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'Abstract. In this paper the 'quadratic risk of a homogeneous

linear estimator and the ordinary least ~quares estimator

is compared in subsets of the parameter space and conditions

for strong (matrix risk) and weak restricted superiority of

homogeneous linear estimators over OL8 in an ellipsoid are

established. In particular, the restricted superiority of

the minimax estimator of Kuks and Olman (1972) and the re

stricted least squares estimator over OLS are investigated,

and it is shown that there always exists a minimax estimator

superior to OL8 in any arbitrary ellipsoid. Finally, the

theoretical results of the paper are illustrated by an

example.

'Keywol~ds: biased estimation; homogeneous linear estimator;

minimax estimation; restricted least squares; restricted

superiority; ridge regression.



1. Inttoduction

The idea of applying biased estimators to the estimation of

parameters in linear models arose from the need to improve

estimation when multicollinearity rendered ordinary least

squares (OLS) estimates too uncertain. It was therefore natu

ral to compare the performance of these estimators with the

OLS estimator. Necessary and sufficient conditions based on

quadratic loss and different loss matrices were constructed

to indicate the superiority of various biased estimator over

OLS at a certain point (8,02) of the parameter space, cf.

e.g. Swamy and Mehta (1978), Terasvirta (1981a), Toro

Vizcarrondo and Wallace (1968), Wallace (1972) and Yancey

et al. (1974).

The above-mentioned conditions relate to estimators which

do not dominate OLS. There also exist estimators dominating

OLS under quadratic loss and a su~table loss matrix, cf.

e.g. Draper and Van Nostrand (1979), Judge and Bock (1978) and

Sclove (1968) for James-Stein estimators,and Alam and Hawkes

(1978) and Casella (1980) for ridge estimators.

Rao (1976) has derived necessary and 'sufficient conditions

for an estimator to be admissible under quadratic loss and a

positive deftnitc loss matrix. Hoffmann (1977, 1980) has

studied a more restrictive case, ~n which the regression

coefficients were contained in an ellipsoid centred in the

origin, and has discussed admissibility of estimators in that

subset of the original parameter space.
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In this paper the interest is fdcussed on the question of

improving OLS in a subset of the original parameter space.

As in Kuks and Olman (1972) and Hoffmann (1977), we choose an

ellipsoid as our subset but proceed without reference to

admissibility. This approach will give us further insight

into situations in which certain biased estimators, not

dominating OLS, do improve estimation as compared to OLS.

The outline of the paper is as follows: The general results

concerning linear homogeneous estimators and strong restricted

superiority are presented in Section 2 while the following

section is related to weak restricted superiority. Sections 4

to 7 are devoted to the minimax estimator of Kuks and Olman

(1972), which itself is a linear homogeneous estimator, and

its special case, the restricted least squares estimator.

The results ar~ illustrated by way of an example in Section 8.

2. Restricted strong superiority

Assume a linear model

y ::: XS + E, EE = 0, COV(E) ::: 0
2 1 (2. 1)

where y and t:: are n x 1 vectors, X is an n x p matrix of full

rank p and uncorrelated wj.th E, and B is a p x 1 parameter vector.

Define a homogeneous linear estimator of a as bD ::: Dy. One

frequently applied criterion foY superiorit)' of bD over the

OLS estimator b ::: (XIX)-'X'y is the quadratic risk. Using it
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2bD can be defined to be (strongly) superior to b at CS,cr )

if and only if the difference

for all A ~ 0, where

- - -RCb,S,A) = E(b - S)'A(b -'S) -, trAMSECb)

with

MSE(b) = ECb - S) (b - S)', b = bD,b.

In this paper, we need the following

(2.2)

Definition. An eAUmatoJt b 1 -iA (.6Vr.ong-tyl .6u.pvUOJL:to b 2 ..{n

B(SO,T,d) = B = {S: (S-So) 'T.CS-S o ) ~ o-2 d -l, T> 0, d> o} 1..6 a.nd

on-ty 1..6

(2.3)

60Jt aLe. SEB a.nd A > o.

