .. ........... .. ............ .. ............ . , .- .

a t-T/2 t t+T/2 b

Let t l ,t2 , •.. ,tk be the meanpoints of K disjoint time intervals

of length T, whose union is Ca,b). Define e.g.

(16) pk+l
k

T T T
Lwi(tk ) [PiCtk+l)/PiCtk)]' where

T T Tw. Ctk ) = v. (tk ) /LV. (tk )
1 1 . ]

]

These are Laspeyres' indices calculated from the data (13)-C15)

for consecutive time intervals. Define according to (11)

(17)
K-l

log pK = L log pk+1
1 k=l k·
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When K~ log P~ approaches (under some reqularity conditions)

the value

b
(18) Lfw. (t)d log p. (t) , where

. 1 1
1 a

(19) w. (t) = v. (t)/LV. (t)
1 1 j J

"

This is the integral form of Divisia-Tornqvist's index. Many other

index formulas in addition to Laspeyres' formula in (16) give the

same limit (18). Thus if there existed continuous functions

v. (t), q. (t) and p. (t) and if the observed values, quantities and
1 1 1

'.

then many chaintheir means as defined by (13)-(15)

-K
PI defined by

prices were

indices log (17) would approximate the theoretical
pet )

Divisia-Tornqvist's index log P(tK) defined by (18) for a = t l and
1

b = t K• But because of the discontinuous character of most economic

phenomena (at least transactions) continuous values, quantities and

prices do not actually exist, unless we intentionally construct them

as some kind of smoothed series (e.g. moving averages) as we will do

in the next chapter. This, however, complicates the situation

considerably as the value of (18) will depend on the smoothing

procedure.
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5.1.

DIVISIA - TORNQVIST'S INDEX

General
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The considerations in the previous chaptersdeartwith period

analysis, where time is divided to periods of considerable length.

Prices, quantities and values are regarded as constants within each

period. Another theory of index numbers developed independently

by Francois Divisia (1925) and Leo Tornqvist (1936), starts from

the idea that prices, quantities and values are defined for

every point of time and are more or less continuosly changing

functions of time. Only descriptive or statistical aspects of

Divisia-T6rnqvist'stheorywill be dealt with here.

The considerations in chapter 3 may be interpreted as relating

to the sales of a commodity exchange in two periods to and t
l

(either imagined or real) of a year's duration. For each of

the two years there is a commodity basket consisting of the

same commodities, and these two baskets are compared. In the

present chapter the analysis will be made more comprehensive

in the time dimension, and an effort will be made to define

the concepts of price, quantity and the value of sales

for each point of time.
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5.2. Defining values, quantities and prices for all

points of time

Let us consider two poi.nts of time, t and t+T, ex?::-essed in

terms of years, and let V(t,t+T} be the value of the sales of

the commodity a, in terms of marks, in the time interval

concerned. Expressed in marks per year the sales during this

time interval will be V(t,t+T}/T, which is the average annual

rate of sales in the time interval (t,t+T~.

As the length T of the time interval tends to zero, we get

for the instantaneous annual rate of sales at the point

of time t:

(1) vet) = limv(t,t+Tl/T
T~O

This is the ordinary time derivative of the sales provided

that the sales vet) are measured as the total sales since a

given point of time (e.g., the point of time when the

commodity exchange was founded):

(2) v (t)
d 
dt v (t) lim(v(t+T)-v(t)}!T

T~O

The latter expression corresponds to the procedure follot"ed,

e.g., in kinematics, where the system of space co-ordinates

may be chosen arbitrarily. In the case of economic phenomena

the situation is rendered troublesome by the fact that, if

a point of time other than the one at which the commodity

exchange was established is chosen as the "origin", sales

will be formally negative at all points of time earlier than

this.



105

Correspondingly, the quanti,ties of th,e pa.rticular commodity

a sold at the commodity exchange during t~e time interval

(t,t+T) will be denoted by q(t,t+TL, and thus t~e annual

rate of sales at the point of time t, expressed in physical

units, will be

(3) q (t} limq(t,t+Tl!T
T-+O

The average unit prices in marks will be p(t,t+T}

V(t,t+T)/q(t,t+T}, and t~ese will be rather independent of

the length T of the time interval.

Correspondingly, the instantaneous price at the point of

time t will be

(4 ) P (t) lim (~ (t, t+T) )
T-+O q(t,t+T)

v (t)

q(t)

The latter equation is obtained by dividing both the numerator

and denominator in the limit operation by T.

An assumption underlying (1)-(4) is that, e.g., the function

V(t,t+T) in (1) can be "smoothed" at its points of

discontinuity: the increment in sales can be distributed

evenly between, say, time intervals of a second's length. A

more sophisticated application of this idea leads to the use

of so-called Dirac delta functions l } or to other correspondin~

1) See, e.g., Zadeh & Desoer (1963).
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mathematical methods such as the distribution calculus1) or
, 2)

non-standard analysis .

What guarantees that the mean values V(t,t+T)/T, q(t,t+T)/T

and p(t,t+T) will approach some well-defined and empirically meaningful,

say, continuous functions when the length of the time period T

diminishes? Nothing: they do not usually approach any continuous

functions. These average values become, however, smoother and more

continuous as T increases.

If both the instantaneous value and volume of sales at

anyone point of time are known, the corresponding accumulated

values are obtained by integration as follows:

"

(5)

(6)

V(t,t+T)

q(t,t+T)

ft+T v(t)dt
t

ft+T q(t)dt ,
t

the average price being obtained as a ratio of these two.

As far as the instantaneous value vet) is determined from (I),

its graph for a week's interval may be as follows:

1) See, e.g., Zemanian (1965).

2) See Robinson (1966).
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Figure 1: Smoothing of the instantaneous value v{t)

sIt> - Moving daily sums·)

v·ltl- Smoothed daily sums

Su

*) The vertical line segments in the grapn of S{t)
represent two alternative movement possibilities

The arrows represent Dirac delta functions as multiplied by

the increment in the sales at the point of time t. The dotted curve

in the figure represents the smoothed daily sums

(7) * 1 /t+h/2-V (t) = h t-h/2 v{t-T/2, t+T/2) dt

1 f t+h/2
=Ii S{t)dt

t-h/2

h< T

determined with the aid of the moving daily sums

(8)
t+T/2

S{t) = J v{t)dt = v{t-T/2,t+T/2)
t-T/2

1
, where T ~ 365

*The smoothed value V (t) does not react as easily to daily or other

short-term variations as does the unadjusted rate. (In determining

the speed of an airplane, neither perturbations nor the vibrations

taking place in accordance with the sound waves are taken into

account!). The moving daily sum S{t) is a step function but the

*smoothed value V (t) is a first order spline function.
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5.3. Derivation of Divisia-Tornqvist's indices

Consider the sales of the set of commodities A

over the interval (t,t+T):

{a l ,a2 ••• ,an}

(9) V(t,t+T) LV. (t,t+T) .
].

Dividing by the length of the interval, we get the aver~ge

value of sales:

(10) V(t,t+T)/T L V. (t,t+T)/T,
].

.which ,may be denoted

(11) V(t,t+T) L v. (t,t+Tl
].

L p. (t,t+Tlq. (t,t+T).
J. ].

Taking natural logarithms and differentiating we have

(cancelling dt):

(12) dV(t,t+T)
V(t,t+T)

L
[dp. (t,t+Tl ]q. (t,t+T)+p. (t,t+Tl [dq. (t,t+T)]

J. ]. ]. J.

Lp. (t,t+T)q. (t,t+T)
]. ].

v. (t,t+T) dp. (t,t+T) V. (t,t+T) dq. (t,t+T)
L ]. ]. + L ]. _-==J.-,---,----,-_

V(t,t+T) p. (t,t+T) V(t,t+T) q. (t,t+T)
]. ].

This may be rewritten as

(13) dlogV(t,t+Tl L wi(t,t+TldlogPi(t,t+T) +

L wi(t,t+Tldlogqi(t,t+T) .



109

Thus, when the infinitesimal changes in prices a~c volumes

are weighted by the average value shares for the period (t,t+T),

the infinitesimal relative change in sales is obtained. The

equation is suitable for the analysis of the changes in prices

and quantities, as well as for the analysis of the consequences

of alternative price and quantity situations.

A corresponding equation also holds good for the instantaneous

prices, quantities and values when certain conventions are made:

(14) dlogV(t) L w. (t)dlogp. (t) + L w.(tldlogq. (t) •
11·11

These equations are obtained from (13) by letting T approach

zero.

Substituting the expression of Vet) in terms of hypothetical

price and quantity factors, cf Tornqvist (1935,1937,1974),

(15) Vet) = P(t)Q(t),

we have

(16) dlogP(t) + dlogQ(t) L w. (t)dlogp. (t) +
1 1

L wi(t)dlogqi(t) .

Here it is natural to define the infinitesimal relative

changes in the price and volume indices by
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(17)

(18)

dlogP(t)

dlogQ(t)

L VI. (t) dlogp. (t)
1 1

L 'il. (t)dlogq. (t)
1 1

and

These are the Divisia-Tornqvist indices in differential form.

Thus the infinitesimal relative change in a price (or,

alternatively, a volume) index is the weighted average of

the corresponding price (volume) changes, the weights being

the value shares of the commodities concerned at the point of

time under consideration.

Also, for the average prices in the time interval (t,t+T), for

instance, a similar equation is obtained:

.'

(19)

(20)

dlogP(t,t+T)

Wi(t,t+T) ==

L W. (t,t+T)dlogp.(t,t+T), where
1 1

vi(t,t+T)!V(t,t+T}.

Thus, the system of weights consists here of the average

value shares of the commodities a. during the period under
1

consideration.

Equations (17) and (18) indicate the effects on the price

and volume indices of infinitesimal changes in prices and

quantities related to. a given point of time. By integration

we obtain the log-changes over the time interval (a,b) in

the price and volume indices that depend on the price and

quantity movements, considered as a whole:

'.



(21)

(22)

P(b)
logp(a)

Q(b)
l09Q(a)

b
L f w. (t)dlogp, (t)a l. l.

L fb w. (t)dlogql' (t)a ].
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These are the Divisia-Tornqvist indices in integral form.

In these formulas the symbols a and b have been used on

purposes to denote points of time, in contradistinction to

the symbols to and t l employed before to denote periods of

time.

Formula (22), for example, indicates how the log-change in

quantity between the points of time a and b - i.e., the

log-change from Q(a) to Q(bl - can be obtained from the

changes in the volume and value shares of the individual

commodities a .. This log-change will tend to minus infinity
].

as the volume at the point of time b, Q(bl, tends to zero.

Provided that the price factor P(b) ~ c > 0, the volume will

tend to zero together with V(b) = P(b)Q(b). If the volume

index is computed from the inst~ntaneous volumes qi(tl, it

will be almost invariably equal to zero, and it will have

little to do with ordinary index number calculations.

The price of a commodity a. can be defined for every point
].

of time, whereas the value and volume of its sales will, by

the customary definition, be zero at almost every point of

time. This difficulty may be avoided by determining the value
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and volume as, e.g., an average "Yleekly ti::-a :::-a::e1
). ioieekly

averages are usually determined only for calendar weeks,

numbering about 52 in a year. However, nothing prevents us

from computing weekly averages for each of the 7-day periods

which, in an ordinary 365-day year, are 359 in number. In

principle, weekly averages may be determined however

frequently, e.g., for every period of a week's length

beginning at a full hour of any of the 365 days of a year,

but in practice the lack of hourly data often makes such

calculations impossible.

Denote the average value and volume of the sales of the

commodity a. during the period (t-T/2,t+T/21 centred at t
1

and of length T respectively by

(23)

(24)

v ~ (t)
1

ql(t)

Vi (t-T/2,t+T/2)

Qi(t-T/2,t+T/2)

Provided that the sales are referred to in their entirety to

the point of time of closing the deal, the average value and

volume will be step functions continuing from the right and,

thus, discontinuous. Dividing the value and volume evenly

between intervals of, say, a second's length, however, the

1) Should months instead of weeks be considered, the variable
length of the calendar months would give rise to a furhter
difficulty.
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functions (23) and (24) can be rendered contin~o~s a~d

differentiable l ), at the same time that their empirical

interpretation is left intact. The average unit price of the

commodity a i for the time interval Ct-T/2,t+T/2) is

(25) p~ (t)
T T

vi(t)/qi(t).

In the following we shall assume that the functions (23)-(25)

are continuous and differentiable l ) functions of time. These

make it possible to rewrite the equations (211 and (22) in

a more accurate form as

(26)

(27)

logpTCb)
plCa)

l
logO Cb)

T ==
Q (a)

L fb W:Ct)dlogP:Ct}a 1. 1.

L fb W:Ct)dlogq:Ct)a 1. 1.

The value index can also be expressed in the same form:

(28)
T

logV (b)
TV (a)

b T T
L f w. (t)dlogv. (t)a 1. 1.

and thus the factor reversal test will be met ;at any positive

choice of T. The index numbers thus defined will depend

largely, like the magnitudes (23)-(25), on the choice of the

length parameter T of the time period. However, most of this

1) More precisely, differentiable almost everywhere, see
figure 1 on p. 107.
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-
dependence is of a trivial kind, because for \- (~), for

example, we have

(29) VT(t) ~ (T l )ft+T/2 VTl(t)d~
T t-T/2 ~,

provided that T»T l . This is to say that the "long-term

average" of V'(t) can be estimated as the time average of the,
"short-term averages" V l(t). The same applies to the volume

term QT(t), and the price term pT(t) can be estimated as the

ratio between these two.

Subsequently, however, the parameter T will be omitted,

assuming at the same time that it will be kept unchanged and

sufficiently large. The effects of the length T of short time

periods on index number formulas would be particularly called

for.

"

5.4. Properties of Divisia-Tornqvist's indices

'.

The problem of so-called vanishing commodities is one that

may be analysed by means of the integral forms of Divisia-

Tornqvist index numbers. Let us assume that the commodity a,
~

disappears from the market in such a way that Pi(bl~O, but

qi(b)~i>O, whereas the prices and quantities of all the

other commodities a. remain constant and equal p, and q,
~ J J

respectively. The effect of an extreme decline in the price

of a i on the change of the price index will be

.',



(30) Jb w. (t)dlogp. (t)a 1. 1.

b qi(t}dPi(~)

Ja 2:p. (t) g . (t)
J J
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qi b Pi(a)q.
~ 2:p.q. laPi(t} ~ - 2:p q 1, when p. (bl ~ o.

] ] j j 1.

Thus the effect of an extreme decline in the price of a. on
1.

the log-change in the price index is approximately equal to

the negative of its value share wi(a) at the point of time

a. The index formulae to be presented later can be tested

with the aid of this result.

To make the exact meaning of the above integrals evident and

to render broader interpretations possible it is useful to

rewrite equations (26}-(28) using another notation. The

notation to be used below is that of Apostol .(1957) p. 277.

Let

( 31) a. ( t) = logp ( t) , r = 1, 2 , .•• , nr r
~

(32) fr(a.(t» = wr(tl

exp[logp (t)+logq (tl-log2:Pr(tlq (t)]r r r

(33) f(c;) is a curve in lRndefined by the vector c;(t),

where t € (a,b).

Employing this notation, (1) can be rewritten in the form

(34) P(bl
logp(a)

n
2:

r=l

b ~
J f (C1.(t»)da. (t),a r r
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where all the terms are Stieltjes integral5. ?Jl~ONi~g Apostol,

this can further be written as a line integral

'.

(35) PCb)
logp(a) f l.dtt

r (tt)

provided only that the vector function ~(t) = (ul(t), ..• ,ur(t»

is continuous, and this was ensured by the interpretations

introduced above. By (35) the log-change in the prices is the

line integral of the value shares w (t) computed along the
r

curve defined by the logarithms of the prices, logprCt).

Essential is that not only the end points of the curve but

also its course may affect the result.

In evaluating the integrals in (34) use may be made of the

mean value theorem of the Riemann-Stieltjes integrals, see

Apostol (1967) p. 213:

'.

"

(36) fb f Ctt(t»du (t)a r r
bf w (t)dlogp (t)a r r

- b
= w f dlogp (t)r a r

P (b)r
Wlog-p(a)

r r

Here we suppose that the prices either increase or decrease

over the interval [a,b]. As the value shares w (t) arer

continuous functions of time, w will be the value sharer

w (t) at some particular point of time t in the interval
r

'.
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[a,b]. In any case, w will be the following average valuer

share (weighted by the price changes):

(37) w
r

b bf w (t)dlogp (t}/f dlogp (tl.a r r a r

Substituting this into (41) we have

(38) P(b)
logp(a)

p (b)
r ,= L wrlogp (a)
r

which shows that a solution of a given simple type exists for

the Divisia-T6rnqvist indices in integral form, provided that

all prices change monotonically.

An expression of the corresponding type is obtained for the

volume index:

(39) Q(b)
logQ(a)

q (b)
1\ r

L w logq (a)
r r

The average value shares ~r occuring here depart, however,

usually from the shares w because the quantity log-changes inr

(40) "wr
b bf w (t)dlogq (t)/f dlogq (t).a r r a r

are the weighting functions.

The index number problem can thus be reduced to the problem

of the choice of the weights wr and ~r. This is because, by

(38) and (39), the log-changes in price and volume indices



118

may, under certain conditions, be expressed as a lineur

combination of the log-changes of individual prices or

quantities, in which the coefficients are means of the value

shares for the time interval under consideration.

It should be noted that the weights w or ~ need not necessarilyr r

add up to unity, despite the fact that, for each point of time,

L w (t) = 1. It will later be observed that, in approximatingr

(38) and (39), it is useful to get rid of the ordinarily used

interpretation of a mean in which the sum of the weights is

normed so as to equal unity.

