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ABSTRACT: Power indices like those of Shapley and Shubik (1954) or Banzhaf (1965) meas-
ure the distribution of power in simple games. This paper points at a deficiency shared by all
established indices: players who are inferior in the sense of having to accept (almost) no share
of the spoils in return for being part of a winning coalition are assigned substantial amounts of
power. A strengthened version of the dummy axiom based on a formalized concept of inferior
players in a possible remedy. The axiom is illustrated first in a deterministic and then a prob-
abilistic setting. With three axioms from the Banzhaf index, it uniquely characterizes the Striict
Power Index (SPI). The Follower-Leader Index of Power (FLIP) establishes a further refine-
ment. SPI and FLIP are shown to be special instances of a more general family of power indices
related to the Banzhaf index but obeying the inferior player axiom.






SUMMARY

Power indices measure the distribution of power in n-person simple games, such as voting
games. They have been applied to evaluate political and economic institutions in numerous
empirical studies. Several plausible indices have been proposed, e.g. by Shapley and
Shubik, or Banzhaf. However, none of these is consistent with competitive equilibrium or
the core: in a three-player simple game where the only winning coalitions are the grand
coalition ABC and the two coalitions AB and AC, core and competitive analysis attribute
all power to player A. In contrast, all established indices assign a very substantial share of
total power to players B and C. This is in our view a deficiency of established power
indices and motivates the paper.

We illustrate and define the concept of inferior players as a first step to overcome this
deficiency. Player i is called inferior in a given game if there exists some other player j who
can actively prevent all winning coalitions in which i is crucial, i.e. has a swing, and who is
himself crucial in at least one winning coalition not containing i. Thus, an inferior player i
can be credibly threatened to be forced into a losing coalition unless substantial concessions
are made to some player j — depriving i from practically all the power commonly attributed
to his swing positions. We suggest to replace the dummy axiom conventionally used in
power measurement by a stricter axiom based on inferior players.

Two indices that satisfy this inferior player axiom are presented. The Strict Power Index
(SPI) is based on a stricter notion of Banzhaf’s swings. It is shown to be globally
‘monotonic, and we provide an explicit axiomatic characterization. A further strengthening
yields the Follower-Leader Index of Power (FLIP). Inferiority is also investigated in a
probabilistic context, where it translates into restrictions on players’ acceptance rates in the
multilinear extension of the underlying game. Finally, SPI, FLIP, and the respective
probabilistic restrictions are generalised.

Future research may apply the inferior player axiom to other indices than the non-
normalized Banzhaf index, e.g. of Shapley and Shubik or of Deegan and Packel. It could
be worthwhile to investigate more thoroughly the mathemétical properties of the respective
adaptations of the Banzhaf, Shapley-Shubik or Deegan-Packel index in terms of
axiomatization, monotonicity, and susceptibility to typical paradoxes in power
measurement. The inferior player axiom could also be extended to the domain of general
games in characteristic function form. The concept of inferior players incorporates an
important aspect of non-cooperative bilateral interaction into the cooperative world of
power indices. It remains a challenge for the future to provide still more comprehensive

non-cooperative foundations of power measurement.



1 Introduction

Power indices are functions that map n-person simple games, such as weighted
multi-party voting games, to n-dimensional real vectors. They measure the dis-
tribution of power in a game, and assign to each player a number that indicates
the player’s ability to shape events, i.e. to determine the outcome of the game.

Power indices have been applied to evaluate numerous political and economic
institutions. Power distributions in the context of shareholders’ meetings have
been one focus of attention (compare e. g. Leech 1988), with the related theoret-
ical challenge of dealing with cross-ownership whereby players exert power both
directly and indirectly (see Gambarelli and Owen 1994 for one solution). In the
political sphere, decision making in the U.S. Congress, U.S. presidential elec-
tions (see Owen 1975), the U.N. Security Council, and, recently, the institutions
of the European Union (e.g. Laruelle and Widgrén 1998; see Nurmi 1998 for a
comprehensive survey) have all been studied extensively using power indices.

Despite the wide application and more than forty years after the seminal con-
tribution to power measurement by Shapley and Shubik (1954), there is still con-
siderable controversy as to what constitutes an appropriate power measure. On
the surface, the debate is about whether minimal winning coalitions, crucial coali-
tions, player permutations, or else are the best primitives of power measurement.
More fundamentally, the discussion is about the realism of the distinct probabil-
ity models behind alternative indices and whether properties like monotonicity
are to be regarded as essential.!