Later on, the superiority thus defined will also be called

strong restricted superiority of b, over b 2 in B.

In order to investigate the restricted superiority of bn
over b, write

(2.4)
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where H = DX - r. Choose temporarily A = aa' where a is a non

zero p x 1 vector. Then

= a 2a' (U - DD') a - (a 'HS) 2· (2.5)

where U = [u .. J = (X'X)-l. Approximating (2.5) from below in
1)

B yields, since T> 0,

t. (bD' S ,.aa ' )

+ (S'H'HS ) 1/2(a'a) 1/2 J 2o 0

(2.6)

where

and ~ CY) denotes the largest eigenvalue of Y. The secondmax
inequality in (2.6) follows fyom the minimizat10n in Band

\
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the Cauchy-Schwarz inequality, while for the third one this

inequality and a result in Rao (1973, p. 62) are needed.

A necessary and sufficient condition for the last expression

in (2.6) to be non-negative in B for all a ~ 0 is

0 2 (D - DD I) - r 2 I > 0

or, equivalently,

(2.7)

(2.8)

But then, if (2.6) holds in B for all a ~ 0, then t.(b D,8,A) > 0

in B for all A>:. 0, cf. Bunke (1975). Note that (2.8) is a
I

sufficient but not necessary condition for strong restricted

superiority.

Since T> 0, and H # 0 if bD is biased, a necessary condition

for (2.7) to hold is that U - DD I > 0, and, even more, if

80 f 0 we have to require that

A . (V - DD I) > 80'H 'H80/(J2
ffiln

If XIX and DD' do not have the same eigenvectors, it is

generally unlikely that U - DD' > O. In practice, however, the

eigenvectors are often the same; this is the case for instance

for the ridge estimator of Hoerl and Kennard (1970), the

shrinkage estimator cb, c> 0 (Mayer and Willke, 1973), and
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the principal component estimator (Gunst and Mason, 1977).

Of these, however, U - DD' > 0 does not hold for the principal

component estimator.

On the other hand, A (HT- 1H') can on average be expectedmax

to grow with increasing bias so that a badly biased estimator

b
D

is not likely to satisfy (2.8). Increasing the size of

B(SO,T,d) by decreasing d naturally makes it less likely for

(2.8) to hold, other things equal. An increase in the length

of So has a similar effect.

If B(SO,T,d) is centred in the origin, i.e., So = 0, (2.8)

becomes

cl -1 ~ A . CU - DD' ) / A (HT- 1H' )_. mln max (2.9)

giving an explicit upper limit to the size of the ellipsoid.

Note that (2.9) is now both a necessary and sufficient

condition for strong restricted superiority. It does not

depend on 0
2 so that the r.h.s. can be determined from data

for given 1. Nevertheless, the ellipsoids depend on 0
2 , so

that the variance has to be estimated if we want to get an

idea of the 8's for which bD is superior to b in a particular

application.
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3. Restricted weak superiority

The strong criterion for restricted superiority can be

replaced by weaker criteria if desired. If our goal is

to predict y, then replacing A by X'X in (2.2) would be

appropriate, cf. e.g. Wallace (1972). Then, following

- -(2.3), we can define b 1 to be weakly superior to b 2 in B

if and only if

min[R(b
2

, S ,X 'X)
SE B

R(b 1 ' S ,X I X)] ~ o. (3.1)

-Choosing b
2

= b~ b
1

= bn and applying (2.3) with A = X'X

we obtain

Now, making use of the spectral decomposition of X'X and

proceeding as above, a sufficient condition for (3.2) to be

non-negative in B can be found. Since its form is slightly

(3.2)

complicated and perhaps not v8ry illustrative, we do not give

it here but rather concentrate on the case S = O.o

For SEB O = B(O,T,d) we then have
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ll(bn ,f3,X'X)

cf. Rao (1973, p. 62). The r.h.s. of (3.3) is non-negative in

BO' if and only if

d- 1 < A-1 (T- 2H'X'XHT- 2) (p - trX'XDD').
- max

A necessary condition for (3.4) to hold is trX' XDn I ~ p.

