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éygtraCt; In this paper the quadratic risk of a homogeneous
linear estimator and the ordinary least squares estimator

is compared in subsets of the parameter space and conditions
for strong (matrix risk) and weak restricted superiority of
homogeneous linear estimators over OLS in an ellipsoid are
established. In particular, the restricted superiority of
the minimax estimator of Kuks and Olman (1972) and the re-
stricted least squares estimator over OLS are investigated,
and it is shown that there always exists a minimax estimator
superior to OLS in any arbitrary ellipsoid. Finally, the
theoreticél results of the paper are illustrated by an

example.

Keywords: biased estimation; homogeneous linear estimator;
minimax estimation; restricted least squares; restricted

superiority; ridge regression.



1. Introduction

Thé idea of applying biased estimators to the estimation of
parameters in linear models arose from the need to improve
estimation when multicollinearity rendered ordinary least
squares (OLS) estimates too uncertain. It was therefore natu-
ral to compare the performance of these est@mators with the
OLS estimator. Necessary and sufficient conditions based on
quadratic loss and different loss matrices were constructed
to indicate the superiority of various biased estimator over
OLS at a certain point (B,cz) of the parameter space, cf.
e.g. Swamy and Mehta (1978), Terdsvirta (1981a), Toro-
Vizcarrondo and Wallace (1968), Wallace (1972) and Yancey

et al. (1974).

The above-mentioned conditions relate to estimators which

do not dominate OLS. There also exist estimators dominating
OLS under quadratic loss and a suitable loss matrix, cf.

e.g. Draper and Van Nostrand (1979), Judge and Bock (1978) and
Sclove (1968) for James-Stein estimators,and Alam and Hawkes

(1978) and Casella (1980) for ridge estimators.

Rao (1976) has derived necessary and sufficient cenditions
for an estimator to be admissible under quadratic loss and a
positive definitec loss matrix. Hoffmann (1977, 1980) has
studied a more restrictive case, in which the regression
coefficients were contained in an ellipsoid centred in the
origin, and has discussed admissibility of estimators in that

subset of thec original parameter space.



In this paper the interest is focussed on the question of
improving OLS in a subset of the original parameter space.

As in Kuks and Olman (1972) and Hoffmann (1977), we choose an
ellipsoid as our subset but proceed without reference to
admissibility. This approach will give us further insight
into situations in which certain biased estimators, not

dominating OLS, do improve estimation as compared to OLS.

The outline of the paper is as follows: The general results
concerning linear homogeneous estimators and gtrohg restricted
superiority are presented in Section 2 while the following
éec?ion is related to weak restricted superiority. Sections 4
to 7 are devoted to the minimax estimator of Kuks and Olman
(1972), which itself is a linear homogeneous estimator, and
its special case, the restricted least squares estimator.

The results are illustrated by way of an example in Section 8.

2. Restricted strong superiority

Assume a linear model

y = XB + €, Ee = 0, cov(e) = OZI (2.1)
where y and € are nx 1 vectors, X is an nxp matrix of full
rank p and uncorrelated with €, and B is a p x 1 parameter vector.
Define a homogeneous linear estimator of B as bD = Dy. One
frequently applied criterion for supcriority of bD over the

1

OLS estimator b = (X'X)~ X'y is the quadratic risk. Using it



bD can be defined to be (strongly) superior to b at (8,02)

if and only if the difference

A(bD:B;A) = R(b)B,A) = R(bD,B,A) 20

for all A> 0, where

R(b,B,A) = E(b-B)'A(b -'B)

. tr A MSE (D) (2.2)
with

MSE(b) = E(b-B)(b-8)', b = by b

In this paper, we need the following

-~

Definition. An estimator 61 A5 (strhongly) superion to b
1

in
2

, T>0, d>0} 4§ and

B(B,,T,d) = B = {B:(B-B) 'T(B-B) < 0’d”
only A

R(b,,8,A) - R(b,,8,A) >0 (2.3)
gor all BEB and A> 0.

Later on, the superiority thus defined will alsoc be called

~

strong restricted superiority of b1 over 52 in B.