Divisia - Tornqvist's integral formula leads to price and volume

indices in which the weigths usually depart from each other. In

consequence, the indices (38) and (39) thus arrived at do not

satisfy the "factor reversal" test. If the time interval [a,b] is

comparatively long and there is enough information available on

the movements of prices and quantities, different weights wr

and ~ may be used. An explicit use of mutually different
r

weights can, however, be avoided by dividing the interval [a,b]

into parts and computing, e.g., the integral (36) by parts.

This is, in an abstract form, the chain principle advocated

t ' lib TO" 1 2 K+l b Th 'par lCU ar y y ornqvlst. Let a = t <t < ... <t =. en lt

will holcl true (provided that the prices change monotonically

over each of the sub-intervals)

'.

O·



(41 ) fbw (t)dlogp (t) =a r r
K tk+l
L f t w (t}dlogp (t)

k=l k r r
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K
L

k=l

( k+l)P t
- .-=..r_---.:-

wr (tk }log p (tk )
r

k -kwhere t < t < t k +l . Now we may further define

(42) wr

w (tl)l Pr(t
2

)
r og~-p ,. I\.

r

+ ..• + wr(EK1!OgPr(tK+l}
p I. 0,

r
p (bl

r
log p (al

r

or in other words, wr will be the mean of the value shares in

the sub-intervals, w (Ek ) as weighted by the price changes.
r

Equations corresponding to these hold true for the volumes.

If the time interval [a,b] has been divided into sub-intervals

so short that price and volume movements within these sub-

intervals are not known, it is warranted to use the same

weights for both price and quantity changes. When the sub-

intervals are short, the error of approximation will be small

in any case.

Finally we shall briefly consider the dependence of the

log-change of the price index (35) on the path of integration

rea). As is well known, the change in a price index need not

necessarily be zero even though ur(a}=logpr(al=logpr(bl=ur(bl,

i.e. na} is a Jordan curve.
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This peculiar state of affairs can be seen, e.g. =~o~ (42),

according to which the effect on or the contribution to the

log-change in a price index of an individual price change is

(43)

2
Pr(b) -1 Pr(t)

w log-- = w (t ) log 1
r Pr(a) r Pr(t )

+ ••. +w (tK) P (tK+.l)
r log r

Pr(t
K

)

The left-hand side of this equation is defined with the aid

of its right-hand side. The right-hand side may take on values

different from zero even when p (b) = p (al. The left-hand
r r

side will then be of the form ±=.O, or the weight wr (no longer

interpretable as a value share!) will attain an infinitely

large value. Thus the commodity a may have an effect different
r

from zero on the change in the price index, despite the fact

that the total change in its price is zero. Because of this

peculiarity, for instance, it is reasonable to divide the time

interval [a,b] into shorter intervals for the application of

the chain principle.

Under what conditions will the change in the price index (35)

be independent of the path of integration? No general results

are known if the value shares (32) are any arbitrary nonnegative

functions of time the sum of which equals one. They should be

functions of the price vector onl~ i.e., they should not depend

independently on the quantity vector or the total income.

In this case we have a precise answer to this question given by

a theorem of Apostol (1957) p. 280:

+
Theorem. Assume that the vector of value shares, f (WI'··· ,wn ),

is a continuous mapping of the logarithmic prices x. = logp.
1 1

defined in an open region S of mn and that there exists a real-

valued and differentiable mapping ¢ defined in S for which



(44) -+
"Ix

-+ ~--+ -+
xES ~ rex) = V~(x).
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Then, for every point ~ and y of S and for every price-wise

smooth curve f joining ~ and y we have

(45)

where

f 1.·do
f (~, y)

oEf (~,y).

f V~.da
-+ -+

f(x,y)

~(Y)-~(~),

The function ~ is a potential function of the value share

vector 1. (which function here corresponds to the logarithm

of the price index, logP(t». It can be shown, conversely,

that independence of the path of integration implies the

existence of a potential function. Apostol (1957) gives, on

p. 293, an interesting necessary condition, concerned with

the partial derivates of the value shares, for the existence

of the potential function:

(46) -+
D

i
f

j
(x) D. f. (~)

J ~

Written in another notation this becomes

(47)
ow.
.:.-l

alogpi

3wi
alogP j

Further, by using (32)

(48)
aw.
---1

alogp
i

w. [e .. -!:we. -w.),
J J~ r r r~ ~
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·to the price p .. Assume that
l.

and the income V(t) are

where e .. = 31ogq./31ogp. is the elasticity o~
J1. J 1.

of demand for a j with respect

the prices p. (t), i=l, 2, •.. , n
1.

t:te S".la.ntity

exogenous variables and that the quantities qi(t), i=1,2, ... ,n,

will at every point of time immediately adjust to these

exogenous factors, in the way postulated by the classical

theory of demandl ). It is interesting to examine the contention,

presented to me, that in this situation the integral (45) will

be independent of the path of integration. Equation (47) can

now be rewritten with the aid of (48) as W.e .. = w.e .. , since,
. l. 1.J J J1.

according to the classical demand theory (see, e.g., Henderson and

Quandt (1971) p. 39), L we. = -w.. Nevertheless, this does
r rl. 1.

not always hold true, but, according to the classical demand

theory, w.e .. = w.e .. + w.w.(n.-n.), which is the so-called
l. l.J J J1. 1. J J l.

Slutsky equation as written in terms of elasticities and Silares

(see Malinvaud (1972) p. 37) .

Thus the integral (45) is not necessarily independent of the

path of integration even under the classical theory of demand,

because the value shares are usually dependent on income. A necessary

additional condition is that all the income elasticities n. be equal
l.

toone. This corresponds to the homothet{c case, where everything

is nice and simple as Samuelson and Swamy (1974) show. Afterwards

wehave found, to our surprise, that Hulten (1973) has proved the

path independence of the Divisia-Tornqvist's index by referring

to the same theorems of Apostol (1957)! Hulten's interest is,

however, in the production theory whereas our I s is here in the demand theorl'~

1) This expression has not, of course, any completely well
established meaning. Of the results of the classical
demand theory, mainly those concerning the properties of
the demand functions are needed here, the point of
departure for the present analysis being the situation
considered in E. Malinvaud (1972) chapter 9.
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NEW INDEX NUMBER FORMULAS BASED ON RELATIVE CHANGES

General

Let us return to the problem that was put aside at the end of

chapter 1. We want to determine the relative change in a sum with

the aid of the relative changes in the terms of the sum. Interest

is of course focused particularly on the log-change as an indicator

of the relative change. To make the presentation more illustrativel )

we will consider the accounting identity

(1) yt ct + It

which says that the value of income yt for some period t equals

the values of consumption Ct and investment It for the same period.

Subtracting equations (1) for two periods (or any two situations)

t l and to we get

(2) ytl _ ytO ctl _ ctO + I tl _ ItO, or ~y ~c + ~I •

1) This was how Vartia Index I was actually discovered, in
constructing a solution program for the short-term econometric
model of Etla, reported by P. Vartia (1974). Here accounting
identities were to be written in terms of relative changes,
see Y. Vartia (1974).
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A A A
By dividing and multiplying by any nonzero means Y, C, I of the

values of Y, C and I we get

(3)
fj,y
A
y

A A

(~) fj,; + (~)¥
Y c Y I

A to A A
If we take, e.g., the 'mean' Y = Y and similarly for C and I

we have the familiar identity for an ordinary relative change:

the relative change in Y is a weighted average of the relative

changes in C and I, the weights being the 'old' value shares

cto/ytO and ItO/ytO • Specifying different means Q= K(ytl,ytO),

etc. we get similar identities for various indicators H(y/x) =

(y-x)/K(y,x) of relative change. Especially using the logarithmic

A tl to .
mean Y = L(Y ,Y ), etc. and the representatlon (27) of chapter 1

we get for the log-change

..

(4) log
y tl

ytO
~ Ctl ~ I

tl
A log ~ + A log ~ .
y C Y I

This is the needed decomposition for the logarithmic change of

the sum (1).

6.2. The Vartia Index I

Making use of the notations introduced in chapters 1 and 3 we

have similar decompositions for a general sum V = LV. = Lp.q.l l l

and any indicator H(~)= _.~-x , of the relative changex .

(5)
VI

H(O)
V

1 °K(v. ,vi)
l

= LK(~,VO)

1
vi

H(O)
vi

Especially for the log-change

(6) H (~)= y-x = log (~)
4 x L(y,x) x
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we have

(7)
VI

log (0)
V

1 °L(v. ,v.)=1: J. J.

L(Vl,VO)

1v.
log (-i)

vi

~ 1 °= ~ w. log (v. Iv. )
J. J. J.

using an obvious notation. Because the log-change of the value

v. = p.q. equals the sum of the log-change for price p. and
J. J. J. J.

quantity q.,
J.

(8) 1 °log(v./v. )
J. J.

1 ° 1 °log(o./p.) + log(q./q.)
~l 1 1 1

we have identically

(9) log (Vl/Vo) 1 1
log Po + log Qo

if we define the log-changes of the price and quantity indices

in (9) in the following natural way:

(10)

(11)

(12)

1
log Po

1log Qo

Wi

n
~ 1 0
~w. log(p./p.)
i=l 1 1 1

n

~ 1 °~wi log (qi/qi)
i=l

1 ° 1\L(vi,vi ) vi

L (VI, Va) = ~

, where

According to (7) a decomposition similar in form to these also

holds good for the value V = LV. = Lp.q .. This derivation is the
111

discrete analog of the derivation of Divisia-Tornqvist's indices

(17) and (18) in chapter 5. The index number formula defined

by (10) or (11) will be called the Vartia Index I.
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Equation (9) shows that the our new index formula, Vartia Index

I, meets the factor reversal test. It is a routine task to show

that the formula (10) defines a price index in the sense of

chapter 3 and satisfies the time reversal test. Its other properties

will be discussed later.

A feature characteristic of the Vartia Index I thus defined is

that the sum of the weights w, does not usually equal unity.
l

In Appendix 4 it is shown that LW. is less than or equal to unity
l

and that it will equal unity only if w? = w~ for every commodity
l l

a .. In this case relative changes in value for all commodities
l

will be equal.

Ordinarily the sum of the weights of the index number formulas

of this type has been required to equal unity. For example, in

the formula of type (10) presented by Walsh (1901) the weights

were defined by

W Jw~w?v.v
i l ll _(13)

Wi =1;0 -1;/w~w~
V j j J J

Tornqvist (1935,1974) has used as an approximation to his integral

formula a log-change index of type (10) where

(14) Wi

1 0
levi + Vi)
2 vI v O

1 1 0
2(w i +wi )

These weights add up to unity. As Theil (4) correctly pointed

out, the choice of the weights (14) already occurred in Fisher

(1922), in formula 123. The corresponding index is called in our

calculations the Tornqvist Index II because of the formal

correspondence there is between it and the Vartia Index II.

, .

'.
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The Tornqvist Index I is defined by the weights (30) to be

presented later.

Theil's (1973) proposal for the weights is a kind of average

of Walsh's and Tornqvist's weights, the weights derived by Theil

being

(15)

(16)

1 0
T(WJ.0'w.)

W _ J.
i - ~ 1 0

~T(wo,wo)
J J

T(y,x) = 3~XY(X;Y) •

where

The mean (16) defined by Theil (which was already mentioned

by Tornqvist (1935» is a weighted geometric mean of the geometric

mean VXY and the arithmetic mean ~(x+y), which Theil arrived

at via complicated approximations.

The properties of the means involved in the weights (12), (13),

(14) and (15) are considered in Appendix 3.

By forcing the sum of the weights to equal unity, the interpretations

of the log-changes (10) and (11) as arithmetic means is preserved,

and the indices will then be weighted geometric ~eans.

Yet there is no self-evident grounds for requiring that the

weights in a price index number formula of form (10) should add

up to unity. For example, Laspeyres's price index can be written
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in logarithmic form as follows

'.

(17 )
1 0

log(~)
pO.gO

1 0 0 0P 'q -p -q
1 0 0 0

L (p 'q ,p '9 )

o 1 0
qi(Pi-Pi)

=1: 1 0 0 0
L (p ·9 , P • q )

010
qiL(Pi'Pi )

=1: 1 0 0 0
L (p 'q ,p 'q)

1 0
log (Pi/Pi)

Thus, according to Laspeyres's formula, the weights w. are
1

(18) • w. ""
1

1 0 0 0
L(Piq i,Pi9 i)

100 0L(p -9 ,p .q)

o
Wi

1 0L(p./p., 1)
1 1

1 0 0 0L(p -g /p 'q ,1)

and their sum does not necessarily equal unity. As appears

from Appendix 4 (by changing only the symbols), LWi ~ 1.

In a corresponding manner, weights whose sum equals at most

unity can be derived from Paasche's and Fisher's price indices.

From this property of Fisher's index we may conclude that no

bias is generally introduced although the sum of weights w. in
1

(10) or (11) is smaller than one, cf. Y. Vartia (1976a).

6.3. The Vartia Index II

However, if it is considered desirable for one reason or

another to use an index where the sum of the weights w.
1

equals unity, it is best to replace in Theil's weights (15)

the mean T(y,x) defined by Theil with the logarithmic mean

L(y,x) and to define

'.

(19)

1 0L(w.,w.)
1 1

w = '("' --1 0)
. i ~L(Wj,Wj

The index thus arrived at will be called the Vartia Index II.
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These are precisely the weights that Theil (1973, 1974) and

Sato (1974) endeavoured to derive. What Theil wanted to find

were the weights wi for which the sum of the logarithms of the

price and volume indices would be log (VI/vO) , as required by the

factor reversal test:

(20) ~ 1 ° 1 °~w. [log(p./p.) + log(q./q.)]
11111

L 1 °= wi log (vi/vi)

IVIw.
1 )= Lw. log ( avo

1 Wi

~ 1 ° ~ 1 °=~ W1' log (w./w.) + (~w.) log (V /v )
1 1 1

~ 1 ° 1 ° ~~ w. log (w. /w .) + log (V /v ), when ~ w. = 1 .
1 1 1 1

As Theil imposed on the weights the requirement that they should

add up to unity, the weights w. have to satisfy the condition
1

(21) ~ 1 °~w. log (w./w.) _
1 1 1 ° & L Wi = 1 .

Theil (1973) demonstrates that the condition (21) is satisfied

comparatively well by Tornqvist's weights (14) when the changes
t

in the value shares w. are small, even somewhat better by Walsh's
1

weights (13), and by Theil's own weights (15) - which he constructed

on the basis of this condition - still more accurately, so that

the order of smallness of the discrepancy is still increased.
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For Theil's weights (15)

(22) L 1 0Wi log (wi/wi)
1 ~ 1 0 5

- 720 ~wi[log(wi/wi») + 0 7

where 07 is a term of at least the 7th order in log-changes.

We propose to show that the weights (19) of the Vartia Index II

satisfy the condition (21) identically. To this end, consider an

arbitrary term of the sum (21),

(23 ) 1 0
Wi log (Wi/wi) =

1 0
Wi-wi

w. [ 1 0)
~ L(wi,wi )

1 0W.-w.
~ ~

~ 1 0
~L(w.,w.)

J J

'.

The sum of these terms will be zero since the numerator of the

sum equals zero. The complexity of the expression in the denominator

is due to the requirement LW. = 1.
~

As I see it, the weights (19) are the only "reasonable weights"

with which (21) will be satisfied identically. By "reasonable

weights" I mean weights that, in the sense of an average, correspond

to the value shares of the commoditiesl ) .

6.4. Properties of our new indices

At first sight the weights (19) may seem even better than the

weights (11), whose sum is less than or equal to one. Whichever

of the two sets of weights is used, the indices so defined will

satisfy both the time reversal test and the factor reversal test accurately

1) Sato (1975, 1976) documents an independent discovery of weights
(19) and proves very interesting results using the economic theory
of index numbers.
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Like the weights (11), the weights (19) can be used entirely

symmetrically for the prices, quantities and values, as is

evident from equations (20). In this respect, then, the Vartia

Indices I and II do not differ from each other.

What, then, do we lose when the sum of the weights is normed

so as to equal unity, in which case the log-change in the index

is interpretable as a weighted arithmetic mean?

The difference lies in the fact that the Vartia Index I is

consistent in aggregation, whereas the Vartia Index II is not.

As I see it, this advantage possessed by the Vartia Index I is

more important than the fact that the sum of the weights equals

unity, although certain formally simple and beautiful properties,

reducible to the possibility of interpreting the index as an

average, follows from this fact. For instance, Vartia Index II

satisfies the proportionality tests PTl-PT7 whereas Vartia Index

I satisfies only PTI-PT2, for a discussion of this point, see

Y. Vartia (l976a).

The Vartia Index II is not consistent in aggregation, as the

weights

(24) Wi

1 0
L(wi,wi )

"" LaL.L(w.,w.)
J J

are based in an excessively complicated manner on the shares
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w~ = v~/vt, t = 1 or 0, computed relative to the aggregate
~ ~

value v
t = vi+ •.• +v~ of the entire set of commodities A = {al, •.. ,an }.

The weights of the sub-index for any subset Ak of the

partition Al, .•• ,Ax of A ought to be determined exclusively by

means of the value shares determined in that subset. Yet the

relation between the total index and the sub-indices thus

obtained is not so simple as demanded by the condition

formulated in chapter 3 for consistency in aggregation.

The "proof" presented by Theil (1973) for the consistency in

aggregation of Theil's index can be rendered in the following

simplified form in the case of three commodities.

Consider an arbitrary index based in log-chages and let the

sum of its weights w. be equal to unity.
~

Consider the following partition of the set A:

A = {al ,a2 ,a3 } = {a l ,a2 } U {a 3}. Then

1 0
(25) 2: wi log (Pi/Pi)

1 0 1 0 1 0
= Wi log (PI/Pi) + w2 log (P2/P 2) + w3 log (P3/P3)

WI 1 0 w2 1 0
= (WI +W2 ) [(W"""'+W""") 10g(Pl/Pl) + (w +w ) log (P2/P2) ]

1 2 1 2

+ w3 [log (P~/P~)]

'.