In the wake of Shapley and Shubik’s work, numerous power indices have been

!Compare, for example, the recent discussion about monotonicity between Holler (1997),
Nurmi (1997), Turnovec (1997), and Mercik (1997), which was sparked by Freixas and Gam-
barelli (1997). For an indication of the ongoing research providing ever more refined indices,
compare e.g. Bilbac, Jiménez, and Lépez (1998) and the contributions in Holler and Owen

(2000).



proposed and axiomatically characterized — most notably by Banzhaf (1965),
Deegan and Packel (1978), and Holler and Packel (1983).2 However, none of
these indices is consistent with traditional notions of competitive equilibrium or
the cooperative concept of the core: in a three-player simple game where the only
winning coalitions are the grand coalition ABC and the two coalitions AB and
AC, core and competitive analysis attribute all power to player A. In contrast, the
indices of Shapley-Shubik, Banzhaf, Deegan-Packel, or Holler-Packel respectively
assign 1, £, 1, and { of total power to players B and C.3

In this paper, we define the concept of inferior players as a first step to
overcome this deficiency. Based on this definition we suggest to replace the
dummy axiom conventionally used in power measurement by a stricter axiom.
The proposed axiom requires indices to not take into account a player’s supposed
power (as traditionally measured by swings, pivot positions etc.) if some other
player can issue the following ultimatum to him: accept (almost) no share of the
spoils from a winning coalition or be prevented from taking part in one at all.
Thus, power measurement is brought more in line with competitive analysis.

Section 2 starts with some preliminary definitions and then introduces the
concept of inferior players. The inferior player axiom is stated, and the rest
of the paper deals with possible applications of it. First, in section 3, two de-
terministic indices based on the Banzhaf index are presented, one of which is
explicitly axiomatized, and analyzed with respect to monotonicity properties.

Then, in section 4, inferiority is investigated in the realm of probabilistic power

2For a recent comparative investigation of power indices, their propqrties and applicability,
see Felsenthal and Machover (1998).

3Note that successful attempts have been made to provide a non-cooperative foundation
for the value concepts related to power indices, most notably the Shapley value (see Hart and
Mas-Collel, 1996, for a recent contribution). Doubts about the realism of the highly specific
bargaining procedures and respective limit considerations are, in our view, confirmed by this

simple example.



measurement. Adapting probabilistic indices to the inferiority axiom amounts to
imposing restrictions on players’ acceptance rates in the multilinear extension of
the underlying simple game. We present two rather intuitive conditions both of
which imply that zero power for inferior players is indicated. They turn out to
define the probabilistic counterparts of the two indices introduced in section 3.
In section 5, these two conditions and the corresponding indices are: generalized.
A whole continuum of indices is shown to be in line with the inferior player axiom

and available for selection through additional axioms. Section 6 concludes.

2 Inferior Player Axiom

2.1 Preliminary definitions

Let u and v denote n-person simple games and N = {1,2,...,n} their common
set of players. P(N) is the set of feasible coalitions. The simple game v (and
u analogously) is characterized by the set W(v) C P(N) of winning coalitions.
W (v) satisfies § ¢ W(v), Ne W) and S € Wu)ASCT = T eW(). v
can also be described by a characteristic function v : P(N) — {0,1} with

0; S¢ W)
1, SeW(v).

v(S) =

G denotes the set of all n-person simple games. Voting games are special
instances of simple games that are characterized by a non-negative real vector
Ty = (¢;wy,...,w,), where w; represents player i’s voting weight in game v and
q represents the quota of votes that establishes a winning coélition.

A player who by leaving a winning coalition S € W(v) turns it into a losing
coalition S\ {:} ¢ W(v) has a swingin S and is called a crucial or critical member
of coalition S.

Coalitions in which at least one member is crucial are called crucial coalitions.?

4Deegan and Packel (1978) use the term ‘minimal winning coalition’, Felsenthal and Ma-
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Coalitions where player 14 is critical are called crucial coalitions with respect to 1.

Let
Ci(v) ={SCN|SeWk) AS\{i} ¢ W)}

denote the set of crucial coalitions w.r.t. ;. The number of swings of player i in

simple game v is thus

ni(v) :=| Ci(v) |.
A player ¢ who is never crucial, i.e. n;(v) = 0, is called dummy player. It is com-
mon to all established power indices that dummy players are considered powerless.

A power index is a mapping from the space of n-player simple games into
the n-dimensional space of non-negative real numbers, assigning to each player
¢ € N a number u;(v) that indicates ¢’s power in the considered game v € G.
An index p : G — IR% is locally monotonic on the domain of voting games if
w; > wy in 1, implies p;(v) > p;(v), i. e. more weight implies more power.> The
Shapley-Shubik and Banzhaf indices are locally monotonic, the Deegan-Packel or
Holler-Packel indices are not. ‘

Recently, monotonicity has also been defined with respect to players’ position
in different simple games. Following Levinsky and Silarszky (2000), a game u can
be considered ‘better’ than game v from player 4’s point of view if all winning
coalitions of v with 7 also win in u (and, possibly, some other coalitions with 7
win in «) and if all winning coalitions of u without 4 also win in v (and possibly

some more). Formally, we define the preference relation »; with

ieSANSeW() =S eW(u)

U=V = .
AN 1gSANSeW(u) =5eW).