(3.4)

This is ·of course a weaker condition than U - DD' > 0; i.t is

for instance seen to be valid for the principal component

estimator.

If the superiority comparison is based upon the mean square

error as is often done in practice, then the inequality

corresponding to (3.3) becomes

(3. 5)

The m.s.e. of bn is thus smaller than that of b in Ba if and

only if

Conditions (3.4) and (3.6) do not depend on 0
2 as they

CO'l'l'cspond to clli;>soids "lith centres in the ori~in.

(3.6)
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4.' Special case: the mini~ax estim~tor

In this section the above theory will be applied to the

minimax estimator

bR(k) = (X'X + kR'R) -1 x 'y (4.1)

-. -

of 'Kuks and Olman (1972), see also Bibby.and Toutenburg (1977).

In (4.1) R is an mxp matrix with rank m and constant k> 0.

If R = I then (4.1) is the ridge estimator and, more generally,

if R'R has the same eigenvectors as X'X, then (4.1) is called

the generalized.ridge estimator. Estimator (4.1) has the

optimal property that it has the smallest maximum ~uadratic

risk among homogeneous linear estimators in B(O,R'R,k) for all

A~ 0, cf. Bunke (1975). This property implies that bR(k) must at

any rate be superior to b in B(O,R'R,k), and it may thus be of

interest to consider the situation more generally in B(SO,T,d).

To begin with, for bD = bR(k) we have

-1 -1where Sk = (k I + RUR') ,see Terasvirta (1981b). As H .- -UR'SkR,

(2.6) can be written as

~(bR(k),S,aa')

(4.2)

'.
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where h = SkRUa and

with So = RS O. Since a 'f 0 implies h 'f 0, our problem is to find
_. -,

out when does (4.2) hold for all h 'f o. A necessary and

sufficient condition for this is seen to be

which is equivalent to

o[2k- 1 + A . (RUR',)] 1/2> r.
mln -

Further elaboration of (4.3) yields

(4.3)

(4.4)

A necessary condition for (4.4) to hold at least for some cl> 0

is that the expression in braces be positive, i.e., that

2 -1
SO'5 0/0 <_ 2k + A . (RUR') .nun

(4 • 5)
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Whether (4.4) is valid or not again depends on II So U, T and

d, and in this case also on Rand k. Setting So ~ 0, and

R = T = I, (4.4) has the form

d-1 < 2k -1 + A . (U)
m1n

-1 -1which holds for all XIX if d < 2k . Thus the ridge estimator

bI(k) is always superior to OL5 in B(0,I,k/2).

5. Existence of restricted superior minimax estimator

It can be seen that if k-+O the r.h.s. of (4.4) increases

monotonically beyond any preset bound, and we have the following

Theorem. Ml.>ume. Une.evz. mode.t (2.1) and m-inA.max e..6:tUna.tOft (4.1). The.n

:the.Jte. a1.t.W..1j1.> e.x-t!.>;tl.> I.> ueh a k > 0 :that (4. 1) -t!.> I.>UpeAlOft -to 0LS -in.

B (SO' T ,d)' 60ft a.JtbU!ta.Jt1j d > 0 and T > O.

Hoerl and Kennard (1970) proved for the ridge estimator (R~ I)

that there always existed a k>O such that the m.s.e. of the

ridge estimator was smaller than that of the least squares

estimator. Ter~svirta (1981a) demoristrated that a similar
,

result holds for the mixed estimator of Theil and Goldberger

(1961) closely related to (4.1), when quadratic risk with

arbitrary A ~ 0 is used as the measure of superiority. These

2results refer to a particular (S,a ), whereas the above

theorem concerns an ellipsoid BCBO,T,d) which can be arbitrarily

large.
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The existence theorem of Hoerl and Kennard has bee~ used as

an argument for the ridge estimator, but the problem is that

in practice we do not know whether the chosen ridge constant

k leads to a sufficiently s~all risk at (8,0 2
). The result (4.4)

contains 0
2 and is thus not free from unknown parameters

either. However, if So = 0, then (4.4) ceases to be dependent

2on 0 •

A noteworthy point is that if d is chosen small (or B large),

then as a rule k has to be very close to zero for (4.4) to hold.