Theil calls the weights wl /(wl +w2 ) and w2/(wl+~2)
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":::::::jitional

shares", and the expressions in brackets he calls "group indices".

Equation (25) shows how the total index may be decomposed into a

weighted mean of the "group indices". But the "group indices"

are not sub-indices computed from the data available on the

subset, since, e.g., the "conditional share" wl /(wl +w2 ) cannot

generally be determined from the data on the subset {al ,a 2 }

alone. For example, when weights of type (14) are used, we have

(26)
WI

( --)
wl +"'2

1 1 0"2 (wl +w1 )

= 1 1 0 1 1 0
2(wl +wl ) + 2(w2+w2 )

where

(27) 1w.1.
11110

v i /(vl +v 2+v 3 ) and wi
o 000v i /(vl +v

2
+v

3
) i 1,2.

1 dO. . th d . .. f 1 d 0The terms v
3

an v 3 occurr1.ng 1.n e 1.V1.Sl0rS 0 wi an wi cannot

be determined from the data on the subset {a l ,a2 } and they do not

usually cancel out from (26). Therefore the wei~ht (26) de~ends

on data obtainable from the subset {a
l

,a2 }. This i~plies that a

"grou':J index" (of clothing, say) may be changed somewhat by changinG,

data outside the subset of the commodities in question (by chanqinq, e.g.

the 0uantitv of meat) .

In consenuence, the decomposition (25) does not permit conclusions

concernin0 the consistency in aggregation of the index. That

confusion on this ~oint is of frequent occurrencel ) is perhaps

due to the fact that so far there has been no precise mathematical

definition of the prooerty in question.

1) For instance, Christensen & Jorgenson (1970) p. 26 maintain
erroneously that the Torn0vist index defined by the weights
(14) is consistent in aggreGation. Thev must have in mind
Theil's 'definition' of the consistency in aggregation, see
Theil (1967) D. 159. As we briefly demonstrated, in the case
of this weaker consistency in aggregation no such hierarchic
system of indices as our definition in chanter 3 quarantees
can be constructed.
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The consistency in aggregation of the Vartia Index I can be

demonstrated as follows. Consider a partition Al, ... ,A
K

of A

and write

1 °I L(v"v,) 1 °
( 28) t ~ log (Pi/Pi) =

a.EA L(V ,V )
~

K lOr 10 ]~ L(Vk,Vk ) I L(Vi,vi ) 1 °
, 1 ° ~ ~ ° log (Pi/Pi) .

k=l L(V ,V) aiEAk L( k'Vk )

The bracketed expression is in fact the Vartia Index I as computed

exclusively from data on the subset Ak because V~ equals the total

value of the commodities in the set Ak during the period t = 1 or 0.

correspondingly, the sub-indices given in brackets have been

combined according to the Vartia Index I and the results equal

always the Vartia Index I for A. Thus Vartia Index I can be used

to construct a hierarchic system of indices starting from the

subsets Ak and aggregating the subindices calculated for the

subsets, the result thus obtained being consistent with the index

for A.

Index number formulas of a similar type that are consistent in

aggregation but do not meet the factor reversal test are easy

to construct. If Walsh's weights (13) were replaced with

y(,iv~ 1 °
(29)

G(vi,vi )
1 °w. = = =G(w.,w.)

~

JvlvO G(Vl , Va)
~ ~

Tornqvist's weights (14) with

"



( 30) w. =
1.

110
'2(v i +v i )

l(V1+vO)
2

1 °M(Vi,Vi )

M(Vl , VOl
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and Theil's weights (15) with

(31) W.
1.

1 °T(vi,vi )

T(Vl,VO)

index number formulas consistent in aggregation would be obtained.

The weights (30) possess, in addition, the property LW. = 1, the
1.

other weights possessing the property LW. ~l. The index corresponding
1.

to weights (30) is called the Tornqvist Index I in our calculations.

Tornqvist (1937, p. 81) evidently meant the weights (30) rather than the

weights (14) by "the share of commodity a. in the total expenditure
1.

during the period (a,b) under consideration". (We have used here our

notation. )

The indices thus obtained would react, however, in an undesirable

manner to extreme price changes of individual commodities, this

being the case, e.g., when the ratio p~/p? approaches zero or,
1. 1.

in other words, when a. becomes a free good. On the realistic
1.

assumption that the quantity of a i will remain finite even in such

a situation, v~ will tend to zero together with the price. This
1.

means that they do not satisfy the determinateness test of chapter 3,

The Walsh-type weights (13) and (29) will then tend to zero so

rapidly that the effect of the price reduction on the log-change

in the entire price index

(32) 1 °wi log (Pi/Pi)
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will tend to zero. Thus, according to the Walsh index, an

extreme reduction in the price of a given commodity will not

decrease the general price level at all!

On the other hand, the Tornqvist-type weights (14) and (30)

will approach a positive constant, and thus the effect of the

price cut, (32), will tend to minus infinity. According to

the Tornqvist index, the general price level will fall down

to zero together with the price of ail

The Theil-type weights (15) and (31) will behave qualitatively

as the Walsh-type weights.

An argument in support of his choice of weights was, as Theil

(1973) pointed out, that there was "no problem of infinite index

changes". Yet he failed to mention that these weights would

completely "kill" any extreme price cuts. Whatever nice properties

according to the economic theory of index numbers Tornqvist's,

Walsh's and Theil's indices may have they do not stand the common

sense criterion of extreme price or volume changes.

That the way in which the Vartia Indices I and II react to large

price cuts is qualitatively correct can easily be demonstrated by

considering the contribution of a change in the value of a, to
1

the log-change in the aggregate value:

(33)
1 °L(vi,vi )

, L (VI, Va)
1 ° 1 °[log(Pi/Pi) + log (qi/qi) ]

'.
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Let us carry out the computations for the Vartia Index I, from

which the general principle is apparent. Assuming that q: will
1

remain finite, the weight tending to zero will 'kill' the

volume term of (33) and thus, in the limit, the effect of the

change in price will coincide with that of the change in value

which is

(34)

1 a
L(vi'Vi )

L(Vl,Va)
1 alog(v./v.)
~ ~

1 a
vi - vi

L(Vl,VO)

This will approach the value

(35)

a
vi

L(Vl,Va) Rj

_ vOl °i v a
- w.

~

when pi and, simultaneously, vi tend to zero. As appears from

equation (30) of chapter 5, the Divisia-Tornqvist's general

integral formula behaves qualitatively in a like manner.

An extreme reduction of the price of a commodity thus results

in a decrease in the logarithm of the Vartia Index I or II

approximately equal to the value share w~ of the commodity.

These indices consequently react as they should when a commodity

disappears as a free good from the market. If conversely a free

good (p? = 0) becomes a posit.ively priced commodity (P: > 0) it will
~ ~

contribute approximately +w~ to logarithm of the price index.
~

Completely dual results hold for quantities. These are the first

indices explicitly of the geometric (or the logarithmic) type

having these properties l ) .

1) The aggregative type of indices, e.g., Laspeyres', Paasche's
and Fisher's indices, have the same property. Their implicit
representation as logarithmic indices (compare (18» reveal
the logarithmic means in their weights.
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It is not difficult to construct other indices based on relative

changes that will react qualitatively correctly to free goods.

For example, the Walsh type of weighting (29) ought to be applied

not to log-changes but to relative changes determined with respect

to the geometric mean. The following equation defines then a new

price index formula P~: ..

pI _ 1 Iv~v? I 0p.-p.
(36) _0__ = L---2:......! [~)

~ /v1vO ~
° PiPi

Correspondingly, the Tornqvist-type weighting (30) will lead

to equation

pI -1 11O 1 0
"2(V'+V' ) Pi - Pi

(37) ° = L ~ ~

!(pl+l) [l 1 ° )!(V1+vO) 2(Pi+Pi)
2 ° 2

and the Theil-type weighting (12) to

(38 )
p l _ 1
o

1
T(PO,l)

1 0T (v. , v.)
= L ~ ~

T(V1 ,VO)

1 °Pi - Pi
[ 1 ° ) .

T (Pi 'Pi)

It is easy to show that P~:s defined by (36)-(38) are price indices.

These three indices are, like the Vartia Index I, consistent in

aggregation and will react correctly to the occurence of free

goods. Moreover, they satisfy the time reversal test but do not

meet the factor reversal test.

Particularly the index defined by (37) can be recommended

because of its simplicity, to replace, e.g., the Tornqvist or

the Theil index. We have called it the Vartia Index III in our

calculations.
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The index number formulas of this type correspond to equation

(5), from which we started, and are of the general form

(39 )

(40)

H (P~)

H(y/x)

1 0
K(vi,Vi )

LK(vl ,Va)

y/x - I
K(y/x, 1)

1 °H(p./p.) , where
~ ~

~
K(y,x)

is the indicator of relative change. l )

The index number formulas P~ defined by (39) satisfy the time

reversal test if H(Y) is symmetric, i.e., if K(y,x)=K(x,y).x

The index number formulas of this type are all consistent in

aggregation and will react in a qualitatively correct manner

to free goods. Only when the log-change, which has been found

to be the best in this respect, is chosen as the indicator of

relative change (40) will an index satisfying the factor reversal

test result, this index being the Vartia Index I.

It should be stated, by way of conclusion, that from the factor

reversal property of the Vartia Index I, i.e.,

( 41) log (Vl/vO) log P~ + log Q~ or

(42 ) ~ 1 ° ~ 10· ~ 1 °~w. log(v./v.) = ~w. log(p./p.) + ~w. log(q./q.) , where
~ ~ ~ ~ ~ ~ ~ ~ ~

1) Another family of index numbers based on relative changes
may be defined by replacing (39) by

1 °, 1 _ K(wi,wi ) 1 °
(39) H(P O) - L 1 ° H(Pi/Pi)·

:LK (w j ,w
j

)

This gives Vartia Index II as a special case.
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(43) w.
~

1 °L(vi,vi )

L(Vl,VO) °w.
~

1 °L(v.!v., 1)
~ ~

L(Vl!VO, 1)

it follows that each terms of the sums (42) can be interpreted

literally as the effect on or contribution to the log-change in

the corresponding index of a change in value, price or quantity.

From the consistency in aggregation of the Vartia Index I it

follows that, by adding up the contributions of the commodities

a i in a given subset ~, we will always obtain the total effects

of the commodity group in question upon the changes in value,

price and quantity. Time periods and prices and quantities will

invariably be dealt with completely symmetrically. However,

Vartia Index I satisfies only rather weak forms PTl and PT2 of

our proportionality tests. Some index theorists may regard this

as a serious drawback, see however Y. Vartia (1976a).

Note also that by using the chain principle we get index series

which may violate even PTl and the weak identity test.

The most serious rival of the Vartia Index I seems to be an ingenious

index suggested by Stuvel (1957) based on a symmetric decomposition

of the arithmetic change in value into a price and a volume factor.

The index meets both the factor reversal and the time reversal test,

reacts qualitatively correctly to extreme price and volume changes

and is consistent in aggregation. For a definition of Stuvel's index,

see Appendix 9. If we do not demand consistency in aggregation

the most serious rivals seem to be Fisher's Ideal Index and

Vartia Index II using the weights (24), see also Sato (1976).
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The calculations made in accordance with (42) can 'be illustrated

graphically in the form of a "balance" by measuring the time

periods along the horizontal axis and the effects of the

commodities (or groups of commodities) on the changes in value,

price or quantity along the vertical axis. E'or each commodity,

three curves describing these effects will be drawn. By summation

the log-changes in the value, price and volume indices (41) will

be obtained from these curves. The indices are best computed by

applying the chain principle, so that consecutive time periods

are always compared with each other. Such calculations would

furnish a well-founded alternative to, say, the present national

accounting procedure, in which price and volume movements are

followed by calculating the values of various commodity groups

at the prices of a given base year. Regarding its accuracy,

this procedure based on so-called constant-price value series

is, as already noted, satisfactory at best.
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7. SOME EMPIRICAL INDEX NUMBER CALCULATIONS

The aim of this chapter is to illustrate, by practical computations,

quantitative differences between various formulas and different

methods of calculations. The empirical data consists of Finnish

yearly Gross Domestic Product (GDP) figures at factor cost by industries

in 1957-72 and Finnish monthly imports of fuels and lubricants figures

(cif) by the SITC subgroups in January 1972 - September 1974.

The GDP data provides a fairly easy case and the results of

various formulas and methods do not differ much from each other.

On the other hand the imports data puts the index number formulas

to a difficult test, which only the best of them are able to pass.

7.1. Finnish yearly ~DP by industries

The data

As a basis of our calculations we have used yearly GDP figures at

factor cost for 44 industries as they are reported in Finnish

National Accounting. l ) The values v~ of GDP for different
~

1) Central ,Statistical Office of Finland (1973) table 1 and

table 4 for period 1964-1972 and Central Statistical Office

Of Finland (1968) table 1 and table 4 for period 1957-1964.
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industries a. measure the value added produced in those industries.
1

The volume ratios q~/q~964 were calculated using the reported11-

official indices of production, which in turn have been calculated

on the basis of the GOP series at 1954 or 1964 prices. For some industries

the volume ratios for the period 1964-72 were calculated using the

available GOP series at the 1964 prices to get more than the 'official'

three significant figures for our volume ratios, which are given

in appendix 7. The price ratios p~/p~964 were defined as the
1 1

. t 1964 t 1964 .rat10 between v. /v. and q. /q. . Thus our bas1c1 1 1 1

d t .. t f 1 t 1 . t/ 1964 da a conS1S s 0 va ues v., vo ume rat10s q. q. an1 1 1

price ratios p1/pi964 , where t means any year between 1957

and 1972. All the calculations were carried out on the computer and

the data was checked up to give the correct totals and, e.g., correct

figures for the official Laspeyres l volume index for GOP in

1964-72.

Index calculations

The calculations have been carried out using Laspeyres l
; Paasche1s,

Fisher's and Vartia I indices. Both base indices of the form Pi964

and chain indices were calculated. The results, however,
... --- -

are l?resented both as index series (where the value of

the index for 1964 is set as equal to 100) and as yearly dynamic

changes ~~ These are presented in tables 1 and 2. In order to get

an idea of the variation of the dynamic changes in values, prices

and quantities among various industries we have calculated their

variances (i.e. 104 s 2, 104 s 2 and 104 s 2 in the notation of
v p q

appendix 6) and the covariance of dynamic changes in prices

and quantities 104 cov(p,q). These statistics use the weights

1) For terminology see Introduction and Appendix 5.
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of Vartia Index I. The results are presented in table 3, where

also the dynamic changes in the total value of GDP

100 log (Vt IV1964 ), the dynamic changes in its price 100 log Pi964

and in its quantity 100 log Qi964 as calculated by Vartia Index I,

are given. These dynamic changes satisfy

(1) t 1964 t t100 log (V IV ) = 100 log P 1964 + 100 log Q1964

because the factor reversal test is here satisfied.

We note that, e.g., the variance of the dynamic changes in prices

104s 2 is literally the variance of the price changes
p

100 log(p~/p~964) of various industries a. around their
111

mean 1001ogpi964 ' i.e., around the change in the price level.

As is proved in appendix 6, the variances and the covariance

satisfy

(2) 2
s =v

s2 +
P

2 •• ) 2cov(p,q + Sq

The same equation applies if both sides are multiplied by 10 4

Similar variances and covariances are used by Tornqvist (1937),

Rajaoja (1957) and especially Theil (1965,1967,1970), see also

Y.Vartia (1976b).

'.
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Index series for the price of GOP. The value of index

for 1964 is set equal to 100, change is the dynamic

change from the preceding year-

Index formula Laspeyres Laspeyres Paasche Paasche
Base year 1964 - 1964 -
Chain index - Chain index - Chain index

Year Index Change Index Change Index Change I Index Change

1957 71.178 70.945 70.728 71.076

1958 75.981 6.530 75.550 6.289 75.259 6.209 75.726 6.337

1959 78.336 3.052 77.856 3.006 77.730 3.231 77.992 2.943

1960 80.156 3.042 80.314 3.183 80.260 3.203 80.553 3.230

1961 84.215 4.195 83.966 4.372 83.906 4.443 84.099 4.308

1962 86.825 3.052 86.673 3.173 86.668 3.238 86.786 3.146

1963 92.975 6.843 92.922 6.962 92.922 6.968 92.976 6.889

1964 100.000 7.284 100.000 7.341 100.000 7.341 100.000 7.284

1965 104.669 4.564 104.669 4.564 104.590 4.488 104.590 4.488

1966 109.565 4.571 109.568 4.574 109.404 4.499 109.480 4.569

1967 114.836 4.698 U5.023 4.859 114.849 4.858 114.913 4.844

1968 125.788 9.110 126'.025 9.135 125.848 9.145 125.963 9.181

1969 133.576 6.007 133.741 5.943 133.195 5.675 133.701 5.962

1970 140.025 4.715 140.129 4.665 139.054 4.304 139.998 4.603

1971 148.579 5.930 148.715 5.946 147.241 5.721 148.522 5.931

1972· 161.451 8.308 161.343 8.151 159.625 8.076 161.124 8.124

1973·
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Table 2. Index series for the price of GOP. The value of index

for 1964 is set equal to 100, change is the dynamic

change from the preceding year

.'