An index p is globally monotonic if u >; v implies p;(u) > p;(v) foralls € N. In

the special case of voting games, global monotonicity requires that if player i’s

chover (1998) the term ‘vulnerable coalition’ instead of ‘crucial coalition’. We, like other au-
thors, follow Bolger’s (1980) conceptualization.

SLevinsky and Silarszky (2000) provide a definition on the entire domain of simple games.



weight in u is greater or equal than that in v, i. e. w;(u) > w;(v), and the weights
of all players j # ¢ are not greater in u than in v, i.e. Vj # 7 : w;(u) < w;(v),
then 4’s indicated power in u is not smaller than in v. Provided that an index
— like all established indices — is symmetric, global monotonicity implies local
monotonicity. The Shapley-Shubik index and the non-normalized Banzhaf index
are globally monotonic, the normalized Banzhaf index is not.

When power in simple games is analysed in a probabilistic context, each
player’s probability of accepting a random proposal is considered, and referred to
as i’s rate of acceptance p; € [0,1]. Assuming that actual acceptance decisions are
taken independently across players, the probability of forming a coalition S C N
is Pr(S = S) = Iicspilljgs(1 — p;). Weighting all coalitions S C N with their
respective value v(S) € {0, 1}, we get the mathematical expectation

E() = flpr,--opn) = 2 IIpo [1 (1 =p;)v(5)

SCNieS j¢S

= > HPiH(l—pj)

Sew(v)ieS j¢S

of game v, also called its multilinear extension (MLE) (see Owen 1972, 1988).
The MLE gives the probability of formation of a winning coalition in v.

Graphically, the set of all possible coalitions P(NN) corresponds to the set of
cdrner points of the n-dimensional unit cube {0,1}". Coordinates z; of points
x € {0,1}" indicate whether player i belongs to the considered coalition or not.
The characteristic function of a simple game can be formulated as the mapping
v : {0,1}" — {0,1}, and MLE then simply extends the domain of v to [0, 1]"
and its range to [0,1]. Any point within the cubic gives a combination of players’
rates of acceptance.

Denoting player i’s marginal contribution to coalition S by

1, Se Cq,('l))
0, S ¢ Ci(’U),

Ai’U (S) =

we get the following first order partial derivative of the MLE of v with respect to

6



Di:

filpr,--oon) = > I1pi [1(1—pe)Asu(S)
SEWw 18 kS
i i

= 2 Il 11 (1=py).
SECim IES  keS
J#i

This expression, usually referred to as player i’s power polynomial (Straffin 1977,
1988), gives the probability of ¢ having a swing in the random coalition to be
formed in game v. Typically, players’ acceptance rates for a random proposal
are modeled as random variables. Let P be the distribution of random vector

(p1,...,pn)- Then, the expectation

Ef, (b pa) = / 5 By o pa) AP (1)

is an indicator of ¢’s power in game v. Note that v is now characterized both by
the set of winning coalitions and by a specific distribution of players’ acceptance
rates P (cp. Owen 1972). The probabilistic power index defined by (1) coincides

with traditional deterministic indices for several plausible probability models.

2.2 Inferior players

In the introduction, the game v with W(v) = {AB, AC, ABC} was used to
illustrate the divergence between power predictions based on conventional indices
on the one hand, and competitive analysis or the concept of the core of a game
on the other hand.

In the considered game v, player A can issue ultimata to both B and C.5
Imagine that the spoils of a winning coalition are $100 and to be split among
its members. Or, alternatively, consider 100 policy units, referring to facets

of a political proposal with diverging preferences. Regardless of the object of

6 An alternative argument based on a process of mutual underbidding of B and C can be
constructed. We prefer the argument based on the ultimatum game since it does not rely on

the presence of multiple inferior players and is thus more general.



conflicting interests, whenever the situation permits negotiations before the final
establishment of a winning coalition player A is in the position of the proposer in
a non-cooperative ultimatum game with B as responder. Since A has the option
to form a winning coalition without B, B cannot do better but to accept whatever
A proposes in terms of B’s share of spoils or political influence. A anticipates this
and rationally offers B a share of (almost) nothing. The same holds for possible
negotiations between A and C.