That means that the subsequent minimax estimator does not

deviate much f~om the OLS estimator and the price paid for

the restricted dominance of the minimax over the OLS estimator

is that the improvement in estimation due to the minimax

estimator remains minor. This also seems to be a characteristic

fea~ure of some non-linear estimators dominating the least

squares estimator. Several Monte Carlo studies indicate, cf.

e.g. Dempster e~ al. (1977), Gunst and Mason (1977) and Lawless

(1978), that the gains from the use of James-Stein estimators

dominating the least squares, when normality of errors is

assumed and the loss matrix is XIX, are generally small. This

seems to be true at least if the predictors are not nearly

orthogonal, see Thisted (1977) .

. 6: We1k rdstticted ~uperiotity of minimai esti~ator

Next, we adapt re~ults of Section 3 to the'minimax estimator

assuming that So = O. The~, from (3.3) and (3.4) we have
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~(bR(k),S, XIX) > 0 in BCO,T,d) if and only if

d- 1 < 1.- 1 (T- 1/ 2R'S RUR'S RT- 1/ 2)tr(2k-·1r + RUR')SkRUR'Sk- max k k
(6.1)

The r.h.s. of (6.1) is always positive; note that Sk and RUR'

have the same eigenvectors.

Correspondingly, from (3.5) and (3.6) it can be concluded that

~(bR(k),S,_J~~ 0 in B(O,T,d) is equivalent to

"

As in (6.1), the r.h.s. of (6.,2) is always positive so that

the existence of at least one ellipsoid of weak restricted

superiority is always guaranteed.

7. Restricted least squares estimator

Letting k + 00 in (4.4) we obtain a necessary and sufficient

conditioli for the restricted least squares estimator with

(6.2)
,-

restriction(s) RS = 0 to be strongly superior to b in B((30,T,d).

A condition corresponding to (4.5) becomes

?
sOsO/(J~ < A ' (RUR'), - flun (7.1)
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respectively. Note tha't (7 • 1) is a sufficient but not necessary

condition for the superiority of bR over b
. 2

but itat (SO'o ),

is needed for the existence of a whole superiority ellipsoid with

its centre at SO' If (7.1) holds, then we obtain from (4.4)

d-1 /2 < ;>.. - 1 /2 (RT- 1R' ) [A 1(2 (RUR ') - ( s 0' So /02) 1 /2] .
- max mln

(7 .2)

If So is chosen to lie in the hyperplane RS = 0 then (7.1) is

automatically satisfied and (7.2) has the simple form

d- 1 < ;>..-1 (RT- 1R');>.. . (RUR') •.
- max mln (7.3)

Inequality (7.3) is both necessary and sufficient for 6(b R, S,A) > 0

to hold for all A ~ 0 in BO' By definition, b R i.s superior to b

whenever RS = O. Condition (7.3) indicates the situation when

instead of this hyperplane we consider the set of ellipsoids with

their centres in {S: RB = ol.

Taking the weak predj.ctive ~uperiority ctiterion, assuming

that So ~ 0 and letting k ~ 00 in (6.1) yields

(7.4)

J

If we are using the m. s. e. as our s'uperiori ty cri terion and

retain the assumption So _ 0, we finally obtain from (6.2)

d"-1 ~ A~~x(T-~R' (RUR,)-l RU 2R , (RUR,)-lRT-!)tr(RUR,)-1RU2R'.