Index formula Fisher Fisher Vartia I Vartia I
Base year 1964 - 1964 -
Chain index - Chain index - Chain index

Year Index Change Index Change Index Change Index Change

1957 70.953 71.010 70.929 71.014

1958 75.619 6.369 75.638 6.313 75.606 6.385 75.636 6.306

.1959 78.032 3.141 77.924 2.978 78.012 3.133 77.923 2.979

1960 80.507 3.123 80.463 3,206 80.494 3.133 80.461 3.206

1961 84.060 4.319 84.032 4.340 84.056 4.330 84.031 4.341

1962 86.746 3.145 86.730 3.160 86.746 3.149 86.728 3.160

1963 92.949 6.906 92.949 6.925 92.948 6.906 92.948 6.925

1964 100.000 7.312 100.000 7.312 100.000 7.313 100.000 7.313

.1965 104.630 4.526 104.630 4.526 104.630 4.526 104.630 4.526

1966 109.484 4.535 109.525 4.572 109.485 4.536 109.525 4.572

1967 114.842 4.778 114.969 4.851 114.844 4.778 114.969 4.852

1968 125.818 9.128 125.995 9.158 125.806 9.117 125.996 9.15B

1969 133.386 5.840 133.722 5.952 133.386 5.851 133.731 5.95B

1970 139.539 4.510 140.064 4.634 139.532 4.505 140.075 4.635

1971 147.909 5.826 148.633 5.939 147.849 5.801 148.643 5.937

1972* 160.535 8.191 161. 234 8.137 160.360 6.123 161. 245 8.13B

1973*

'.

'.

' .

.'.



Table 3. Characteristic measures of GDP calculated by Vartia Index I (base index)

Value Change from 1964, dyn Variance of dynamic changes
Year 100I:wimill. mk 4 "

Value Price Volume Value Price Volume 10 cov(p,q)

1957 10 552 -69.488 -34.349 -35.139 289.3 153.6 257.1 - 60.7 99.772

1958 11 377 -61. 963 -27.964 -34.000 205.8 152.9 240.3 - 90.7 99.834

1959 12 504 -52:517 -24.831 -27.686 199.2 160.1 191.8 - 76.3 99.838

1960 14 082 -40.628 -21. 698 -18.929 128.3 125.1 125.4 - 61.1 99.895

1961 15 708 -29.700 ..,17.368 -12.332 92.6 78.0 87.6 - 36.6 99.924

1962 16 770 -23.159 ..,14.219 - 8.940 48.8 40.0 44.9 - 18.1 99.960

1963 18 532 -13.166 - 7.313 - 5.853 23.7 20.1 15.0 - 5.7 99.980

1964 21· 140 0.000 0.000 0.000 0.0 0.0 0.0 0.0 100.000

1965 23 145 9.059 4.526 4.533 19.2 12.8 21.6 - 7.5 99.984

1966 24 746 15.749 9.062 6.687 76.3 39.3 66.4 - 14.7 99.937

1967 26 680· 23.274 13.840 9.434 171.9 75.0 94.2 + 1.4 99.857

'1968 30 064 35.214 22.957 12.257 233.0 100.4 122.1 + 5.3 99.808

1969 34 599 49.264 28.808 20.457 305.1 153.8 204.8 - 26.7 99.753

1970 38 906 60.996 33.313 27.684 405.4 206.4 330.9 - 65.9 99.676

1971 42 220 69.172 39.102 30.070 440.6 207.4 404.2 - 85.5 99.652

1972· 48 857 83.772 47.225 36.547 679.8 249.5 635.9 -102.8 99.473

1973·

1974·

t--'
.I::>
-..J
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Discussion of the results

Letus first examine the Laspeyres and Paasche base indices.

The first impression is that they do not differ much from each

other, the difference being never more than two index points, which

is their difference in 1972: Li~~~ = 161.5and pi~~~ = 159.6.

Their relative difference in dyns is 100 log (161.5/159.6) = 1.18 dyn.

As a rule Li964 > pi964 except in 1967 and 1968 when their difference

is very small. The relative differences of Li964 and pi964 should be,

according to the results of Y. Vartia (1976b), approximately equal to

cov(p,q) for year t:

".

(3)
t t . .

100 log (L1964/P1964) RI - 100 cov (p,g)

That this is a very accurate approximation is evident from the

following table

Table 4: The relative difference t tbetween L1964 and P1964 and

its approximation (3), dyn

year t 1956 1957 1958 1959 1960 1961 1962 1963 1964

100 log (L/P) .. 0.64 0.96 0.78 0.62 0.36 0.18 0.06 0
-100 cov (:p,q) .. 0.61 0.91 0.76 0.61 0.37 0.18 0.06 0

year t 1972 1971 1970 1969 1968 1967 1966 1965 1964

100 log (L/P) 1.14 0.90 0.70 0.28 -0.05 -0.01 0.14 0.08 0
1-100 log (p,g) 1.03 0.86 0.66 0.27 -0.05 -0.01 0.15 0.08 0

".
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The covariance cov(p,q) turns negative in 1967 and 1968 but

gives even here a very accurate approximation. The ratio

10g(L/P)/cov(p,q) of these very small numbers remains even for

these years close to one (namely 0.87 and 0.90 for 1967 and 1968),

so that (3) gives surprisingly accurate results.

Table 4 is arranged in such a way that years equally far from

1964 are below each other. Thus we can see how the relative

difference between Li964 and pi964 increases slowly, as a rule,

as we move farther away from the base year 1964. The year of

devaluationl ) 1967 and the next year 1968 form exceptions. The

relative differences between Li964 and pi964 are usually smaller

than 1 dyn ~ 1 %. As Paasche's price index pi964 is the official

implicit price index (deflator) of GDP for t ~ 1965, these relative

differences are just the changes that would occur if we used

the equally good (or bad) formula of Laspeyres Li964 instead of

the 'official' choice pi964. This would mean, e.g., that in 1972

the official price index 159.6 would have increased by 1.14 dyn

to 161.5, while at the same time the quantity index of GDP would

have decreased by the same amount, 1.14 dyne (This applies in so

far as we would only change the calculation procedure of aggregating

the data for the 44 industries but keep the data for these industries

unchanged. Should these be recalculated as well, much greater

changes would be likely to emerge. Here we regard the data for

the 44 industries as given and use it only as an illustration) •

1) The Finnish mark was devalued by 27 dyn in October 1967.
This means that the value of foreign currencies rose by 31 % in
respect to the Finnish mark or the value of the Finnish mark was
lowered by 24 %. These different figures often occasion confusion
which disappears when we use some symmetric indicator of the
relative change, e.g., dynamic change.
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By way of a summary we conclude that the yearly relative changes in the

price of GDP as calculated from the 'official' price index P i964

are on average 0.1 dyn R$ 0.1 %-units lower than the corresponding changes

as calculated from Li964' This is a rather small but a systematic

effect. For t ~ 1964 Plt954 grows faster than Lt.1964

When turning to Fisher's index and Vartia Index I as calculated by

the base method we find that their difference is only a fraction of

the difference between Li964 and pi964' Because by definition

(4) t 1 t tlog F1964 = 2(log L1964 + log P
1964

) '.

the logarithmic differences of Li964 and pi964 with respect to Fi964

are equal apart from the sign:

(5) t t)
log (L1964/F1964

t t)
- log (P1964/Fl964 R$ -

1 ..
2 cov (p,q)

These relative differences together with the relative difference

between Vartia Index I and Fisher's index are shown in figure 1:

Figure 1: The relative differences of Laspeyres', Paasche's and

Vartia's indices with respect to Fisher's index

~.~ ~d~.••••••••••••. LASPEYRES' INDEX .

0.6 • * * VARTIA INDEX I 0.6
/... ...

0.4 t-.. ...... PAASCHE'S INDEX •••• i 0.4
~ , /

0.2 t- , /,., i 0.2

o •••••••.. ...... 0

-~2 .2

~A OA

-0.6 0.6

-0.8 0.8
1958 60 62 64 66 68 70
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We see that the Vartia Index I and Fisher's index are very accurate

approximations to each other. Only in 1971 and 1972 is there a

noticeable difference between them: -0.04 dyn and -0.11 dyn

respectively. The differences between the yearly dynamic changes

between these two indices are still smaller, as is seen from

table 2. The maximum difference between these figures occurs in

1972, when it is 8.123 - 8.191 = -0.068 dyn. Usually the difference

is negligible, i.e., one or two per cent of one per cent, or smaller

than 0.02 dyn. On the other hand, e.g. in 1969 the yearly

dynamic changes as calculated from Li964 and pi964 were 6.0 and

5.7 dyn and in 1970 4.7 and 4.3 dyn respectively. This means that

in two years the price changes had been 0.7 dyn greater according

to Laspeyres' index than according to the official Paasche's index.

If the value of GDP had been deflated by Laspeyres' instead of

Paasche's price index, the growth of 'real GDP' from 1968 to 1970

would have been 15.1 dyn insteud of the official figure 15.8 dyn.

The ratios of the price indices P~ and p~-l, which are used to

compare the year t k with the year t k - l , are easily derived for

Laspeyres' and Paasche's indices. These are quite curious expressions

showing that Laspeyres' and Paasche's price indices do not generally

give reliable yearly changes in prices. For Laspeyres' index we have

(6) Lk/Lk - l
o 0

pk . qO

k.-l 0P .q

Here the price comparison is based on quantities qO which may be

badly out of date. Quantities better suitable for this comparison

would have been qk-l of Laspeyres' chain index.
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The corresponding expression for Paasche's index reads

'.

(7) pk/pk-l
o 0

k k
- E......:S.- •- 0 k

P .q

o k-lp .g
k-l -k-lP .q

k k-l k k-lHere the result depends not only on p , p , q and q but also

o
on p .

If the prices for the years t
k

and t k - l remained the same, (7) would

not generally be unity but would depend, e.g., on pO. This shows that

the expression (7) cannot be regarded as a fair price index

from t k - l to t k as is noted, e.g., by v. Hofsten (1952) p. 37.

Like Lowe's index treated in chapter 3 , (6) and (7) interpreted

as formulas of the type P~-l do not satisfy the commodity reversal

or the unit of measurement test in their strict form because of

o 0their dependance on q and p • They are not d. c. index number formulas.

Thus we should not actually say that the prices of GDP rose by

4.3 dyn from 1969 to 1970 as measured by Paasche's price index.

In fact we have not compared 1969 and 1970 directly but via

1964, and literally we should say that in 1970 the price level

as compared to 1964 (i.e. 139.1) is 4.3 dyn higher than the

price level in 1969 as compared to 1964 (i.e. 133.2).

Note that it is by no means necessary for a precision formula

to lie between Laspeyres' and paasche's 'limits' if these

happen to be near each other. We have discussed this problem

in chapter 2 • In 1967 and 1968 Laspeyres' and Paasche's

price indices are almost equal. Vartia Index I lies, however,

between them, being thus a better approximation to Fisher's

index than neither of these two in our GDP data. '.
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We turn next to the chain indices. As will be seen from tables

1 and 2, the chain indices calculated from the yearly changes

P~-l using Laspeyres', Paasche's, Fisher's and Vartia's formulas

conform better with each other than do the base indices. Fisher's

index and Vartia Index I differ at most in the second decimal

place, their greatest relative difference being less than 0.01

dyn ~ 0.01 %. Laspeyres' and Paasche's chain indices differ about

10 times as much, or in the first decimal place, their relative

difference being always smaller than 0.2 dyn ~ 0.2 %. The relative

difference between the base indices of Laspeyres and Paasche

were almost 10 times as large.

Thus, when the chain principle was used instead of the more common

base principle, the different formulas gave a more uniform picture

of the price development of GOP. This is because the relative

importance of different industries does not have time to change

substantially when consecutive years are compared with each other.

Frisch (1936) notes that Laspeyres' chain index usually has a

tendency to drift upwards with respect to the base index as

Paasche's index drif~s downwards. In our calculations no such

tendencies are manifested. While Laspeyres' chain index gives

a relatively good approximation to Laspeyres' base index,

Paasche's chain index seems to drift upwards rather than downwards.

Although the chain indices conform well with each other, they

do not conform equally well with the base indices. These two

strategies of index calculation give slightly but systematically

different results. This is seen clearly from the following table 5,

where we have compared the chain and base indices as calculated

by the Vartia Index I.
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Table 5: Relative differences between base and chain indices,
100E(t), and differences between yearly dynamic
changes of chain and base indices, 100 [E(t)-E(t-l)],
as calculated by Vartia Index I, dyn

year t 1956 1957 1958 1959 1960 1961 1962 1963 1964

100E(t) .. 0.120 0.040 -0.106 -0.041 -0.030 -0.021 0.000 0.000
100[E (t) -E (t-l)] .. .. -0.079 -0.154 0.073 O.Oll O.Oll 0.020 0.000

year t 1972 1971 1970 1969 1968 1967 1966 1965 1964

100E(t) 0.550 0.536 0.388 0.258 0.151 0.109 0.037 0.000 0.000
100[E(t)-E(t)] 0.015 0.136 0.130 0.107 0.041 0.074 0.036 0.000 0.000

Here E(t) is the logarithmic difference between the chain index

-t t
P1964 and the base index P1964 ,

(8 ) E (t) -t / t )log(P1964 P1964

and E(t)-E(t-1) is the logarithmic difference between the yearly

changes in the chain and base indices:

(9) E(t)-E(t-l) -t t -t-1 t-1
log(P1964/P1964)-log(P1964/P1964)

-t -t-l t t-1
log(P1964/P1964)-log(P1964/P1964)

We note that the chain index pi964 drifts upwards as compared

with the base index pi964. Their relative difference is positive

orzeroiPi964~pi964' except in 1959-1962. In 1971-72 the chain

index is more than 0.5 dyn higher than the base index.

Thismeans that the average change in prices from 1964 would

be slightly higher if it were calculated via the yearly changes
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P~-l instead of using the direct comparison pi964. All the chain

indices and especially the figures calculated by Fisher's and

Vartia I formulas approximate the Divisia-Tornqvist's integral

formula (26) in chapter 5, where T equals 1 year. This means

that if we had continuous records on values, priced and

quantities of the GDP for the 44 industries and if yearly moving

averages of these were calculated before using Oivisia-Tornqvist's

formula, then this index series would conform very closely with,

e.g., Vartia Index I in the calendar years 1957-72. Of course,

GOP is not recorded 'continuously' (as is, e.g., the consumption

of electric power) but only quaterly in Finland. We could use

the quarterly series of GOP, calculate their one-year moving

averages and get an even more accurate approximation to the

integral formula. Because changes in one-year moving averages are

probably very slow and smooth, these calculations would give

practically the same results as our chain index calculations

based on figures from consecutive calendar years.

If no moving averages of the quaterly figures were calculated

but the chain indices were computed by comparing consecutive

quarters to each other, quite different results would have been

obtained. These chain indices would approximate the hypothetical

results given by the Oivisia-Tornqvist's integral formula with T

equal to one quarter of a year. These indices compare prices of

different quarters to each other. By calculating yearly (moving)

averages of these quaterly index series comparisons of a kind of

yearly prices could be made. Because the calculation of moving

averages and that of chain indices do not usually commute as

mathematical operations, the order in which they are applied does

matter.
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Finally we comment on the calculations presented in table 3.

Here we have given dynamic changes of, e.g., the price index

100 log pi964 instead of the ordinary index series 100 pi964 or

the percentual changes 100(pi964-1). Here the multiplicative

identity between the value ratio and the price and volume indices,

vt/v1964 = pi964 Qi964 ' is transformed into an additive identity

between their dynamic changes.

For instance, in making the comparison 1964+1971 we find that

the dynamic change in the value of GDP, 69.172, which approximately

corresponds to an increase of 100 %, consists of a rise of 39.102

dyn in the price level and an average increase of 30.070 dyn in the

quantities. These figures are mean values of a kind of the dynamic

changes in values, prices and quantities in the various 44 industries.

These individual dynamic changes are not even approximately equal.

For instance, the variance of the dynamic value changes,

100 log (v~/v~964), was 440.6 and thus the standard deviation of
~ ~

these dynamic value changes around their mean (69.172 dyn) was 21.0 dyn.

Likewise, the variance of the dynamic price changes 104s~ equals

207.4 square dyn or 100s = 14.4 dyne This is considerably less
p

than the standard deviation of the quantity changes 100Sq = 20.1 dyn

corresponding to the the variance of the quantity changes 104 s 2 =
q

4 ••
404.2 square dyne The covariance term 10 cov(p,q) = -85.5 square

d h h 't' ( t') . d 't' 1 (1971/ 1964)yn sows t at pos~ ~ve nega ~ve pr~ce ev~a ~ons og Pi Pi

- log pi~~~ are usually connected with negative (positive) quantity

" 1971 1964 1971 '
dev~at~ons log (qi /qi ) - log Q1964 " These covar~ance terms

104cov (p,q) are intimately associated with Laspeyres' and Paasche's

indices.

".
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The variances of dynamic changes allow us to compare quantitatively

the differences in the price and quantity structures between

various periods, see Theil (1967) p. 155. In 1957, which is like

1971 at seven years' distance from 1964, the value of GDP was

69.488 dyn smaller than (or about half of) the value of GDP in 1964.

Thus the relative changes 1957~1964 and 1964~197l were approximately

equal. Neither did the dynamic changes in prices or quantities

for those periods differ substantially. On the other hand the

variance of the value changes, 289.3 square dyn, in 1957 is clearly

smaller than the variance of the value changes, 440.6, in 1971.

The difference is explained by the more uniform growth of production

in the period 1957-64, shown by the variance of the quantity changes,

257.1 dyne This is considerably smaller than the corresponding

variance of the quantity changes in the period 1964-71, which is

404.2 square dyne

By analysing sYmmetrically the years preceding and following 1964

we find that the price variances increase in both cases almost in

the same way, see table 6.