More accurately, the ultimatum game G = ({A, B},%,II) with players A
and B, strategy spaces X4 = [0,100] and X = {og|op : [0,100] — {0,1}},
and payoffs I14(04,08) = (100 — 04) o5(c4) and Ilg(0a,08) = c40p(04) has a
unique subgame perfect equilibria (SPE): (0,05 = 1), i.e. A offers nothing, and
B accepts regardless of A’s offer.

It may look extreme that player B accepts in this equilibrium though he
is in fact indifferent between accepting and rejecting. For better intuition, one
may interpret the SPE as the limit of situations in which A offers an arbitrarily
small € > 0 to B; B then does strictly better by accepting. In any case, it is
uncontroversial to summarize the ultimatum situation by saying that a rational
player B will accept practically or almost nothing in return for giving his consent
to A’s proposal. The same applies to player C and the similarly defined game
G = ({AC}H 1.

Players B and C are not exactly in the position of dummy players, but quite
close to it. Note that collusion between B and C with the objective to prevent
A from exploiting her bargaining power is not stable. It suffices for A to make
the credible declaration that only one coalition partner will l;e accepted, and to
approach either B or C, or auction off the right to exclusive partnership.

B’s position can be described as follows: there exists a player — here A — that
can veto or prevent all coalitions in which B makes a positive contribution, i. e. is
crucial, but who can herself form a crucial coalition without an opportunity for B

to interfere. Threatened by A taking this outside option, B is in the unpleasant
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situation of preferring (almost) any amount of concession with respect to A’s
demands to being excluded from participating in a winning platform at all. B is
in this sense an inferior player in game v (the same holds for C). Formalizing

this intuitive notion of inferiority, we state:
Definition 1: Player i is inferior in simple game v if 35 # 4 :

vSeCiv): jeS
A 35 eCiv): i¢s

Let I(v) C N denote the set of inferior players in v and m = |I(v)] its cardihality.

The relationship to dummy players is simple:

Corollary 1: Every dummy player in simple game v is also an inferior player.

The reverse is not true.

Proof: Since C;(v) = @ for a dummy player i, the first part of the definition is
trivially satisfied. The second part is satisfied by any player j with C;(v) # 0
(there is at least one). That inferior players need not be dummy players is obvious

from the example above. O
There is a neat equivalent definition of inferior players:
Proposition 1: Player ¢ is inferior in simple game v <= 3Jj # ¢ : C;(v) C C;(v).

Proof: a) Let i be inferior inv,i.e. VS € C;(v) : 5 € SA3S € C;(v) : ¢ £S’. Now
assume that there exists S € Cj(v) with S £C;(v). It follows that S € W(v),
and S\ {j} € W(v) since S /€C;(v). Furthermore, from S\ {i} /W (v) it
follows that S\ {j}\ {i} £W(v). Thus, S\ {j} € Ci(v) - a contradiction to
VS € Cy(v) : j € S, so we must have C;(v) C Cj(v). Together with the fact that
j is crucial in at least one coalition S” without i, we have C;(v) C C;(v).

b) First, Ci(v) € Cj(v) implies that VS € Ci(v) : § € C;(v). By definition,
S € Cj(v) implies j € S. Second, assume C;(v) & Cj(v) and VS’ € Cj(v) :

- J



i € §'. Using the argument in a), the latter implies C;(v) C C;(v). This is a

contradiction. U

Players who are not inferior are generally agreed to be powerful players. 1t is
convention in power measurement to require a reasonable power index y : G —
IR to indicate zero power for dummy players, i.e. y;(v) = 0 if ¢ is a dummy
player in v. Given our stricter notion of what constitutes powerful and powerless

players, we suggest to strengthen the conventional dummy axiom to:
Inferior Player Axiom: i is inferior in v = p;(v) = 0.

As illustrated by our example, none of the conventional power indices satisfies
the inferior player axiom.

It is necessary to ask whether our stricter notion of powerful and powerless
players applies to all situations in which simple games are played. This is not the
case. The motivation for introducing the concept of inferior players which was
given above rested on three implicit premises. First, we assumed the opportunity
for negotiation about spoils of a winning coalition or details of a policy proposal
before eventual coalition formation. This assumption is not fully appropriate
when many players have anonymous votes on an exogenously given proposal
without precise spoils to be split. We believe, though, that these situations are
rare at the party level of political institutions, to which power indices are typically
applied.

Second, we assumed that the essence of negotiations was adequately captured
by a single-shot ultimatum game, and that, third, negotiations were with rational
inferior players. Therefore we considered only equilibrium or close-to-equilibrium
situations in which inferior players agree to accept (practically) no share of spoils
or influence on policy. When the same players in a political institution inter-
act, for example, in an indefinitely repeated manner, the single-shot ultimatum
game no longer describes the relation between inferior and non-inferior players

adequately. Depending on players’ time preference, e. g. the discount factor they
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apply to future payoffs, there may be a multitude of SPE involving payoffs for
inferior players which are bounded away from zero. Moreover, laboratory experi-
ments (sparked by Giith et al. 1982; for an overview see Roth 1995) indicate that
even a unique SPE can be a shaky predictor of actual human bargaining behav-
iour. We doubt that these critical experimental results allow many statements
about behaviour in political institutions. Still, the ultimatum story behind infe-
rior players loses its appeal when the simple game under investigation is played
in an imperfectly rational environment.