(7 .5)
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8. Example

In order to illustrate the above theory, we shall discuss the

following example. Consider a four-variable linear model from

Hald (1952, p. 647). The number of observations is 13, the

correlation matrix of predictors being

p =

l

1 .000 0.228

1.000

-0.824

-0.139

1.000

-0.245

-0.972

0.029

-1.000

Multicollinearity can be regarded as a problem in this data

set. Estimating the regression parameters of the scaled

variables by OL5 yields

A

Y = 0.61X 1 + 0.53x 2 + 0.043x3 - 0.16x4
(0.28) (0.71) (0.30) (0.74)

while the residual variance &2 = 0.024 and the squared sum

of estimated coefficients bIb = 0.67. The figures in parentheses

are estimated standard deviations, indicating that some

parameters have become rather inaccurately estimated.

To improve the estimation, two ridge estimators were chosen,

one (HKB) suggested by Hoerl et al. (1975) and the other (LW)
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by Lawless and Wang (1976). Another alternative was the re

stricted least squares (RLS) estimator with the restriction

The results of Alam and Hawkes (1978) and Casella (1980) show

that, under certain conditions, HKB and LW estimators dominate

OLS in terms of the m.s.e. In this example, the necessary

condition given in Alam and Hawkes (1978) is met for both

estimators while the sufficient one is not, because

Thus, outright dominance cannot be conjectured so that the

example is not trivial.

The performance of the three estimators was judged using

spheres B(O,I,d) and treating the estimated value of k as

fixed. By substituting.;2 for the unknown 0
2 it was possible

to approximate S'8 2 a 2d- 1 in order to find spheres centred

in the origin, such that all 8's belonging to them would be

estimated more accurately by these biased alternatives than

by OLS.

The results are in Table 1. When the strong superiority criterion

(4.4) with 80 = 0 is appl ied it is doubtful \.,..hether HKB can be

considered to improve estimation (bIb = 0.67, b~KBbHKB ~ 0.41,

b'tWbLW = 0.52) while LW no doubt does. Omit t ing 84 (using zero as

the estimator of 84 ) does improve estimation of all parameters in

a larger'sphere than HKB. When the p.m.s.e. (6.1) or the m.s.e. (6.2
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criterion is used, both ridge estimators could be judged as

acceptable substitutes for the OLS with little risk for the

researcher being worse off by using them instead of sticking

to the OLS. For the RLS estimator all the three criteria lead

-1 21 .8 , and in the light of the estimation resultsto d :su44 =

it is quite possible that S'S < a2u = 0.51 in this example.- 44

It may also be noted that the James and Stein estimator bJS =

cb used for comparison resulted in c = 0.9967 so that the

James-Stein and OLS estimates were practically identical.

9. Final remarks

The results in the previous sections do not provide the re

searcher with any clear idea of how muc.h biased estimators improve

the estimation if they do. For instance, if S4 in the preceding

example were very close to zero then the above RLS estimator would

obviously be a reasonable choice, although it improves estimation

in a smaller sphere than the two ridge estimators according

to both weak criteria of superiority. However, even as things

are, the results are useful in charting areas in the parameter

space in ~hich certain homogeneous linear estimators can be

thought of as reasonable substitutes to OLS.
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Table '1. UppeJt UinUA 6OIl. d- 1 a.nd c.oMe-6poncU.ng vai.u.eA 06 a2d- 1

60IL :thAee. biMe.d e.-6Uma.:tOM nILom tMe.e. c.JU.tVtia. 06 lLM:tJUc.:te.d
.6u.PeJuoJLLty I LU,.tng da..ta. olLom Hai.d (7952)

Estimator ... . Criterion

, (4.4 ) or (7.3) (6.1) or (7.4) (6.2) or (7.5)

d- 1 A2 -1 d- 1 a2d- 1 d- 1 a2d- 1a d

HKB (k = 0.140) 14.4 0.34 69.5 1. 63 61.9 1.45

LW (k .. 0.008) 250 5.88 306 7.18 297 6.97
..

RLS (114
.. 0) 21.8 0.51 21.8 0.51 21.8 0.51

. . . . . . . ... . .
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