Table 6. Variances of dynamic changes from 1964 as calculated
using the weights of Vartia Index I, square dyn

year 1957 1958 1959 1960 1961 1962 1963 1964

10 4s 2
289.3 205.8 199.2 128.3 92.6 48.8 23.7 0.0v

104s~ 153.6 152.9 160.1 125.1 78.0, 40.0 20.1 0.0
,

104s~ 257.1 240.3 191. 8 125.4 87.61 44.9 15.0 0.0

4 .. l

10 cov(p,q) -60.7 -90.7 -76.3 -61.1 -36.6j-18.1 -5.7 0.0

year 1971 1970 1969 1968 1967 1966 1965 I 1964

104s~ 440.6 405.4 305.1 233.0 171. 9 76.3 19.2 0.0

104s~ 207.4 206.4 153.8 100.4 i 12.8 0.075.0~ 39.3

104s~ 1 404 . 2 330.9 204.8 122.1 1 94.2 6.6.4 21.6 0.0
4 .. I

-65.9/-26.7 +5.31 -7.51°·0 Ij 10 COV(P,ql! -85.5 +1.4-14.7
I
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We have al~eady noted the abnormal behaviour of the covariance

term in 1967-68, which may reflect the 1967 devaluation. In

these years the price changes exceeding the average price changes

from 1964 did not seem to have their usual reducing effect on the

growth rates of production of the industries. Therefore, the

variances of the value changes were considerably higher in 1967

and 1968 than in 1961 and 1960, when the covariance terms were

negative, see equation (2). But in 1970 and 1971 the interdependence

of price and quantity changes, as measured by their covariance,

had attained its 'normal magnitude'. On the other hand in 1970

the variance of the quantity changes becomes higher than in 1958.

It seems that at. the beginning of the 1970s exceptional deviations had

arisen in the growth rates of output, amounting to a rapid structural

change of production.

Our analysis has thus far been based on the descriptive approach.

An attempt could be made, however, to interpret the results

yielded by the various formulas and different methods of calculation

in terms of the economic theory of index numbers, as presented in

chapter 2. Yet we will make no such attempt here, since it would

presuppose introducing the assumption that our data would have been

generated in accordance with the classic theory of time invariant

demand or/and production. There are, however, problems originating

from the value added character of our GDP data that make us put

these interesting interpretations aside in this connection.

"

"



7.2. Finnish monthly imports of fuels and lubricants

The data
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Our data is obtained from the monthly bulletins of the Board of

the Customs (1972, 1973, 1974), table 2, from which we have taken

the cumulated monthly sums of values and quantities of 8 SITC

groups or subgroups. The monthly figures calculated from these

cumulative sums and the partition used are presented in appendix 8.

Quality changes are likely to have some effect on our results but

these problems will be completely ignored here. We take here -

as in our GOP example - the data as given and use it as an

illustration only. We want to illustrate the behaviour of various

formulas when the data is given, without discussing the usually

relevant problems of quality changes and la~k of data. Monthly

series showing exceptionally great and heterogeneous price

changes were selected in order to put the various index formulas

to a difficult test.

Index calculations

Only base indices with January 1972 as the base period were

calculated. The formulas of Laspeyres, Paasche, Fisher, Stuvel,

Vartia I-III, Tornqvist I-II and Theil were employed and the

results are given in table 7. The formulas are presented in

appendix 9. The calculations were carried out using a computer,

where the data was stored in a memory, and this made calculation

errors improbable. {Printing errors, etc. are not excluded.)

To facilitate the comparison of the formulas their relative

differences with respect to Fishers formula were calculated,

as shown in table 8.
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Discussion of the results

As will be seen from table 7 Laspeyres' index is usually greater

than Paasche's index, the other indices lying between these two.

In 1974/9 Laspeyres' index was 290.3 and Paasche's index was

258.0, or 11.8 dyn smaller. Differences of such a magnitude are

not without relevance if, e.g., some contracts have an index

clause. The other indices ranged from 267.8 to 280.5. The overall

development of the import prices of fuels and lubricants is shownl )

in figure 3: the prices rose threefold in four months early in

1974. '.

Figure 3: Price index series for imports of fuels and lubricants.
The value of the indices in January 1972 is set equal
to 100
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1) Figure 3 also shows the development of Palgrave's and Harmonic
Laspey~es' indices in 1974. These have her~ considerable biases
respectively up and down, see Y. Vartia (1976b). These two index
number formulas are included only in this figure to remind that
the choice of an index formula may be of considerable significance.
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Index series for import price of fuels and lubricants,

base indices, base period January 1972

Index Laspeyres Paasche Fisher Stuvel Vartia Vartla Vartla TOrnqvist Tllrnqv15t Then
fomula

I II III I IIperiod

1972 1 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

2 100.849 100.342 100.595 100.656 100.685 100.714 100.541 100.531 100.596 100.721

3 102.110 102.962 102.535 102.406 102.180 102.450 101.135 101.163 101.842 102.414

4 101. 363 103.020 102.188 102.062 102.062 102.162 101. 789 101. 751 101. 993 102.163

5 98.853 96.897 97.870 97.893 97.943 97.934 91.956 91.901 97.910 91.934

6 94.291 92.900 93.593 93.501 93.773 93.642 93.591 93.504 93.448 93.646

7 90.525 88.871 89.694 89.476 90.003 89.894 89.900 89.800 89.149 89.896

8 90.374 87.891 89.124 88.952 89.517 89.381 89.340 89.249 89.253 89.379

9 97.582 89.349 93.375 92.986 92.923 92.874 92.738 92.788 92.833 92.876

10 92.755 88.916 90.815 90.441 91.363 91.241 91.030 90.952 91.041 91.254

11 92.967 89.579 91. 257 90.963 91.582 91. 460 91. 275 91.214 91. 254 91. 463

12 91.452 81.378 89.392 89.166 90.047 89.877 89.779 89.680 89.679 89.844

1973 1 99.951 98.852 99.400 99.346 99.570 99.541 99.619 99.560 99.484 99.542

2 100.196 96.505 98.333 98.736 98.743 98.683 98.687 98.642 98.509 98.691

3 97.505 99.916 98.703 98.529 99.256 99.514 96.644 95.917 96.803 99.754

4 102.077 98.794 100.422 100.519 100.590 100.595 100.703 100.630 100.642 100.595

5 101. 232 96.847 99.015 99.200 99.235 99.207 99.358 99.285 99.221 99.206

6 102.035 103.508 102.769 102.705 I 102.744 102.860 102.423 102.365 102.499 102.870

7 101. 274 100.135 100.703 100.644 100.490 100.470 100.775 100.731 100.645 100.452

8 98.268 92.257 95.379 94.856 95.743 95.140 95.627 95.516 95.682 95.730

9 104.235 102.524 103.376 103.304 103.883 103.940 103.971 103.893 103.726 103.940

10 111. 590 104.535 108.005 107.496 108.292 108.526 108.247 108.208 108.429 108.529

11 137.132 130.526 133.788 133.383 134.664 135.521 135.198 135.830 134.410 135.596

12 160.838 149.723 155.181 156.045 154.919 156.346 155.419 156.814 155.414 156.378

1914 1 212.329 197.678 204.873 205.921 I 206.434 207.729 207.113 211.640 204.955 207.880

2 300.019 306.612 303.298 301. 780 299.785 304.548 305.776 317.692 298.907 304.868

3 323.259 302.377 312.644 318.813 309.252 314.273 306.498 320.004 309.050 314.462

4 310.941 298.068 304.436 307.658 305.359 306.043 302.591 315.116 301.064 306.204

5 289.320 269.490 279.229 284.245 278.385 281.301 274.796 284.840 277.343 281. 407

6 298.707 287.793 293.199 295.638 2n.136 294.360 293.084 307.161 290.523 294.460

7 282.285 272.330 277.263 279.141 276,,110 279.871 277.668 288.731 275.333 279.999

8 279.552 252.393 265.625 269.453 262.330 269.675 263.726 273. 527 265.970 269.869

9 290.265 258.046 273.682 280.493 269.668 275.790 267.820 271.819 273.168 275.824
10

11

12

The relative differences of various indices with respect to Fisher's

index are presented in table 8. The table allows comparison between

all the indices included. The relative differences are about ten

times as large as in our GDP example, where the corresponding

differences did not exceed 0.6 dyne
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Table 8. Relative differences of index number formulas with

respect to Fisher's formula: 100 log(r/F), dyn

Index
Stuve1formula Laspeyres Vartia Vartia Vartia Tornqvist Tornqvist

period I II III I II

1972 1 - 0.00 - ,0.00 _ 0.00 0.00 _0.00 0.00 -0.00
2 0.25 0.06 0.09 0.12 -0.05 -0.06 0.00
3 -0.42 -0.13 -0.35 -0.08 -1.37 -1.35 -0.68
4 -0.81 -0.12 -0.12 -0.03 -0.39 -0.43 -0.19
5 1.00 0.02 0.07 0.07 0.09 0.03 0.04
6 0.74 -0.10 0.19 0.05 -0.00 -0.10 -0.16
7 0.92 -0.24 0.34 0.22 0.22 0.12 0.06
8 1.39 -0.19 0.44 0.29 0.24 0.14 0.14

9 4.41 -0.42 -0.49 -0.54 -0.68 -0.63 -0.58
10 2.11 -0.41 0.60 0.47 0.24 0.15 0.25
11 1.86 -0.32 0.36 0.22 0.02 -0.05 -0.00
12 2.28 -0.25 0.73 0.54 . 0.43 0.32 0.32

1973 1 0.55 -0.05 0.17 0.14 0.22 0.16 0.08
2 1.88 0.41 0.42 0.36 0.36 0.31 0.18
3 -1.22 -0.18 0.56 0.82 -2.11 -2.86 -1.94
4 1.63 0.10 0.17 0.17 0.28 0.22 0.23
5 2.21 0.19 0.22 0.19 0.35 0.27 0.21
6 -0.72 -0.06 -0.02 0.10 -0.34 -0.39 -0.26
7 0.57 -0.06 -0.21 -0.23 0.07 0.03 -0.06
8 2.98 -0.55 0.38 0.38 0.12 0.14 0.32
9 0.83 0.07 0.49 0.55 0.58 0.50 0.34

10 3.27 -0.47 0.27 0.48 0.22 0.18 0.39
11 2.47 -0.30 0.65 1.29 1.05 1.51 0.46
12 3.58 0.56 -0.17 0.75 0.15 1.09 0.19

1974 1 3.57 0.51 0.76 1.38 1.09 3.25 0.04
2 -1.09 -0.50 -1.17 0.41 0.81 4.64 -1.46
3 3.34 1.95 -1.09 0.52 -1.99 2.33 -1.16
4 2.11 1.05 0.30 0.53 -0.61 3.45 -1.11
5 3.55 1. 78 -0.30 0.74 -1.60 1.99 -0.68
6 1.86 0.83 -0.36 0.40 -0.04 4.65 -0.92
7 1.80 0.68 -0.42 0.94 0.15 4.05 -0.70
8 ~.11 1.43 -1.25 1.51 -0.72 2.93 0.13
9 5.88 2.46 -1.48 0.77 -2.17 1.50 -0.19

10

11

12

'.
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For instance, Laspeyres' index for 1972/9, 1974/8 and 1974/9

was more than 4 dyn higher than Fisher's index. Only for five

months, namely 1972/3, 1972/4, 1973/3, 1973/6 and 1974/2, was

it below Fisher's index. Paasche's index is not presented in

tabJe 8, because we have simply log(P/F) = - log (L/F) • Figure 4

shows that Vartia Indices I and II are very accurate ap~roximations

to each other up to 1973/10 when prices started to rise fast.

Thereafter Vartia II > Vartia I. Both of them approximate Fisher's

index accurately all the time, being as a rule closer to it than

Las~eyres' a~d Paasche's indices, which usually deviate about three

times as much from Fisher's index. In our material Vartia II seems

to have a slight tendency toward exceeding Fi3her's index.

Figure 4. Relative differences of index number formulas

with respect to Fisher's formula: 100 log(I/F)
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Figure 5. Relative differences of index number formulas

with respect to Fisher's formula: 100 10g(I/F)
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From figure 5 we see that up to 1973/10 Tornqvist Indices I

and II are very near each other. That this should be so is clear

from their definitions given in appendix 9: they are both means of

the 'logarithmic ,Laspeyres index' log 1 and the 'logarithmic Paasche

index' log p discussed in Y. Vartia (1976b). The logarithm of

the Tornqvist Index I is their weighted average

'.

(10) 810gp + (1 - 8) log 1

where e = vl / (VI + VO) , while

1 1 0 0 1 08Lw.log(p./p.) + (1 - 8)Lw.log(p./p.)
1 1 1 1 -1 1

the logarithm of the Tornqvist Index II is their 'unweighted' average

(11) log t 12(10gp + logl)

"
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These are, of course, almost equal if log p ~ log 1 or e ~ 1/2.

When prices started to rise rapidly, e increased and Tornqvist

Index I began to exceed Tornqvist Index II, since here we have

log P > log 1. We are not going to give a thorough analysis of

the situation in the spirit of Y. Vartia (1976b) but will only

mention that the situation is somewhere between Fisher's five-

tined fork and our new five-tined fork, where 10gPl > logp ~ log1 >

10gF ~ logt > 10gP ~ logl > 10gLh. The analysis would be based on

the quantities cov(p,q) and cov(p,v). Usually the Vartia Indices

I and II and the Tornqvist Indices I and II approximate each

other very accurately. Their relative differences are often

smaller compared with each other than with Fisher's index.

They begin, however, to deviate from each other after 1973/10.

In 1973/3 the Tornqvist Indices I and II give clearly too small

values compared, e.g., with Fisher's index. We shall discuss

this phenomenon presently in detail.

Stuvel's index gives a very good approximation to Fisher's index

up to the beginning of 1974. Its course is not, however, the same

in detail as that of the former indices, which are closely

related to each other. In 1974 its deviations from Fisher's

formula begin to resemble those of Laspeyres' formula, being about

half of them in magnitude. As may be proved, Stuvel's formula

approaches Laspeyres' formula if all the price ratios pi/p~

tend to infinity while the volume ratios remain approximately

constant, as happened in our imports data.
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In the same situation Tornqvist Index I given in (10) approaches

logp as does "artia Index I. Tornqvist Index I shows this tendency

clearly but Vartia Index I seems to move in the opposite direction

in 1974. This shows that the asymptotic behaviour of Vartia Index I

is not revealed if prices have 'only' grown threefold. This is a

consequence of the utmost slowness with which the logarithmic mean

L(x,y) ripproaches zero as x or y approaches zero, see a~pendix 3.

The qualitatively correct behaviour with respect to extreme price

changes of the Vartia Indices I and II result from the same

circumstance.

From table 8 the Vartia Index III is seen to be almost equal to

the Tornqvist Index I up to 1973/10. This is what we exoected

from its definition, see equation (37) in chapter 6. After that

point this index follows a peculiar course of its own.

From table 7 we see that Theil's formula (15) in chapter 6 so

closely approximates the Vartia Index II that we have excluded

it from table 8. The difference between the Theil and Vartia II

indices is usually met in the second decimal place. Even in the

difficult month 1973/3 Theil's Index is only about 0.2 dyn higher

than the Vartia Index II.

In this period especially Tornqvist's indices and Vartia Index III

deviate considerably from the indices yielded by other precision

formulas. It is evident that these three indices are here in error.

Examination of our data reveals the reason for their behaviour.

We have collected the relevant data for 1972/1 or to and 1973/3

or t l in the following table.

..
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Table 9. Imports of fuels and lubricants in 1972/1 and 1973/3
by SITC subgroups

1972/1 1973/3

SITC 0 0 wO q.l 1 wI pI/pOq v v
no. mill.mk % mill.mk % %

321.4 92.6 8.1 6.0 181.2 9.6 9.8 60
321.8 85.6 18.4 13.7 11.1 0.9 0.9 36
331 781.4 69.0 51.3 556.8 54.2 55.3 110
332.1 0.6 0.1 0.1 0.3 0.1 0.1 151
332.2 7.5 1.0 0.7 2.4 0.4 0.4 123
332.3 168.4 27.0 20.0 111.9 20.1 20.5 108
332.4 69.3 5.6 4.2 113.7 9.4 9.6 102
332.5 12.5 5.4 4.0 5.5 3.3 3.4 139

Total . 134.6 100.0 . 97.9 100.0 .

Asis evident from table 9 the problem is caused by SITC subgroup

321.8 (coke and semicoke), for which the value of imports

decreased from 18.4 mill.mk to 0.9 mill.mk when its unit value

(price) fell to 36 % of the previous unit value. Its value

share fell from 13.7 % to 0.9 %, so that it practically

disappeared from the import market when both its quantity and

price fell sharply.

Since both of Tornqvist's formulas react quantitatively

wrongly to extreme price cuts 1) it is nothing of a surprise that they

give too low values for 1973/3. The Vartia Indices I and II

and, e.g., Fisher's and Stuvel's indices react qualitatively

correctly to extreme price cuts, and therefore they do not show

any strange behaviour in this period. The Vartia Index III

follows, to our surprise, closely the Tornqvist Index I

although it reacts qualitatively in a right way to extreme

1) DiviSia-Tornqvist index in general integral form as given in
chapter 5 behaves qualitatively correctly here although these
two of its discrete approximations do not.
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price cuts; at least it doesn't become zero together with any

of the price ratios as, e.g., the Tornqvist Indices do. The

contribution of a price cut to the Vartia Index III is, however,

twice as large as would be appropriate and it apparently begins

to be felt too early, i.e., even for quite moderate price cuts.

Although the Theil Index seems to behave correctly in 1973/3 it

is unsensitive to extreme price cuts. Something of this kind of

behaviour can be seen from the figures in table 8: Theil's

index exceeds the Vartia Index II by 0.2 dyn just in 1973/3.

We conclude that only the formulas of Fisher, Vartia I and II,

Theil and Stuvel give results which cannot be maintained to be

in error. All these formulas, except the formula of Theil, are

'ideal index numers' satisfying, e.g., the factor reversal test.

There are situations, as we have noted, where Theil's formula

gives unacceptable results, but our data did not reveal such.

Here Theil's formula is a very accurate approximation to the

Vartia Index II.