It is also worthwhile to ask whether applicability of the concept of inferior
players is restricted by a particular notion of power underlying it.” The context
of simple games played in voting bodies is the most important. There, our under-
standing of “ability to shape events” refers to more than merely the chance event
of being crucial with an anonymous vote when the quota is just about reached
by votes of the other players. This rather narrow view of influencing outcomes is
behind the concept of I-power, which Felsenthal and Machover (1998, pp. 35ff)
define. They contrast it with P-power — referring to the prize of power in terms
of a share of a fixed purse — and argue that power indices could and should be
distinguished by what sort of power they measure.

On first view, our concept of inferior players belongs to the sphere of P-
power since it assumes that a decision is somehow still a matter of negotiation
— be it about associated financial spoils of contributing to a specific winning
coalition or other aspects of a political deal. However, power remains a more fuzzy
concept in our view than Felsenthal and Machover’s precise conceptualization of I-
power and P-power suggests. P-power builds on I-power sincé it is the potential
effects of players’ voting behaviour which underlies their claims when dividing
the spoils. And a pure voting situation in which I-power could be analyzed is

typically brought about by an externally made proposal which is, however, often

"We thank M. Machover for first posing this question.
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influenced by players’ preferences, i.e. refers to some compromise on potential
spoils as captured by P-power.

We are therefore uneasy to associate inferior players too closely with P-power.
Despite the appeal of I-power vs. P-power considerations, we prefer to distinguish
between power indices on the basis of varying informational assumptions (cp.
Straffin 1977, 1988) and the situational aspects discussed above. We regard the
actual decision environment — relevance of negotiations, repeated vs. single-shot
interaction, perfectly vs. boundedly rational players — as the chief determinant of

which index type with or without the inferior player axiom is appropriate.

3 Application to deterministic indices

In order to show that the inferior player axiom leads to reasonable power indices
with desirable other properties and plausible probability models, we will define
and investigate two example indices related to the Banzhaf index (1965). This
is based on the traditional deterministic formulation of power indices. Note that
similar adaptations could be made to the Shapley-Shubik index, the Deegan-

Packel index, or other power indices.

3.1 From Banzhaf to the Strict Power Index

The non-normalized Banzhaf indez (3 is defined by

Bi(v) = mi(v) i€ N.

- on—1 ?

Since there are exactly 2" ! potential coalitions in which i is a: member and could
theoretically have a swing, 5;(v) can be at niost 1, represents ¢’s ratio of actual
to potential number of swings, and is sometimes referred to as swing probability
(cp. Dubey and Shapley 1979).

In order to construct an index that is based on the Banzhaf index but sat-

isfies the inferior player axiom, it is straightforward to start with the following
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adaptation of the notion of swings:

Definition 2: Player ¢ has a strict swing in winning coalition S if
a) ¢ can turn S into a losing coalition by leaving it‘, and
b) 7 is not inferior in v, i.e. ¢ ¢ I(v).

Formally, let

| Cilv) [5 i ¢ I(v),
0; i€ I(v),

iv) =
denote the number of strict swings of player i in game v.

Substituting strict swings for swings in the definition of the Banzhaf index,

we get the following new index:

Definition 3: The Strict Power Index (SPI) 3: G — IR is given by

Bi(v) = 1) i € N.

Obviously, we have ﬁz(u) < Bi(v). By its construction, 8 indicates zero power for
inferior players — no matter whether they are true dummy players, or whether
they are crucial in some coalition(s) S but have to accept whatever the powerful
members of S offer them. For our introductory example, the SPI produces the
vector B(’u) = (%,0,0). Acknowledging that 3 is not subject to any efficiency
requirements — it does not indicate a distribution of spoils but of power — this
result nicely complies with the notions of competitive analysis presented above.
The difference between fB4(v) = 2 and 1 indicates that though A is the only
powerful player in v, A is not in the position of a proper dictator.