In order to investigate the restricted superiority of bD

over b, write

MSE(b) = oiDD' + HBB'H' (2.4)



where H = DX - I. Choose temporarily A = aa' where a is a non~

zero p X 1 vector. Then

A(bp,B8,A) = a'Co’(U-DD') - HBR'H'la

= oa'(U-DD")a - (a'HP)?’ (2.5)

1

where U = [u..]l = (X'X) '. Approximating (2.5) from below in

1]
B yields, since T> 0,

A(bD,B,aa')

o?at(U-DD"a - tatur /21 2(g-g) + a'Hg 1’

o’a'(U-DD"a - Cla'Hr” 211/ 2(g -8 )| + |a'hg,|1”

1v

oa' (U-DD")a - C(a'HT 'H'a)'/2ga-1/2

v

ey 'HB) /2 (ara) /%)

+

2

oza'(U-DD')a - r”a'a (2.6)

v

where

A7 =T =1 2 . 1/2
T = AmaX(HI H')od + (BOH HBO)

and AmaX(Y) denotes the largest eigenvalue of Y. The second

inequality in (2.6) follows from the minimization in B and



the Cauchy-Schwarz inequality,while for the third one this
inequality and a result in Rao (1973, p. 62) are nceded.
A necessary and sufficient condition for the last expression

in (2.6) to be non-negative in B for all a # 0 1is

2 -DD"Y - rl1>0 (2.7

or, equivalently,

/2 -ppry - A/ Zur turya1/2 H1/2

AL
min max

+ (BYH'HB /0 1> 0.

(2.8)

But then, if (2.6) holds in B for all a # 0, then A(bD,B,A)Z 0
in B for all A>0, cf. Bunke (1975). Note that (2.8) is a
sufficient but not necessary condition for strong restricted

superiority.

Since T> 0,and H # 0 if bD is biased, a necessary condition
for (2.7) to hdld is that U - DD' > 0, and, even more, if

BO # 0 we have to require that
1 2
A (U-DD') > BYH'HB /o”.

If X'X and DD' do not have the same eigenvectors, it is
generally unlikely that U-DD'> 0. In practice, however, the
eigenvectors are often the same; this is the case for instance
for the ridge estimator of Hoerl and Kennard (1970), the

shrinkage estimator cb, ¢ >0 (Mayer and Willke, 1973), and



the principal component estimator (Gunst and Mason, 1977).
Of these, however, U-DD' > 0 does not hold for the principal
component estimator.

1H') can on average be expected

On the other hand, Amax(HT-
to grow with increasing bias so that a badly biased estimator
bD is not likely to satisfy (2.8). Increasing the size of

B(BO,T,d) by decreasing d naturally makes it less likely for
(2.8) to hold, other things equal. An increase in the length

of BO has a similar effect.

If B(BO,T,d) is centred in the origin, i.e., BO 0, (2.8)

becomes

=] 1

d" " gA , (U-DD*)/A_ (HT 'H') (2.9)
giving an explicit upper limit to the size of the ellipsoid.
Note that (2.9) is now both a necessary and sufficient
condition for strong restricted superiority. It does not
depend on 02 SO0 fhat the r.h.s. can be determined from data
for given T. Nevertheless, the ellipsoids depend on 02, SO
that the variance has to be estimated if we want to get an

idea of the B8°s for which bD is superior to b in a particular

application.



3. Restricted weak superiority

The strong criterion for restricted superiority can be
replaced by weéker criteria if desired. If our goal is
to predict y, then replacing A by X'X in (2.2) would be
appropriate, cf. e.g. Wallace (1972). Then, following
(2.3), we can define 51 to be weakly superior to 52 in B

if and only if

mintR(Sz,s,x'X) - R(61,B,X'X)J >0. ' (3.1)
BEB

Choosing 62 = b, b1 = bD and applying (2.3) with A = X'X

we obtain
A(by,B,X'X)

o%p - (o2trX'XDD' + B'H'X'XHB)