'.
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We started from mathematically elementary but empirically

important problems connected with various indicators of relative

change. Our considerations led us to recommend the log-change

H
4

(y/x) = log (y/x) = In(y/x) as the most suitable indicator of

the relative change from x to y and suggest such new terminology

as we have used throughout the text.

Our approach to the index number problem may be characterized

as statistical or descriptive one, as opposed to the economic theory

of index numbers. These various approaches were discussed in

chapter 2.

Chapter 3 provided an axiomatically oriented treatment of the

descriptive theory of price and quantity index formulas in the

spirit of Fisher (1922). Various desiderata (or, in Fisher's

terminology, 'tests') were presented and discussed. These desi

derataincluded 'consistency in aggregation', which was

formulated in exact terms. This concept has previously been only

vaguely defined, which state of affairs has apparently caused

unnecessary confusion.

Different strategies of index series construction, as opposed

to the choice of the index formula, were distinguished and

discussed in chapter 4. The chain principle leads naturally to

the continuous approach of Divisia and Tornqvist, which was

critically reviewed in chapter 5. Problems inherent in the

definition of continuous values, quantities and prices in time
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were particularly discussed. It was shown that the customary

definitions of Divisia-Tornqvist's indices ignore the effect

of the smoothing parameter T (or some other similar parameter)

on the definition of the indices.

In chapter 6 we derived (among other formulas) two new 'ideal

log-change index number formulas'. The second of them, the Vartia

Index II, amounts to the solution of a problem presented in Theil

(1973). Its discovery, early in 1974, was stimulated by Theil

(1973), who together with Sato (1974) derived good approximative

solutions to this problem, which Theil (1974) was already inclined

to regard as unsolvable. Sato (1975,1976) has afterwards independently

discovered the same (and only) solution to the problem. Our first

index, the Vartia Index I, already discovered in 1973, is similar

to our second index. Unlike the Vartia Index II, it possesses

the interesting and often desirable property of consistency in

aggregation but its behaviour under proportional changes in

prices or quantities is more complex than the behaviour of

the Vartia Index II, see also Y. Vartia (1976a). Both of our

new indices react qualitatively correctly to extreme price

and quantity changes (i.e., satisfy the determinateness test),

satisfy the time and factor reversal tests and give excellent

approximations as chain indices to Divisia-Tornqvist's integral

formula. Their approximation properties are only briefly discussed

in this monograph, but they may be derived using methods of

Y. Vartia (1976b). Diewert (1975) presents some results of the

approximation properties of Vartia Index I, and here some future

research seems promising.
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Leo Tornqvist has proposed in a discussion with the author

an interesting definition of a one-parameter family of index

number formulas which yields our two new indices as special cases.

Tornqvist's definition is analogous to the one given by van Yzeren

(1958) for Stuvel's index and provides another interesting

object of further study. The construction and properties of the

Vartia Indices I and II may offer useful new insight into, e.g.,

the demand and production theoriesl ) and the aggregation of economic

relations2 ), which were deliberately ignored in this monograph.

The numerical results obtained by using different formulas and

base or chain principles in constructing index series were

illustrated by two empirical examples in chapter 7. The relative

differences between our new index formulas and various other

formulas were analysed and briefly explained. Even in the

exceptionally difficult material of monthly imports of fuels and

lubricants during the oil crisis, when prices rose threefold,

the Vartia Indices I and II and, e.g., Fisher's ideal index

remained inside a band having a height of 3 dyn ~ 3 %. Laspeyres'

and Paasche's indices deviated from each other about four times

as much. Our two new index formulas were thus found to behave in

accordance with the theoretical findings of previous chapters.

Recent years have witnessed, it seems, a revival of interest

in the index number problems and especially in the chain index

methods 3 ). It may be that, e.g., the volume series of national

1) See e.g. Theil (1965, 1967, 1970) and Barten (1964).

2) See e.g. Gorman (1959), Pollak (1972), Blackorby, Nissen,
Primont and Russel (1974), Morishima and others (1973),
Muellbauer (1975).

3) See, e.g. Christensen and Jorgenson (I970), Samuelson and
Swamy (1974) and Diewert (197Gb) and the literature referred
to by them.
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accounts based on Laspeyres' quantity index formula, which

have now served us for a few decades, will gradually be replaced

with more accurate chain index calculations.

'.
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Appendix 1. The identity (21) of Chapter 1.

(1) H (~) = H
3

(Y) + H3(~) + €, where
3 x ~ y

(2) €
1 v Z Z

- -H3(~)H3(-)H3(-)·4 x y x

Let us start from equation (16)

(3) H3 (i) ~~1 + 1
2"(x+z) 2"(x+z)

Z y-x _ y-X] +
H3 (i) +H3 (y) + [! (x+z) ~(x+y) .

2

+ [1 z-y - 1 z-y ]

2"(x+z) 2" (y+z)

(4) € (y-x) r i x +y ) - (x+z) ] + (z-y)
2" (x+z) (x+Y)

[
. 1 ] +

= (y-x) (y-z) !(~+Z) (x+yl '
2

(Z-y) (y-x) [.!(X+Z~(y+z) ]
2

[
iy+Z)-(X+Z) 1
2" (x+z) (y+z)
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(y-x) (z-y) [1 1 _ ~~__1 ]
~(x+z) (y+z) !(X+Z) (x+Y)

[ x-z ]
=: (y-x) (z-y) .!.(x+z} (y+zl (x+Y)

2

yo-x
(x+Y)

-2:.:L .z-x
(Y+z) !(x+z)

2

By virtue of

irrespective

1 Y. z z
-H3 ( 1H3 (-) H3 (-)
4 x Y x

. z
symmetry, E must vanish when H3 (i) = 0,

of H3(i) and H3(~)' Likewise, E must vanish when

one or the other of these two is zero. In consequence, E is a

multiplicative expression in the relative changes concerned;

neither the powers of these nor the possible other terms are

yet determined thereby.

Appendix 1. The identity (24) of Chapter 1.

(1) H (~)
6 x H6(Y.) + H6(~) + E, wherex y

(2) E l' Y. z z
~H6(x)H6(y)H6(i} [ , J x+y I ~+Z I X+Z ]

2 vxy 2 vyz 21/XZ
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Consider the changes x ~ y ~ z.

(3) z
H6 (;C)

z-x
= --

fiX
~ + y-x

VZX VZX

vzy H6(~1 + VXY H6(Y)
fiX y vzx x

II H6 (Y) + I[ H6 (~) •
z x x y

This corresponds to equations (15) and (161 for HI and H
3

respectively, but here we continue directly from the first

row.

(4) zH (-)6 x
H

6
(y) + H

6
(~) + ~-y -~ + y-x - :¥-~l

x y lVZX vzY vzx VYXJ

E: = (z-y) (V¥-VX) + (y-x) (fi-vz)
vxyz vxyz

1=--
vxyz

r( z-y) (y-x)

L vx+fi
+ (y-xl. (y-Z)~

vy+VZ J

(y-x) (z-y) [ 1 1 J
vxyz v'x+VY VY+~

(y-x) (~)

VXY Vi
~ Vi-vx J
L( vx+YY) (YY+Vi~

(y-x) (z-y) (z-x)

VXY Vi

1

(vx+YY) (w+Vil (Vi+vxl

z-x ~ 1 ~(y-x1(~) (--) x+y y+z I X+Z

VXY vyz VZX 2 I vxy I VYi vxz

from which (2) can already be seen.
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Appendix 2. Functional equation H(xy) = H(x) + H(y) .

Theorem. The only differentiable solutions H:m+~E of the

functional equation

(1) VxEm+: VyEm+: H(xy) H(x) + H(y)

are of the form H(x)

constant.

clogex, where c is an arbitrary real

Proof.

H(l) = O.

Set y 1 to get H(x·l) H(x) + H(l), which shows that

We have for all x>o and y>O

(2) H(xy) - H(x) H(y) - H(l) .

Dividing by xy-x, when y # 1, gives

(3) H(xy) - H(x)
xy - x

H(y)- H(l)
xy - x

!(H(Y) - 8(1».
x y - 1

Using the definition of a derivative and the differentiability

assumption we get, when y+l,

(4) H' (x) !H' (1)
x

This implies that H is continuously differentiable.

The general solution of the differential equation y' = c/x

is H(x) = clog x + d, where c and d are arbitrary real constants.
e

Here we must have d = 0, because H(l) = O.

H(x) = clogex really is a solution and our theorem is proved.

The case c = 0 is the trivial solution. Q,
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Appendix 3. On means

Let K(x,y) be some mean of x and y. From the property

K(ax,ay) = aK(x,y) we have K(X,y) = (x+y)K(p,q), where

p = x/(x+Y) and. q = y(x+y), and hence, p+q = 1. In consequence,

we may consider K(p,q), when p+q = 1, which determines the mean

in question for any numbers x and y. In par.ticular,

1K(x,y)/2(x+y) = 2K(p,q).

Consider the following means K(X,y): M(x,y) = (x+y)/2,
3~--

G(x,y) = fK:Y , T(x,y) = Vxy(x+y)/2 , L(x,y)

(x-y)/log(x/y). The functions K(p,qt for these means are

respectively 1/2, ypq, 3Vpq/ 2 , (p-q)/log(p/q). These are

represented graphically in the following figure.

Figure 1. Some means K(p,q)

0.3

G(p,q)

M(p,q)L(p,q)

T(p,q)

fl I I I I I I I I I Vi 0.1
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Except for the points p

inequalities hold true:

0, p 1: and p
2

1, the following

o < ypq < ypq/2 < ---.E:.9..
log (p/q)

1
< 

2

These means are used in the index number formulas based on

log-changes, suggested by Walsh in 1901, Theil in 1973,

Vartia in 1974 and Tornqvist in 1936. Means are usually

applied in tqe vicinity of the point p = ~, in which case

all the means are approximately equal to one-half.
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Appendix 4. The Sum of the Weights in the Vartia Index I

We shall show that the sum of the weights of the Vartia

Index I,

(1) wi
1 °L (v. ,v.)

_ :1.:1.

- L(Vl,VO)

is less than or equal to one and that it will be equal to one

only if w~ = w? for all the commodities a .•:1. :1. :1.

The inequality LW. < 1 may be written as:1. -

n n n
(2) L L(Vl ., v O.) < L( LVI.' L VO.},

i=l :1. :1. - i=1 :1. i=l :1.

where the notation has been simplified to some extent. This

can be demonstrated by making use 'of the properties of the

mean of concave functions as follows.

Consider the right-hand side of (2):

(3)
n n LVIi

L,( L VI·' ~ v O.) = (LvO·} L(-L-' I),
i=l . :1. i=l:1. :1. v Oi

n VIi= (LvO.) L( L wOo ---, 1),
1 i=1 :1. vOi

where wOi = VOi/LvOi ' L(s,1) = (s-1)/log 5 isa concave

function, and thus, by virtue of the so-called Jenssen

inequalityl) ,

1) See, e.g., Saaty (1959) p. 114.
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(4)
n vIi n n vIi

(LVO·)L( L wOo ---, l»(LvO.) L wOo L(---, 1)
1 i=l 1 VOi - 1 1 i=l 1 VOi

n
1· L L(vli , v Oi ).

i=l

..

Here, as in (3), use has been made of the property aL(x,y) =
L(ax,ay), and (2) consequently follows from this.

In an entirely corresponding manner it can be shown that for

Theil's mean T(x,y) = 3/XY (X;Y)', for example, we have

(5)
n n n
L T (vI.' v O·) ~ T (L vI·' L v O· ) .

i=l 1 1 i=l 1 i=l 1

A corresponding equation holds good generally for any mean

K(x,y) provided that K(s,l) is a concave function of s, in

which case the sum of the weights,

(6) wi
K(Vli , vOi)

R (LVli ' LV0 i )

is consequently one at most. In the special case K(x,y) =

M(x,y) = ~(x+y) the sum of the weights is identically equal

to unity.

vI·
The equality sign in (4) applies only if the terms L(~), 1)

v Oi
are all equal, in which case we have, for all values of i,



(7)
LVl'

L(- _1 11
LV 'Oi

L(VU , I}
v Oi
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or vl,/vO' is a constant. The values of all commodities a.
111

will then change in the same proportion and, hence, w
li

= wOi '

as was asserted. In this case the weights (61 are independent

of the choice of the mean K(x,y) and will coincide with the

value shares wOi = w
li

•

This result shows that the weighting (61 will behave completely

reasonably in situations where, owing to a rapid rate of

inflation, the values of all commodities rise in proportion,

or vIi = kvOi ' k»l.
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00
00

r r r r r r r r
per <:.ent dyn per cent' dyn per cent dyn per cent dyn

20 18.232 60 47.000 100 69.315 5I)Q 179.176

21 19.062 61 47.623 110 74.194 510 180.829

22 19.885 '62 48.243 120 78.846 520 lB2.455

23 20.701 63 4B.858 130 83.291 530 184.055

24 21.511 64 49.470 140 87.547 540 185.630

25 22.314 65 SO. 078 ISO 91. 629 550 187.180

26 23.111 66 SO.682 160 95.551 560 168.707

27 23.902 67 5i. 282 170 99.325 570 190.211

2B 24'.6B6 68 51.S79 IBO 102.962 580 191.692

29 25,464 69 52.473 190 106.471 590 193.152

30 26.236 70 53.063 200 109.861 600 194.591

31 27.003 71 53.649 210 113.140 610 196.009

32 27.763 72 54.232 220 116.315 620 197.408

33 28.518 73 54.812 230 119.392 630 198 7B7

34 29.267 74 55.3B9 240 122.37B 640 200.148

35 30.010 75 55.962 2SO 125.276 650 201.490
36 30.74B 76 56.531 260 r2B.093 660 202.815
37 31.4Bl 77 57.098 270 130.B33 670 204.122
3B 32.20B 7B 57.661 2BO 133.500 680 205.412
39 32.930 79 58.222 290 136.098 690 206.686
40 33.647 BO ~B .779 300 jl38.629 700 207.944
41 34.359 81 59.333 310 r4 1.099 710 209.186
42 35.066 B2 59.834 320 143.S08 720 210.413

43 35.767 83 60.432 330 145.B61 730 211.626
44 36.464 B4 60.977 340 1148.160 740 212.823

45 37.156 85 61.519 3SO lSO.408 7SO 214.007
46 37.844 86 62.058 360 152.606 760 215.176

47 38.526 87 62.594 370 154.756 770 216.332
48 39.204 88 63.127 380 155.862 780 217.475
49 39.878 99 63.658 390 158.924 790 218.603
SO 40.547 90 64.185 400 160.944 800 219.722
51 41. 21 I 91 64.710 410 162.924 810 220.827
52 41.871 92 65.233 420 164.866 820 221.920
53 42.527 93 65.752 430 166.771 830 223.001
54 43.178 94 66.269 440 168.640 840 2<4.071
55 43.825 95 66.7B3 4SO 170.475 650 225.129
56 44.469 96 67.294 460 172.277 860 226.176
57 45.108 97 67.803 470 174.047 870 227.213
58 45.742 98 68.310 480 175 786 680 22A.238
59 46.373 99 68.813 490 In.495 890 229.253

EXAMPLES:

1. A decrease of 10 per cenl, r= -10, corresponds 10 -10.536 dyn
(;~ -10.5361. An increase of 10 per cen', r - +10, corresponds to
9.531 dyn (r~ 9.351).

2. A decrease 10 a half (r",,-50%) corresponds to a decrease of 69.351 dY'1
(r_ -69.315). An increase 10 the double of Ihe original value (ra + tOO %)
cOlTesponds 10 an increase of 69.315 dyn (r= +69.3151. In Ihis sense th"
dynamic change meosureS relative increases and decreases symmetrically.

3. Compound interest, growl!) at on annual rate of 5 per cent for 20 years is
computed by means of the dynamic: changes as followS!