One may ask why the core of the game — in our example {(1,0,0)} — is not
used as an indicator of both power and an efficient equilibrium distribution of
spoils. However, the core is a set concept and generally produces non-singleton

or empty sets which are useless in terms of power evaluation. Normalization is a
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way to ensure efficiency of power vectors, but typically destroys the probability
model underlying the non-normalized index, and also its monotonicity properties.
Corresponding with the non-normalized Banzhaf index 3, we have the follow-

ing comforting result for the SPI:

Proposition 2: The SPI 8 is globally monotonic, i.e. Vi € N

U ;v = ﬁl(u) > 51(1))

The proof is given in the appendix.
Before we give a full axiomatic characterization of the SPI, recall that the
Banzhaf index can be characterized as the unique index to satisfy the following

four axioms (cp. Dubey and Shapley 1979):

A1l: (dummy players) i is a dummy player in v == u;(v) =0..

A2: (absolute power) 3" p;(v) = 71 > mi(v).
i=1

=1

A3: (anonymity) For any permutation 7 of N = {1,...,n}: pirq)(7v) = ps(v).

A4: (addition) Yu,v € G : p(uV v) = p(u) + u(v) — plu Av).

In A3, the permutation game 7v is defined by (7v)(S) = v(7~(S)). In
A4, the game u V v is defined by the characteristic function (u V v)(S) :=
max{u(S),v(S)}, and u A v by (u A v)(S) := min{u(S), v(S)}.

The conventional technique of showing that A1-A4 do, in fact, uniquely char-
acterize the Banzhaf index is based on the possibility to decompose every game
u € into ug, V...V ug,. Here, Si,...,S, denote those coalit:lons in which every
member is crucial in u (r > 1 is game-specific). They are also called minimal win-
ning coalitions (MWC) of u, and constitute the set M (u). The games ug,, ..., us,
denote auziliary games which have Si,...,S,, respectively, as their only MWC.
Hence, coalition S is winning in ug,, i.e. S € W(ug,), if and only if it contains

Sk, or Sk C_: S.
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Using this fact, one first shows that A1-A3 suffice to uniquely define a power
value for any single MWC auxiliary game. Then, second, one can use A4 to
show that a uniquely defined power value is defined for any simple game u by its
decomposition into auxiliary games.

Our axiomatization will follow exactly the same steps. There is, however,
an important difference: A4 above, and similarly the respective addition axioms
of the Shapley-Shubik, Deegan-Packel, and Holler-Packel indices, is based on an
essentially linear understanding of power. Given two simple games u and v,
and player i’s power value in them, i’s power in the sum game u V v — com-
prising exactly all winning coalitions from both v and v - is according to A4
essentially the sum of the two power values, with a correction made for double
counting of swings by subtracting power from u A v. This stands in contrast
to a fundamental non-linearity under the inferior player axiom. A player ¢ may
be inferior, i.e. powerless, in u and in v because he faces a credible ultima-
tum by at least some (different) other player in both games. Yet he may have
an outside option protecting him against ultimata in u V v, suddenly making
very powerful indeed. An example of this are players B and C in the two four-
player games u and v with W(u) = {AB,AC,ABC,ABD,ACD,ABCD} and
W(v) ={AD,BCD,ABD,ACD, ABCD}.

Since the concept of inferior players reflects (aspects of) the entire strategic
situation in a given game u, an arbitrary decomposition into u; V up = u is not in
general meaningful. An application of an index p that obeys the inferior player
axiom to u; and uy will even with knowledge about the index value for u; A us
not say much about power in u. Exceptions are those decor;lpositions in which
all players are non-inferior in both u; and wus.

Therefore, axiomatization based on the inferior player axiom has to do without
an addition axiom of the same simplicity as for e.g. Banzhaf or Shapley-Shubik
index. Before we present the four axioms that uniquely characterize the SPI, we

state the following lemma:
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Lemma 1: Vu,v € : p;(uVv) = p(u) + pi(v) — ps(u A v) for a given player 4

=VueE ) =w( V uw)= X (DT (A us)
SeM(u) TC(M(w)) SeT

Proof: The proof is by complete induction. Let w™ € denote an arbitrary simple
game with exactly 7 > 1 minimal winning coalitions, i.e. M(w") = {S,...,S,}.
Applying the premise to u;(us, V ug, ), it follows that the claim is true for r = 1.

We proceed to r + 1 by adding a MWC S,4; to w", i.e. we consider simple
game w™! with M(w™) = {Sy,...,S,,S.41}. Applying the premise and the

result for r, we have

23 (’wr+1) = (,wr \ u5r+1) = [ (wr) + ﬂi(u5r+1) — M4 (wr A uSr+1)
= > (DT (A us) + pa(us,y,) ~ m(w” Aus,y,).
TCH{S1,.,S-}) SeT
(2)
Again applying the result for r, the last term of this expression can also be

written as

.u'i(wr A uSr+1) N \/ (uS A 'U'Sr+1)
SeM(wr)

= Z | (—-I)ITI_.1 M (/\ (US A u5r+1)>

TC({S1,Sr}) SeT

D ) Ll G e O S

TC({S1,..,5r}) S€TU{Sr11}

Plugging this into (2) proves the result for r + 1, and thus the lemma. o
Now we are ready to state and prove the following result:

Proposition 3: The Strict Power Index (SPI) ﬁ~ is the unique power index

satisfying the following four axioms:

A1*: (inferior players) i is inferior in v = y;(v) = 0.

n

A2: (absolute power) . p;(v) = 51 o 7i(v).
i=1

=1

A3: (anonymity) For any permutation 7 of N = {1,...,n}: pre)(mv) = pi(v).