V/2~1/2 {3.2)

oZ(p - trx'xop") - gr1 /20 1/ Zxxur 1/ 271/ 2,

Now, making use of the spectral decomposition of X'X and
proceeding as above, a sufficient condition for (3.2) to be
non-negative in B can be found. Since its form is slightly
complicated and perhaps not very illustrative, we do not give

it here but rather concentrate on the case BO = (s

For BEBO = B(0,T,d) we then have



Alby,8,X'X)
> 0% (p - trx'xo0) - ofaTha T BTy 3.

cf. Rao (1973, p. 62). The r.h.s. of (3.3) is non-negative in

Bo,if and only if
-1 =~ =4 —4 - ' (3.4)
d gxmax(T H'X'XHT ) (p - trX'XDD').

A necessary condition for (3.4) to hold is trX'XDD' <p.
This is of course a weaker condition than U-DD'>0; it is

for instance seen to be valid for the principal component

estimator.

If the superiority comparison is based upon the mean square

error as is often done in practice, then the ineqguality

corresponding to (3.3) becomes

A(bp,8,1)

> o2 (trU-trDD') - o?d "a___ (1 iH'HT™?) (3.5)
- max 2 ‘

The m.s.e. of bD is thus smaller than that of b in BO if and

only if
Vel o fur Herw - oo (3.6)
= “max : ’

Conditions (3.4) and (3.6) do not depend on ol as they

correspond to cllinsoids with centres in the origin,



4. Special case: the minimax estimator

In this section the above theory will be applied to the

minimax estimator

bp(k) = (X'X+KkR'R)”

X'y (4.1)

of Kuks and Olman (1972), see also Bibby and Toutenburg (1977).
In (4.1) R is an mx p matrix with rank m and constant k > 0.

If R =1 then (4.1) is the ridge estimator and, more generally,
if R'R has the same eigenvectors as X'X, then (4.1) is called
the generalized ridge estimator. Estimator (4.1) has the
optimal property that it has the smallest maximum quadratic
risk among homogeneous linear estimators in B(0,R'R,k) for all
A>0, cf. Bunke (1975). This property implies that bp (k) must at
- ény xéte be superior to b inAB(O,R'R,k), and it may thus be of

interest to consider the situation more generally in B(BO,T,d).

To begin with, for bD = bR(k) we have

1

U - DD' = UR'sk(Zk’ 1 +RUR')S, RU

where S, = (k"'I+RUR')', see Terdsvirta (1981b). As H = -UR'SR,

(2.6) can be written as

A(bR(k),B,aa')

1

> 6%h' (2k7'I + RURDK - #2h'h> 0 (4.2)
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where h = SkRUa and

2
g = 2 1/2 =1/

max(RT R')od

+(5650)1/2

with s0 = RB0 Since a # 0 implies h #O; our problem is to find

out when does (4.2) hold for all h # 0. A necessary aﬁd

sufficient condition for this is seen to be

=1 2

o?(2x 11 +RUR") - T2I>0.

which is equivalent to

- 11172
oC2k™ " +A_; (RUR')I/“> F . (4.3)

Further elaboration of (4.3) yields

-1/2 1/2 ; -1 1/2
d <Ak “(RTT TRy {r2x + A4 (RUR')I

- (545,4/0 2y1/24 4.4)

A necessary condition for (4.4) to hold at least for some d>0

is that the expression in braces be positive, i.e., that

2 -1 .
sgsg/o” <2k T+ A, (RUR') . (4.5)
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Whether (4.4) is valid or not again depends on HSOLI, T and
d, and in this case also on R and k. Setting Sg = 0, and

R=T=1I, (4.4) has the form

< 2k + Amin(U)

1

which holds for all X'X if 4~ < 2k™'. Thus the ridge estimator

bI(k) is always superior to OLS in B(0,I,k/2).

5. Existence of restricted superior minimax estimator

It can be seen that if k+0 the r.h.s. of (4.4) increases

monotonically beyond any preset bound, and we have the following

Theorem. Assume Linear model (2.1) and minimax estimator (4.1). Then
there always exists such a k>0 zthat (4.1) 48 superniorn Zo OLS 4n
B (60,1?,d)'6on arbitrhany d>0and T> 0.