5 per cent ". 4.879 dyn
20" 4.879 dyn = 97.58 dyn
97.58 dr.n a 165 per cent

Thus, if in erest is compounded at on annual rate of 5 per cent for 20
y~ars, on amount of 100 marks will increase by 165 marks to 265 marks.

entage
moll
sand

1) Translated from Hervo & Vartic & Vasama (1973)

.... 71 Percentage change from x to y: r.100(~)......~ ,. ,t. /j Dynamic change from x to y: r- 100 In If)
V I

The transformation r-l00Inl)+~) gives perc
~

..
tz .. ..,;o,h changes r ,n ter,!15 of dynamIC c nges r. For s

r;L
c- .• changes h. r. oJ In other wards. the percentage

c- 1M
dyns correspon approximately to each other.

r ; r ; r r r r
per cent dyn per cent dyn per cent dyn per cent dyn

- IUU -en -ou - • OJ' -w.u -".J 4 u.o 0:000
-99 -460.517 -59 -B9.160 -19.5 ..21.691 0.5 0.499
-9B -391. 202 -5B -86.7SO -19.0 -21. 072 LO 0.995
-97 -350.656 -57 -B4.397 -18.5 -20.457 1.5 1.489
-96 -321. BBB -56 -82.098 -18.0 -19.845 2.0 1.980
-95 -299.573 -55 -79.B51 -17.5 -19.237 2.5 2.469
-94 -281.341 -54 -77.653 -17.0 -IB.633 3.0 2.956
-93 -265.926 -53 -75.502 -16.5 - 18.032 3.5 3.440
-92 -252.573 -52 -73.397 -16.0 -17.435 4.0 3.922
-91 -240.795 -51 -71. 335 -15.5 -16.B42 4.5 4.402
-90 -230.259 -50 -69.315 -15.0 -16.252 5.0 4.B79
-B9 -220.727 -49 -67.334 -14.5 -15.665 5.5 5.354
-B8 -212.026 -48 -65.393 -14.0 -15.0B2 6.0 5. B27
-87 -204. U22 -47 -63.483 -13.5 -14.S03 6.5 6.297
-86 -196.611 -46 -61.619 -13.0 -13.926 7.0 6.766
-85 -199.712 -45 -59.784 -12.5 -13.353 7.5 7.232
-84 -183.258 -44 -57.982 - 12.0 -12.783 8.0 7.696
-83 -177.196 -43 -56.212 -11. 5 -12.217 8.5 B.I58
-82 -171.480 -42 -54.473 -11.0 -11.653 9.0 8.618
-81 -166.073 -41 -52.763 - 10.5 -11.093 9.5 9.075
-80 -160.944 -40 -51. 083 -10.0 -10.536 10.0 9.531
-79 -156.065 -39 -49.430 -9.5 -9.982 10.5 9.985
-7B -151.413 -38 -47.804 -9.0 -9.431 11.0 10.436
-77 -146.969 -37 -46.204 -8.5 -8.883 11.5 10.B85
-76 -142.712 -36 -44.629 -8.0 -8.338 12.0 11. 333
-75 -139.629 -35 -43.078 -7.5 -7.796 12.5 11.778
-74 - 134. 707 -34 -41. 552 -7.0 -7.257 13.0 12.222
-73 -130.933 -33 -40.04B -6.5 -6.721 13.5 12.663
-72 -127.297 -32 -38.566 -6.0 ·6.1BB 14.0 13.103
-71 -123.787 ·31 -37.106 -5.5 -5.657 14.5 13.540
-70 -120.397 -30 -35.667 -5.0 -5.129 15.0 13.976
-69 -117.118 -29 -34.249 -4.5 -4.604 15.5 14.410
-68 -113.943 -28 -32.8SO -4.0 -4.0B2 16.0 14.842
-67 -110.B66 -27 -31.471 -3.5 -3.563 16.5 15.272
-66 -107.8Bl -26 -30.111 -3.0 -3.046 17.0 15.700
-65 -104.982 -25 -2B.768 -2.5 -2.532 17.5 16.127
-64 -102.165 -24 -27.444 -2.0 -2.020 18.0 16.551
-63 -99.425 -23 -26.136 -1.5 -1.511 18.5 16.974
-62 -96.758 -22 -24.846 -1.0 -1.005 19.0 17.395
-61 -94.161 -21 -23.572 -0.5 -O.SOl 19.5 17.815

The correspondence between two indicators of relative changes

.' .'
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Appendix 6. Variances and covariances of value, price and

quantity log-changes

Consider price and quantity indices P~ and Q~ for which

(1) 1 1 0
log Po = Lw.log(p./p.)

1. 1. 1.

(2) 1 1 0log QO = Lw.log(q./q.)
1. 1. 1.

where wi are some nonnegative weights the sum of which mayor

may not equal unity. Define logarithmic price and quantity

deviations from their means (1) and (2) by

(3)

(4)

.
Pi

qi

101log(p./p.) - log Po
.1. 1.

1 0 1
log(q./q.) - log 00

1. 1.

Then we have by (1) and (2)

(5) LWiPi = 0

(6) Lwiqi o

Define the variances of price and quantity log-changes by

(7)

(8 )

2 '2s = LW.p.
P 1. 1.

2 ·2
Sq = Lwiqi

102LW. [log (p. /p. ) ]
1. 1. 1.

102LW. [log(q./q.)]
1. 1. 1.

I[log p l ]2o

1 2
[log 00]

and the covariance of price and quantity log-changes by

(9) cov(p,q) 1 0 1 0 1 1LW.p.q. = Lw.log(p./p.)log(q./q.) - log Po log Q
O1. 1. 1. 1. 1. 1. 1. 1.

If LW. = 1 and w. is considered to be the probability of the two
1. 1.

dimensional discrete random variable (log(p~/p?, log(q~/q?»,
1. 1. 1. 1.
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then (1) and (2) are the expectations (means) of the corresponding

variables and (7), (8) and (9) are literally their variances and

covariance" see Tornqvist (1937) Rajaoja (1957) p. 56

and Theil (1967) p. 154. We also use the notation

(10)

(11)

cov(p,p)

cov(q,q)

2s
P

2s q

Consider also the mean of log-changes in values defined as (1)

and (2)

(12) 1log Vo
1 ° 1 1Lw.log(v.!v.) = log Po + log QO

1 1 1

Usually log v~ is not equal to the log-change in the total value,

log (Vl!VO) . However, if the index formulas (1) and (2) satisfy the

factor reversal test we have

(13) 1log Vo
1 1

log Po + log QO log(V1!VO)

This applies if we use as weights Wi the weights of Vartia Index I

or II. Define the logarithmic value deviation from its mean (12) by

(14) 1 ° 1v. = log(v.!v.) - log Vo1 1 1
p.+q.

1 1

and the variance of v. or log(v~!v?) by
1 1 1

(15 ) s~ cov(v,v)
"2

Lwivi

Then we have identically

(17)
2

Sv
• 2 '. • 2

LWi(Pi + 2Piqi + qi)

..

2 ••
s + 2cov(p,q)

P
2

+ Sq
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Theil (1967) p. 154 and Theil (1973) considered instead of (14)

the logarithmic deviations of the value shares from their mean

(18)
. 1 0
w. = 10g(w./w.)

J. J. J.

1 0
.' vi/v i= 10g(---y---o)

V /V

1 0
LW. log (w. /w . )

J. J. J.

1 0
vi/vi

- Lw.log(lO)
J. V /v

1 ( 10 10 10og v./v.) - Lw.10g(v./v.) + (Lw.-l) log (V!V )
J. J. J. J. J. J.

But these are identical with v.:s if LW.
J. J.

1 as Theil supposes.

For the weights w. of the Vartia Index I or II we have (13) and
J.

hence (14) changes into

• 1 0 1 0
(19) Vi = log (vi!vi ) - 10g(V /V )

1 0= log (wi/wi)

Thus for the weights of Vartia Indices I and II, (17) changes to

21010 2(20) s = LW. [log(v./v.) - 10g(V /V )]v J. J. J.

1 0 2 2 •• 2= Lw.[log(w./w.)] = s + 2cov(p,q) + S
J. J.1. P q

Because for the weights of Vartia Index II we have, in addition,

Theil's condition

(21)
1 0

LWi log (wi/wi) o and LW. = 1
J.

we have for them also

(22) '2LW.W.
1. 1.

1 0 102
Lw.[log(v.!v.) - 10q(V !V )]

1. 1. 1.

In our table 3 of chapter 7 we have presented the variances of price,

quantity' and value log-changes, Le., (7), (8) and (15) , and the

covariance (9) as calculated using the weights of the Vartia Index I.



Appendix 7. The GDP-data: revision of published figures

4. Eri olillkclr.!Jjen luul311non ~clYfmj.jnd~~~ic 1) ~lIo"lI;! 1964-1972
lrodl'. m'·I,,"lIU'di,.lR.V<II),non ) M"~[ n;;,in1>-<a'OIl:l' 310n 1%4-1972
I/I.]"xc~ I} ufproUllcllfl/l fnrd/ffe(em llldmrrlclln 1964-1972
1964 =WeI

1~64 1965 1966 1967 1968 1969 1970 1971 1972'"

100 31.20 ,t.SO n.~O 9S". &i6 "J.~'f fOl." '0'.'" SS'.fO
100 ,y,l! 31o.S' 'S.Y, ,,,.n n.'" 'V.'S· ".at »..,
100 fOl.ol n.U lI.n sa.S' 10f"1 110.:'3 fo5'.89 S5"~1

----lQ.Q...- _-:-f70BC"''i:-f'~_' o=:'=,,"'~ _1' 't. 3~ ~,.''::-,°:"1-.:..1",',,:..:•..:.?",3-1-'-'..:,3..:.'f.:.:0~', 1!lS'.~,1U. 8j
100 106.20 9'11.1' 10'1.2.3 /08.10 121.83 130.65"'1- 10".'15' II'.'JJ
100 106.2'(" t.'~ II !l.3 I ''-I.IIf '3~.", 'S'3.H. 15"i-.'~ 1~5',*

100 106 113 118 120 127 133 138 146
100 112 124 136 ISO 208 234 231 2S4
100 110 112 128 128 129 132 139 160
100 96 lOS 108 110 129 13S 136 146

Maat.lou" metsiitalous, melsaslys ja kalnstus - Lantbruk, skogsbruk, jakt
och fi~e - Agrz"cu!fm e.. fo~estrJ'1 hunting ond fishing . .....•••....••••
Maolnlous - La.ltlJluk -Apiculture , .............•......
Mel<~t~lolls - Skogshruk - Forestry , , , ... , . , ....•.....•..•
~:ets"'ty<jakolas:", - .lnkt oeh f:ske - Huntingl1nd/ishillg , , .

Kall'"r.na;·,leolEsuu, - GIUV- o.a. ~xtlnklh' industri - Mim'ng and qllCnyillg
Tchd:l5teoliis·Jus - Fabriksindustri - Afcliu[actur;)Jg •.•.••.•.••.•.••••••

El;nta"vU;~tcollisuus - Lj-,"",cc,'lslndustii - Food manufacturing indust·
ries, except !J~J'eragc indw;;ries .........................••.•.•

Juomh va1mi;tava lccIlisuus - Dry~kes'la..uinjustri - Bel'cragc industrie,
TupakkntcoIlisuus - Tob~ksindUSIri - Tobacco 7I".4llllfactures .. , .....••
TekstiiJitcuHisuus - Tcxtilindustri - Manufacture oftextile, ..........•
Kenkii-, vaaietus- ja ompeluteollisuus - Sko-. konfcktions- och somnall,.

inacslri - Ma'lIlfacture of footwear, other wearing apparel and
ni.1de-up te:cti!e goods .••••..•••••••••.••••••.•••••••••.••••

Puutwilisuus - Triiindustri - Manufacture of wood and cork, except
rrsm'facrure offumiture .,., , ....................•

Huonekalu- ja rakennus;>uuscpiinteollisuus - Mobel- och byggnad~

nickeriindust,i - Ma/lufacture of furniture and fIXtures, except
ma/lufacrure ofmetal fumilure .............•'...•......•...•..

Pap~ritcolli;uus - P.ppenindustri - Manufacture of paper and paper
products , , .

G'?~linc~ ~eollisu us - Grafisk industri - Prinling, publishing and al!itxl
rndus.7les •••••••.••.•••.•••••••••..•.••••••••.••••.•••••

Nahka- ja nahkateosteollisuus - Skinn-, lader- och liidervaruindustri -
Manufacture of learher alld leather products, except footwear .

Kumileollisuus - Gummiindustri - Manufacture of rubber product'
Kemian teoll;;uus - Kemisk industri - Manufacture of chemiCills and

chemiCflI prod"cts .. , , , ......•.....•
Kivioljy- ja a<fa1ttiteollisuus - Mineralolje- och asfaltindustri - Manu·

facture of products ofpetroleU/J'.i!lId asphalt . . , ..••....•....•...•
Savio, Ja;;- ja kivcnjalostusteollisuus - Ler-. glas- och stenfllrlidling,.

indu,[,j, - Manufacture of non-metallic mineral productr, except
p,oducts ofpetroleum and coal , ..........•.......•.

Mera!Een p~r"'lco!Ji,uus - Metallverk - Basic metal industries
M.:"lJituotelconis~us - Metallmanufaktuf -' MQw:fccture 01 metlll

froduc.ts. except milchmcry and transport equipment ...•.••••••••
Xonclcollb1lus - Maskinin<lustri - Manufacture of mochitlN)' except

electrical ",achinery ..•......•.•........•.•... , .•.... , .....
Siihki>teknillinen teollisuus - Elektroteknisk industri - Manufllctlll'e of

electrial machinery. appararw. applllznur arulruppUn •••••••...•

100 98

100 103

100 107

100 107

100 102

100 100
100 110

100 III

100 112

100 III
100 120

100 107

100 107

100 103

109

103

III

112

107

108
131

117

143

121
118

116

109

104

114

106

114

110

105

113
131

127

164

124
119

119

III

109

110

112

113

118

112

118
133

138

206

132
134

123

116

iI6

128

127

13S

131

117

133
1S9

ISS

274

154
161

141

130

137

146

137

148

137

126

142
17S

183

313

186
175

16S

I
156

181

148 169

140 139

161 190

138 lSI

129 13S

141 IS3
174 163

203 238

334 372

195 209
ISS 203

161 186

170 200

193 225

1) Las\(e!tu vQIlden 1964 h!:l,Qlaten bruttoklNantoot~ .. (SNA) penaateeIIL - I*Ikuta pi~ a., ID1InaIk lwUttoprOdUkt (SNA) .... '01 1964 In priler. -OIIhlllrftl - " .... of
pondomenlJ: product (SNA) -.luI" J964/NU!>lz.

.'



Appendix 7. (continued)

Ku!kunl;l;.VoteGW-.:tws - Tr3n..~po:tmedcl!'industri - MCilu!actUTc of tron,.
fJ'<J,; cC/:.:i,-:'n:I!/I! ••••...••••••••.•••.••••..•.••••••••.••••••

Muc (Chu3~\evHi"lIus - Annan fabrik~indu:;tri - .1.UscelJoneous mt!nufa~

turin;: iluJusfYirs •.........••.......•..••........•••.......
P.~..k':~1l!...:.S!0il~~irlta - Drggn':Hhv.~!k!'amhcl - Conxtructjon ..•............

T,!or.:aKennu,lo;mint, - llusb)'ggnadsverksamhet - Housc construction
!\.~.!C1- j,•. "~ ... :r ...kcr.niJs[oHnintj, - Alllt!~nirJgsvclkSJmhct - Of.lter

cO.'is:rul'ri'j:1 ..........•.............•...••••.••.•.•••.••.
Ztihico·, ka:Jsu+o v..:sijohto· rm:i. l:titoksct - '£.1., g3§· och v.'Jttcnvcrk m.m. 

Ei-Lc'ri. ;:Y. g!H, wfilcrctl,J SiJtli(cry sen-ices .. ......••.••......•••...
l.iih.1no - Saa,fJrJ,c1 - Tral1.<('('rl and c.JmmllniaJ/ion ....•...........

\\'<;Uii~:('nnc - SJo[:ut - h'cler tram:port, ........•...... 0 ••••••••••

RaUl:!t]!;:i:kcnnt.: -- ltirn'vdgstrafik - Railway transport •........•...•.
TiC'ij~kcnnc - VaglI3hk -- Road transport ...•..•... o ••••••••••••••

T:t.:toJiikcr.nc - 1'1)'it. telt.:fon, Ickgraf II l.ro 0 - Communicotions . .... t •••

~!l:U - bvrig - Other 0.0 0 0 •••••••••••••••••••••••••

Ka'.Jr'pa - ib~dcl - Comrr.erce ......•....•.•..•.••••••.••.•••.••••
Tt;~kuk..!~i\P:l .- P:lr1ihjndc1 - H'ho/I!salt trade . ...•....•...•.•....••
Vah,:IJ"k.,ujl"a - D,:talj:,.ndel - Retail trade •.•..••.••••••..•...••

Pankil ja ,abutuslailokset - Hanker och fOrsiikringsanslalter - &nking
0,:,1 il:~ur ...°r.ce ...........•..•.• , ••..•••.•...•••.•••••..•••••..
PJrlkil -- n;:nJ~cr - Banki'j:g . .. " •...••.•..•....•..••.•••.••••••••
V:::l.~:Ul:t;j~:.,li~oksct - For~k1in~..-.o.lnslalter - Insvrance •...•...•.••...

As~:::()j,·"om;s:;;s - Dcst5der - Ownas!li:: ofdwellings . ...••.•....•....
Y",incn ldlinto ja maa"ilUo1u,tus - Offenllig fOrvaltning och IandsfBrsvar 

Pub/h.' cdn:illistratior. end d-efence .•............•.•.•.•.••..••••••
Pai,cluksCI - Tjiinstcr - Serviccs .......•..•.......•......•..••...•.

Opetus - l!ndervisning - Education . ........•.....•.•.....•.....•
Tcr"cy~,clhoill)- Halso,;\nl - Medical and health servicel ..•.....••..
Vilki't)'s ja huvilt<iu - Rckrcalion och nBjen - Rcc~ation and

(n:r::-t:::r.:r;ii:l;,t 0 ••••••••• 0 ••••• 0 ••••••••

Ravit,C'llUS- ja majoitu.liikkeel - FBrpliignads- och hiirbiiIgcringsverk·
s:::'rJ·!!::t - CctenOng trade . ....................•.•.....•.•.....

Henkil0~t'lml;<1 palvduksct - Personliga tjansler - PersoTIDI urvlcel
~!UUI - i)vriga - Other . ••.••••..•.••.•..•.•...••...••••.•.••.•

Dnillolan""nr~nle - Inhcm'lk brulloproduk1 - Gros! domeltie product
A~"Ul';ota":o ~) - P,llnaq>:oJ::klion 2) - ?rilllIlT)' production 2) •.•••••.•.
JJlo,:u·cilllkdr.ol 3) - S·:kur.dur produktion 3) - Secondary production 3) ••
Pa!\'eluelinkein:l( 4) - Tj:imler 4) - Sen'iecI4) _...•.••...•.... _••....