16



Ad4*: (aggregation) i is not inferior in v

= piw) =m( V us)= > (DT A us).

SeM(u) TC(M(u)) SeT
Proof: We first have to check that the SPI, in fact, satisfies the four axioms. Al*
and A2 are satisfied by construction. A3 follows from the anonymity of swings,
and therefore of strict swings. A4* refers to non-inferior players only. For those
players, the SPI is constructed to coincide with the Banzhaf index. Therefore,
the premise in Lemma 1 is satisfied for all non-inferior players i. Thus, A4* is
satisfied.

Now, it remains to be shown that above axioms uniquely define a power index,
i.e. a function p : G — IR. We first consider only games with a single minimal
winning coalition S, i.e. the auxiliary game ug. All players ¢ ¢ S are inferior in
ug. For all inferior players i of ug, Al* defines y;(us) = 0. For all non-inferior
players j € S, A3 implies the same power value p;(ug) = a with @ > 0. Thus, we
have >0, pi(ug) = a|S|. A2 requires a|S| = 51 Y i, 7i(us). By construction

of ug we have

_ 0, i £S
fli(us) =
I8l e S,
implying
1
a= S

Thus, 4 is uniquely defined for all auxiliary games ug with S € (N)\ 0. By

Al* and A4*, this is extended to the entire domain of simple games. a

The intuition behind Al* was given above, and that for A2 and A3 is the
same as in case of the Banzhaf index. Compared to A4, A4* looks considerably
more clumsy and less intuitive. However, as made clear by the proof of Lemma
1, aggregation axiom A4* is merely a specialization of the simple addition axiom
A4 to the case of non-inferior players. We get a rather complicated mathematical
formulation of A4* because it takes into account that a powerful player in u

may be inferior in component games of decompositions u = u; V ug, by directly
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referring to the level of a game’s constituting auxiliary games. Thus the general
non-linearity of power is taken into account.
As should be the case for a characterization of an index by a set of axioms,

we have:
Proposition 4: Axioms Al*, A2, A3, and A4* are logically independent.

Proof: In order to show independence it suffices to give an example index for each
axiom which violates the considered axiom, but is consistent with the remaining
three. By implication, none of the axioms is then a logical consequence of the
other ones.

The Banzhaf index (3 obviously violates the inferior player axiom Al* but
obeys A2-A4*. Hence A1* cannot be implied by A2-A4*. An index which violates
the absolute power axiom A2 but obeys the remaining axioms can be obtained

by normalizing the SPI to
2 Bi(v)

Biv) == 5—
2. Bi(v)

i=1

An index which is consistent with A1*, A2, and A4*, but not with A3 can be con-
structed by allocating the entire number of strict swings in single-MWC auxiliary
games to the non-inferior player j € N \ I(v) with lowest order number. This is
in line with A1* and A2. The index is extended to general simple games by A4*.
Considering a simple example, e.g. W(v) = {AB, AC, BC, ABC}, shows that
the resulting index is not equivalent to SPI. Finally, a re-scaling of the Follower-
Leader Index of Power defined in the next section satisfies A1*, A2, and A3, but

violates A4*. . O

3.2 Follower-Leader Index of Power

Another way to adapt the Banzhaf index to the inferior player axiom is to for-

malize the following modification of the concept of swings:
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Definition 4: Player ¢ has a leader swing in coalition S C N if
a) ¢ can turn S into a losing coalition by leaving it,
b) 4 is not inferior in v, i.e. i ¢ I(v), and
c) all inferior players i € I(v) are part of S.

Formally, let

i(v) =[{SCN | SeCiv) ANi¢I({w) A Iv)CS}|

denote the number of leader swings of player i in game v.

The concept of leader swings is based, first, on the intuition that rational
players anticipate that inferior players are (almost) not rewarded for participating
in a winning coalition S € W (v). What is specific to leader swings is, second, the
consequential assumption that inferior players are therefore ready to “follow” the
powerful players or “leaders” of the game into whatever winning coalition will be

established. It is straightforward to construct the following index:
Definition 5: Let m = |I(v)| < n be the number of inferior players in v. The
Follower-Leader Index of Power (FLIP) B :G — IR" is given by

Bi(v) = V) i€ N.