Hoerl and Kennard (1970) proved for the ridge estimator (R = I)
that there always existed a k>0 such that the m.s.e. of the
ridge estimator was smaller than that of the least squares
estimator. Terdsvirta (19871a) demonstrated that a similar
result holds for the mixed estimator of Theil and Goldberger
(1961) closely related to (4.1), when quadratic risk with
arbitrary A> 0 is used as the measure of superiority. These
results refer to a particular (8,02), whereas the above

theorem concerns an ellipsoid B(BO,T,d) which can be arbitrarily

large.
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The existence theorem of Hoerl and Kennard has been used as

an argument for the ridge estimator, but the problem is that

in practice we do not know whether the chosen ridge constant

k leads to a sufficiently small risk at (8,02). The result (4.4)
contains 02 and is thus not free from unknown parameters
either. However, if So = 0, then (4.4) ceases to be dependent

on 0'2.

A noteworthy point is that if d is chosen small (or B large),
then as a rule k has to be very close to zero for (4.4) to hold.
That means that the subsequent minimax estimator does not
deviate much from the OLS estimator and the price paid for

the restricted dominance of the minimax over the OLS estimator
is that the improvement in estimation due to the minimax
estimator remains minor. This also seems to be a characteristic
feature of some non-linear éstimators dominating the least
squares estimator. Several Monte Carlo studies indicate, cf.
e.g. Dempster et al. (1977), Gunst and Mason (1977) and Lawless
(1978), that the gains from the use of James-Stein estimators
dominating the least squares, when normality of errors is
assumed and the loss matrix is X'X, are generally small. This
seems to be true at least if the predictors are not nearly

orthogonal, see Thisted (1977).

6. Weak restricted superiority of minimax estimator

Next, we adapt results of Section 3 to the minimax estimator

assuming that Sg = 0. Then, from (3.3) and (3.4) we have
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A(bg(K),8, X'X) > 0 in B(0,T,d) if and only if

k

=] 1

aVearl (17 2pes rURts RTTT/ %) tr (2711 + RURY) S RUR'S (6.1

max k

The r.h.s. of (6.1) is always positive; note that Sk and RUR'

have the same eigenvectors.

Correspondingly, from (3.5) and (3.6) it can be concluded that
A(bR(k),B,_il_i 0 in B(0,T,d) is equivalent to

2 1

a v earl (r7ir's RU

=3 1 -
- R! SkRT )trUR Sk (2k

I+RUR')SkRU. (6.2)

As in (6.1), the r.h.s. of (6.2) is always positive so that
the existence of at least one ellipsoid of weak restricted

superiority is always guaranteed.

7. Restricted least squares estimator

Letting k -+« in (4.4) we obtain a necessary and sufficient
condition for the restricted least squares estimator with
restriction(s) RB = 0 to be strongly superior to b in B(BO,T,d).

A condition corresponding to (4.5) becomes

2 ;
§650/0 < Nnhl(RUR') (7.1)
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respectively. Note that (7.1) is a sufficient but not necessary
condition for the superiority of bR over b at (80,02), but it

is needed for the existence of a whole superiority ellipsoid with

its centre at BO. If (7.1) holds, then we obtain from (4.4)

2,1/2

a2 a1 2 Ryl 2oty - (sgsy/0®) /2.

ax min
(7.2)

1f BO is chosen to lie in the hyperplane RB = 0 then (7.1) is

automatically satisfied and (7.2) has the simple form

ater?

=) ' 1
<A (RTTRMA L (RUR'). (7.3)

fnequality (7.3) is both necessary and sufficient for A(bR,B,A)Z 0
to hold for all A>0 in BO. By definition, bR is superior to b
whenever Rf = 0. Condition (7.3) indicates the situation when
instead of this hyperplane we consider the set of ellipsoids with

their centres in {B: RR = 0}.