I 1964 I 1965 I 1966 I 1967~~~1972" I

100 108 J 109 114 120 J 125 137 I 126J146

100 112 116 142 148 201 239 250 307
100 /06.'3 I/D·'fT II2.n 10R.at 1/6,'f0 1i5,5~ I~Y.3 139..81
100 1/2.21 I/t.~8 iI~.6& 109.'1 It1.19 l'fO''''l 1'38. /"19.'10

100 /03, /01 10'.3'( (OS,> ,~~.wl 10'f.U ,g.~!, 9!.1~1 103.13

'-;00- - /06.n-·/Ir:'f8: 111.'8 -i2a.j~-Il;,:,t 1-'~S1. IC12.'t!i;/.91.·"il
100 10;, ii' 1012.•,: 101.. / 113'8J 1!3.~0 '3VII' 1.3'(.0" 1'1".1(3'
100 101 103 104 I 115 128 140 j37 149
100 106 112 112 110 114 117 113 126
100 10] 102 97 98 105 112 113 116
100 110 121 128 I 140 153 166 liS 190
100 113 118 122 126 147 159 175 197
100 10f.'''1 103.1'1 11/." 108.£ I Iii. <q9,' 132,30i 138,'5 IS-/.33,
100 '1l5',1~ lo8.~1 1/2.'~' loi.li- IH."", 1'f2'/)' ISQ.ni /6S:38i
100 10J'''i IIO,S'I 110.83 I09.0~ 1I~,'f9 11'f:3~ IUo.91,lfo:al i
100 '0' ,01; ItO"3l!~'9'~B ii-I.U; I~'.,s 133.1>3! 15'0.13! 16,.3r1
100 ID6.5' II/.~' I!.O,1'f 11't.Hi 1'-'.13 1.3'.~': 160.0~! IgI.s-~q
100 IOlf.90 lOB.'" flB.i-!> 1I'f.1lfl'1'l.IO IIa,l/: 11&.,,,: 13~.~OI

100 16".to 101,'1-6 113.f.b 11I1..,'1 123.33 119,11/; /35'.Ui 142,ITl
~-- _ ..- i--- -----·-·-I---~

100 1033~; 1I0.'ti 113.11 Ili.8tJ IU.4fl IU.,S\ 13'1,5'8: 13',~a
100 IOS'.'tS! 102."1 /I3.H 119.1vl't.6.T2.. 131"ji ''''o,~ 1'(8,1£;
100 10'(.'U) 106.5'4 1I0,gg "'.13 11./.35 liS 63' /30,rl 1~'l'.'3:

100 IO'J.~1 ffO.n I/S.r5 lu.roll%:~' 1't':Os.I's"", 1",'t.'H:

lGO 101).80 IDS.! iO?-.99 1I .... '1~ IU.:n l~.~~! 132.S'1 1'fi'.'f'11

100 105".11 109.' 113.0'1 1!l/.1. 13/,39 14,.Hi "O.9~ '~.93
100 10/.1l4 103.U 105'.5'& 10'1.'9 111.1'1 11&:3'1 1'l0.~1 I,-'t,!!' I
100 IOI.:U 113,l>~ 111.'10 !1.,.31 130.'15 /3A.H 1''f1,8i. 1'f1,5i

100.0 104.7 107.0 109.9 113.0 122.9 132.4 135.6 14U
100 98 92 93 96 100 104 102 96
100 107 112 tiS 119 133 173 151 .l6S
100 105 109 113 116 124 110 DB 148

to-'
10
W

:) Alkllwot:nto:l. OV2t m"a- ja metdta:ous. mctr.fluys Ja ....3Ias(U5 .sr-"JII:Ii.vnnn"l.teolti~\tu•. - Tl11 ('rlmlr produktlon r~kn8~ 13nt· och IkoC:Jbruk., jakt och fl!.k(' nmt Iruv~ 0 .•• t'xtuJ~th'ir.~c~tr1. 
J";'I:!Uy prwut:rir>n itldiJdCJ IJgn",oulnJre, fo.-~stry. Juwtt"JJ 4lnc1 fislling, minlne dlUJ qllarry(l1,f.

3) Ja]O:;'lc,cli11hlno;. o\'&t lehJ"le',1H ,uu, rakennu,IOlmln!. Ja .5hkO·, kn,,\I-. vesijt'hto- ym•. laitok.et. - Till .ekur.dtir produktion r.~kn.. fabrikslndustri. bl'l;gnad,vtrk.amhel ..mt et·, ru
och vat~er.vukm.m. - S~co'1da,y ,,'()dC.hHio~ includt.t InDusfry IJlld construction.

4) 1',llvcluL:-!lnkt.'lnoJa O,'bt liil\.·lln~. J~IJ'Uppn. pr.nkit, Y;J)(uutUI. :t~unloJtn oml~tu~. ylclncn h.:JInto Jo mnn.npuolustullekl palvelckset. - Till cj.lfn:;ter rl!ii(n.a.J, l\.ImrUrtH~I, h=lIn~~I. bC:"Ikc-r, rvr~!i;-.rinl.
bost::'C:,zor, Qffcn:li, f6r'ia:tnb, och land:uorsvar S3mt tjanltor. - Suv/~'l.~s Include tranlport and cOmmu.n(Cdlioff, COmMC'c.~, ownership of dw~/!ffJ.6·:, plliJ:lc ndmm!:;fTation d,;<1 cJc/encr and
:e'~'C:r!~.
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Appendix a. The imports data

Imports of fuels and lubricant were divided according to SITC

(The Standard International Trade Classification) into the

following a groups and subgroups:

Set
notation

Al

A2

A3

SITC
no

321.4

321.a

331

Explanation

Coal (anthracite, bituminous)

Coke and semi-coke of coal, of lignite or
of peat

Petroleum, crude and partly refined for
further refining (excluding natural gasolene)

'.

A4

AS

A
6

A7

Aa

A

332.1 I Motor spirit (gasolene and other light oils
for similar uses, including natural gasolene)

332.2 I Lamp oil and white spirit (kerosene,
illuminating oil, jet fuel)

332.3 I Distillate fuels

332.4 I Residual fuel oils

332.5 I Lubricating oils and greases (including
mixtures with animal and vegatable lubricants)

Fuels and lubricants

The subgroups 321.5 (Briquettes of coal) and 321.6 (Lignite

briquettes and lignite) were ignored because of their very small

imports.

In the following tables we give the monthly imports of Al, ... ,Aa
as calculated from the cumulative sums in the monthly bulletins

pUblished by the Board of Customs (1972, 1973), table 2.



Commodity group 1:

SITC 321.4, Coal

195

quantity value price

period milL kg mill.mk p/kg

1972 1 92.565 8.093 8.743
2 38.681 3.057 7.903
3 69.122 4.485 6.489
4 47.107 2.782 5.906
5 162.778 9.283 5.703
6 240.033 13.214 5.505
7 325.462 17.667 5.428
8 316.580 17.632 5.570
9 309.031 17.580 5.689

10 384.218 21.170 5.510
11 334.683 18.393 5.496
12 342.580 19.582 5.716

1973 1 203.410 11. 528 5.667
2 144.574 8.648 5.982
3 181.161 9.566 5.280
4 181.134 9.686 5.347
5 166.916 8.962 5.369
6 124.219 7.320 5.893
7 139.522 7.888 5.654
8 381. 552 19.649 5.150
9 353.191 19.565 5.539

10 372.774 20.317 5.450
11 428.530 23.696 5.530
12 '289.884 17.165 5.921

1974 1 356.099 23.486 6.595
2 254.445 26.948 10.591
3 179.999 19.368 10.760
4 227.273 25.993 11.437
5 294.404 38.166 12.964
6 267.411 34.368 12.852
7 402.773 51. 915 12.889
8 499.982 64.972 12.995
9 421.573 56.472 13.396

10
11
12
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~ommodity group 2:

SITC 321.8, Coke and semi-coke of coal

quantity value price

period milL kg mi11.mk p/kg

1972 1 85.573 18.401 21. 503
2 41.108 7.167 17.435
3 14.701 2.077 14 .128
4 46.499 7.554 16.246
5 64.867 10.599 16.340
6 50.126 7.245 14 .454
7 75.344 11. 068 14.690
8 66.606 9.826 14 .752
9 89.347 14.647 16.393

10 68.508 11. 832 17.271
11 40.121 6.527 16.268
12 79.010 12.330 15.606

1973 1 . 84.439 13.696 16.220
2 42.212 6.995 16.571
3 11.135 .850 7.634
4 67.359 11.437 16.979
5 84.666 14.197 16.768
6 27.676 4.092 14.785
7 103.795 16.939 16.320
8 88.295 14.638 16.579
9 46.807 7.146 15.267

10 119.092 20.236 16.992
11 85.165 14.995 17.607
12 71. 003 11. 523 16.229

1974 1 97.019 16.559 17.068
2 48.382 9.052 18.709
3 55.819 10.527 18.859
4 74.985 13.530 18.044
5 64.013 12.390 19.355
6 96.532 17.937 18.581
7 83.582 16.315 19.520
8 144.304 29.750 20.616
9 92.509 21. 459 23.197

10
11
12



Commodity group 3:

SITC 331, Petroleum, crude and partly refined for

further refining
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quantity value price

period mill.kg mill.mk p/kg

1972 1 781.353 69.017 8.833
2 485.193 45.383 9.354
3 423.789 39.352 9.286
4 567.939 54.866 9.661
5 683.281 63.148 9.242
6 1024.405 92.132 8.994
7 1227.846 105.850 8.621
8 739.857 62.263 8.416
9 767.634 67.479 8.791

10 927.712 81. 867 8.825
11 943.982 81. 673 8.652
12 661. 489 59.401 8.980

1973 1 999.381 97.493 9.755
2 352.986 33.115 9.381
3 556.759 54.182 9.732
4 836.834 79.706 9.525
5 531. 688 50.885 9.570
6 740.563 71.377 9.638
7 970.194 92.622 9.547
8 951. 934 87.667 9.209
9 777.014 75.621 9.732

10 887.207 94.370 10.637
11 1256.365 190.297 15.147
12 661.109 118.688 17.953

1974 1 991.175 227.633 22.966
2 755.586 245.176 32.448
3 464.018 169.200 36.464
4 740.365 261. 724 35.351
5 612.093 204.872 33.471
6 876.905 314.820 35.901
7 909.525 307.497 33.809
8 1005.109 325.919 32.426
9 627.050 215.469 34.362

10
11
12
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Commodity group 4:

SITe 332.1, Motor spirit, etc.

quantity value price

period mill. 1 mil1.mk pjl

1972 1 .600 .100 16.667
2 8.284 .804 9.705
3 .428 .093 21.729
4 .244 .058 23.770
5 .934 .169 18.094
6 8.263 .840 10.166
7 6.978 .528 7.567
8 3.509 .758 21.602
9 7.851 .727 9.260

10 32.594 4.636 14.223
11 .021 .016 76.190
12 13.548 1. 028 7.588

1973 1 5.793 .781 13.482
2 8.542 .935 10.946
3 .341 .086 25.220
4 .315 .071 22.540
5 .078 .039 50.000
6 4.023 .903 22.446
7 I 18.833 4.065 21. 584
8 . 7.265 1. 4 92 20.537
9 .320 .088 27.500

10 20.853 3.520 16.880
11 85.487 ! 14.867 17.391
12 23.264 I 3.950 16.979

I1974 1 62.273 11.127 17.868
2 .022 .015 68.182
3 11.014 2.000 18.159
4 5.217 2.047 39.237
5 5.504 2.314 42.042
6 4.039 1.879 46.521
7 14.357 5.990 41.722
8 78.374 24.745 31.573
9 4.940 1.880 38.057

10
11
12

'.

'.



Commodity group 5:

SITe 332.2, Lamp oil and white spirit, etc.
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quantity yalue price

period mill. 1 mill.mk pll

1972 1 7.505 .988 13.165
2 .839 .163 19.428
3 5.822 .764 13.123
4 .426 .066 15.493
5 3.283 .489 14.895
6 3.987 .553 13.870
7 1.931 .332 17.193
8 .684 .108 15.789
9 2.991 .441 14.744

10 5.544 .732 13.203
11 .981 .154 15.698
12 ; 4.370 .583 13.341

1

1973 1 3.602 .564 15.658

I
2 2.956 .427 14.445
3 2.424 .393 16.213

r 4 2.698 .410 15.196
5 .885 .139 15.706
6 4.454 .897 20.139
7 1.930 .314 16.269
8 .276 .066 23.913
9 .667 .106 15.892

10 5.305 1.280 24.128
11 .790 .160 20.253
12 1.870 .436 23.316

1974 1 2.527 .787 31.144
2 .979 .398 40.654
3 .869 .362 41. 657
4 1.872 .512 27.350
5 5.148 1. 979 38.442
6 1.236 1.387 112.217
7 .991 .276 27.851
8 .681 .485 71.219
9 3.088 1.200 38.860

10
11
12
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~ommodity group 6:

SITe 332.3, Distillate fuels

quantity value price

period milL kg mil1.mk p/kg

1972 1 168.395 26.972 16.017
2 127.144 20.185 15.876
3 126.876 21. 854 17.225
4 163.416 27.021 16.535
5 158.038 25.781 16.313
6 149.870 21.743 14.508
7 234.029 33.404 14.273
8 214.815 32.394 15.080
9 185.758 26.627 14.334

10 202.561 27.694 13.672
11 238.244 34.195 14.353
12 155.572 20.755 13.341

1973 1 158.107 24.652 15.592
2 161.245 25.878 16.049
3 115.921 20.075 17.318
4 74.068 12.962 17.500
5 115.386 19.959 17.298
6 96.564 16.875 17.475
7 149.196 24.812 16.630
8 165.031 28.000 16.967
9 201.530 37.350 IlL 533

10 179.545 34.449 19.187
11 168.914 32.002 18.946
12 197.617 44.195 22.364

1974 1 240.206 90.362 37.619
2 188.572 96.467 51.157
3 189.263 101. 518 53.639
4 171.512 86.498 50.433
5 135.707 55.003 40.531
6 143.549 47.084 32.800
7 132.620 44.072 33.232
8 127.089 44.115 34.712
9 144.677 51.130 35.341

10
11
12

"



Commodity group 7:

SITe 332.4, Residual fuel oils
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guantity value price

period milL kg mill.Ink p/kg

1972 1 69.328 5.615 8.099
2 53.554 4.457 8.322
3 53.890 4.525 8.397
4 59.876 5.553 9.274
5 124.361 10.404 8.366
6 191. 849 15.403 8.029
7 156.102 12.031 7.707
8 161.677 12.558 7.767
9 142.755 11.208 7.851

10 151.268 12.095 7.996
11 180.815 13.587 7.514
12 190.181 15.867 8 :343

1973 1 108.627 8.633 7.947
2 47.586 4.689 9.854
3 113.714 9.408 8.273
4 42.613 3.620 8.495
5 152.147 12.517 8.227
6 179.523 15.596 8.687
7 223.840 18.353 8.199
8 260.189 19.086 7.335
9 257.772 26.638 10.334

10 326.195 29.586 9.070
11 273.424 25.582 9.356
12 '267.842 38.736 14.462

1974 1 223.834 48.156 21.514
2 181.439 70.406 38.804
3 134.265 40.553 30.204
4 82.322 23.206 28.189
5 120.0~8 30.359 25.289
6 110.836 27.610 24.911
7 143.648 37.176 25.880
8 186.438 46.163 24.761
9 271.479 64.988 23.938

10
11
12
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Commodity group 8:

SITC 332.5, Lubricating oils and greases, etc.

quantity value price

period mill.kg mill.mk pikg

1972 1 12.509 5.411 43.257
2 4.300 2.200 51.163
3 2.727 2.364 86.689
4 11. 275 5.409 47.973
5 5.238 2.966 56.625
6 3.875 2.502 64.568
7 9.144 4.514 49.366
8 11.506 5.531 48.071
9 2.599 2.622 100.885

10 8.228 4.191 50.936
11 7.098 4.259 60.003
12 11.451 4.563 39.848

1973 1 9.195 4.528 49.244
2 5.834 3.188 54.645
3 5.484 3.294 60.066
4 5.154 2.825 54.812
5 10.493 4.904 46.736
6 4.198 2.290 54.550
7 5.248 3.138 59.794
8 13.575 6.273 46.210
9 7.568 3.830 50.608

10 9.820 5.488 55.886
11 11. 960 5.762 48.177
12 6.414 3.744 58.372

1974 1 19.920 7.843 39.372
2 8.182 5.206 63.627
3 9.729 7.455 76.627
4 11. 758 8.948 76.101
5 11. 505 9.572 83.199
6 3.017 3.023 100.199
7 10.470 9.128 87.182
8 5.872 5.671 96.577
9 13.473 11. 519 85.497

10
11
12

.0
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~ppendix 9. Price index formulas P~

Symbols: Price, quantity and value of commodity a i are Pi' qi and vi : Piqi.

Total value v = rVi and value share wi = Vi/V.

Superscripts refer to points (or periods) of time, e.g., P~ and pi are the

old and new price of ai.

rplqO
Laspeyres : pO(La) = --..l......!.
(1864) 1 rp~q~

rp~ql
Paasche :. pI (Pa) =--L.!
(1874) o rp~q~

);>1 1Fisher : pI
(1911) °

= O(La)Po(Pa)

Stuvel : pI = A+ )2~ , where A = ~(P~(La)- v~/Vo )
(1957) ° . Y po(pa)

Price indices based on log-changes

Walsh
(1901)

IlogPo

Wi

I
- Pi

= I:wi 10g(0)
Pi

= J.'iw~' / r /.,,~W~' = G(Wi,w~)
j V ) ) I:G(,)

WTllrnqvist I" Wi

I 0
vi+vi

= yi+yO

I 0H(vi,vi )

M(yl,yO)

y l
= ew1+(I-&)wOi ' where ~ =~

i Y +Y

= logarithmic mean

L(vi,v~)
L(yl yO) , where L(x,y) =~, lnx-Iny

1 ° Ivi+vi Pi -x
I:(~l H(OI , where H(il =~ is the indicator

V +V Pi 2(Y+x)

Tllrnqvist II : Wi
(1936)

Yartia I : Wi
(1974)

Yartia II : Wi
(1974)

Theil : Wi
(1973)

Yartia III : H(P~)
(1974)

of relative change

I 1 °= 2(wi +wi )

1 0)L(l'o"i,Wi
I:L(, )

I °T(wi,wil
I:T(,)

1 °K(wi,wi )

where T(x,y) YXy(~)