Taking the weak predictive superiority criterion, assuming

that Sp = 0 and letting k + « in (6.1) yields

=] -1 -3 ] 1 -1 -3
d™! emApgy (TTRYRUR) TIRT™) | (7.4)

)
If we are using the m.s.e. as our superiority criterion and

retain the assumption sy ¥ 0, we finally obtain from (6.2)

1 S [P

a"l<arl comirerurt) TTRUZRY (Rur') TR £ (RURYY T TRUZR

(7.5)
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8. Example

In order to illustrate the above theory, we shall discuss the
following example. Consider a four-variable linear model from
Hald (1952, p. 647). The number of observations is 13, the

correlation matrix of predictors being

F1.000 0.228 -0.824 -0.245

1.000 =0 139 -0.972

s o[l 2
[

1.000 0.029

l 1.000
Multicollinearity can be regarded as a problem in this data

set. Estimating the regression parameters of the scaled

variables by OLS yields

1 5 * 0.043x3 - 0.16x4

(0.28) (0.71) (0.30) (0.74)

y = 0.61x, + 0.53x

while the residual variance 82 = 0.024 and the squared sum
of estimated coefficients b'b = 0.67. The figures in parentheses
are estimated standard deviations, indicating that some

parameters have become rather inaccurately estimated.

To improve the estimation, two ridge estimators were chosen,

one (HXB) suggested by Hoerl et al. (1975) and the other (LW)
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by Lawless and Wang (1976). Another alternative was the re-
stricted least squares (RLS) estimator with the restriction

84 = 0.

The results of Alam and Hawkes (1978) and Casella (1980) show
that, under certain conditions, HKB and LW estimators dominate
OLS in terms of the m.s.e. In this example, the necessary
condition given in Alam and Hawkes (1978) is met for both
estimators while the sufficient one is not, because |

trU2

2
- ZAmaX(U ) <0.
Thus, outright dominance cannot be conjectured so that the

example is not trivial.

The performance of the three estimators was judged using
spheres B(0,I,d) and treating the estimated value of k as
fixed. By substituting_;2 for the unknown 02 it was possible

L in order to find spheres centred

to approximate B'B < ofd
in the origin, such that all B's belonging to them would be
estimated more accurately by these biased alternatives than

by OLS.

The results are in Table 1. When the strong superiority criterion
(4.4) with 80 = 0 is applied it is doubtful whether HKB can be
considered to improve estimation (b'b = 0.67, bﬁKBbHKB = 0.41,

b b = 0.52) while LW no doubt does. Omitting 64 (using zero as

1
LW LW
the estimator of 64) does improve estimation of all parameters in

a larger sphere than HKB. When the p.m.s.e. (6.1) or the m.s.e. (6.
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criterion is used, both ridge estimators could be judged as

acceptable substitutes for the OLS with little risk for the

researcher being worse off by using them instead of sticking

to the OLS. For the RLS estimator all the three criteria lead
1

tod  <u,, = 21.8, and in the light of the estimation results
2

it is quite possible that B'B <o u,, = 0.51 in this example.
It may also be noted that the James and Stein estimator bJS =

c¢b used for comparison resulted in ¢ = 0.9967 so that the

James-Stein and OLS estimates were practically identical.

9. Final remarks

The results in the previous sections do not provide the re-
searcher with any clear idea of how much biased estimators improve
the estimgtion if they do. For instance, if 84 in the preceding
example were very close to zero then the above RLS estimator would
obviously be a reasonable choice, although it improves estimation
in a smaller sphere than the two ridge estimators according

to both weak criteria of superiority. However, even as things

are, the results are useful in charting areas in the parameter
space in which certain homogeneous linear estimators can be

thought of as reasonable substitutes to OLS.
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Table 1. Upper Limits for d” ' and comresponding values of 62d”"
gorn three biased estimatons from three criteria of resiricted
superiorily, using data from Hald (1952)

Estimator Crite_rion
. (4.4) or (7.3) - (6.1) or (7.4) (6.2) or (7.5)
s g g a%a”! a” 2!
HKB (k = 0.140) 14.4 0.34 69.5 1.63 61.9 1.45
Lw (12 = 0.008) 250 5.88 306 . 7.18 . 297 6.97
RLS (34 = 0) 21.8 0.51 21.8 0.51 .21.8 0..51
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