- on—m-—1 ’

In our example, A’s swing in coalition ABC is the only leader swing of the
game and m = 2. Hence, FLIP produces the power vector B(v) = (1,0,0).

Note that in a n-person simple game with m inferior players, only the 2"—™~!
coalitions that include a given powerful player ¢ and all m inférior players poten-
tially deliver leader swings to i. Re-scaling with 1/2"~™"! therefore ensures that
[31(7)) is at most 1. Since the denominator of A depends on the game-specific num-
ber m of inferior players rather than the fixed number n of players, monotonicity
investigations are more messy for the FLIP than for the SPI. We leave this for

future investigation.
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4 Inferiority in a probabilistic context

In this section, we show that the inferior player axiom is compatible with plausible

restrictions of players’ acceptance rates p; in the MLE of a game v.

4.1 Strict Power Condition

With unifofmly distributed rates of acceptance®
p; ~U(0,1) VjeN

in game v’s MLE, we obtain (¢ € N)

Efdpr,-. - p0) / [ 3 OwT0-mdedp =22 = o)

SCC’ (U)JES k¢5
- #i

i. e. the non-normalized Banzhaf index.®

To operationalize the inferior player axiom in the probability model we look for
plausible restrictions on players’ acceptance rates which ensure that zero power is
indicated for inferior players. Remember that the original motivation for formu-
lating the inferior player axiom was the observation that, in our example game,
player A was able to play off both B and C. The equilibrium of the hypotheti-
cal bargaining process covering that notion gives inferior players a payoff of zero.
This means that an inferior player is always indifferent between joining a winning
coalition or staying outside, i.e. between voting for or against a proposal. This

is formalized by:

Strict Power Condition (SPC): i is inferior in v = p; = 3.

8This assumption is often referred to as independence (Straffin 1977).
9Note that the Shapley-Shubik index can be derived from a slightly different and somewhat
more restricting assumption where p; = ¢ for all ¢ and ¢ ~ U(0, 1). This assumes full correlation

between players’ rates of acceptance.
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As intended, we have:

Proposition 5: A MLE satisfying the SPC indicates zero power for inferior
players.

Proof: This is obvious from the fact that p; is no longer a variable in f, so that

8f(p177pn)/8p150 U

In the case of our example game v with W(v) = {AB, AC, ABC} the MLE is

f(pa,pB,pc) = paps(1 — pc) + pa(l — PB)PC + PAPBPC.

Imposing the SPC yields

3

f(pa,pB,pc) = 1P

This produces the power vector V f(pa, pp,pc) = (%, 0,0) equal to the SPI of v

(see section 3). In fact, we can show:

Proposition 6: Applying the SPC in the setting of the probabilistic Banzhaf
index, i.e.

= %; i€ I(v)

~U(0,1); ¢ I(v)

Di

implies the probabilistic Strict Power Index (SPI) .

The proof is given in the appendix.

4.2 Follower-Leader Condition

After consideration of the probabilistic version of the SPI, we now turn to the
FLIP. In order to operationalize the idea of leader swings in the probability model
it is natural to require that an inferior player does not vote against a proposal,
which is supported by a player to whom he is inferior to. Formally, we assume
that the will of powerful player j determines the acceptance rate of inferior player

1 by requiring:

Follower-Leader Condition (FLC): ¢ is inferior to j in v = p;p; = p,.
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With this we can establish the following:

Proposition 7: A MLE satisfying the FLC indicates zero power for inferior
players.
The proof is given in the appendix.

Similar to the link established between SPC and SPI, we have:

Proposition 8: Applying the FLC in the setting of the probabilistic Banzhaf

index, i.e.

Vie N:p;~U(0,1) s.t. 4 inferior to j in v = p;p; = p;,

A

implies the probabilistic Follower-Leader Index of Power (FLIP) £.

The proof is given in the appendix.

The FLC implies that p; = 1 if p; > 0. Player 4 thus unequivocally supports a
bill if there is a positive probability that player j votes for the bill. If p; = 0 there
are no restrictions on p;. The intuition behind FLC is that an inferior player 7 is
ready to support (or follow) the superior player j if it is not sure, in probabilistic
terms, that j votes against.

It is worth noting that the FLC asks for a different and stronger type of
behavioural similarity than full correlation, which drives the probabilistic inter-
pretation of the Shapley-Shubik index. In the full correlation case, there are no
leaders and followers but players follow a common standard when forming their

rates of acceptance and this standard is external for any coalition.

5 Generalizations

The two preceding sections illustrated the concept of inferior players by exam-
ining two examples: first, we considered swings only of non-inferior players, i.e.
strict swings, to define the Strict Power Index (SPI). The SPI turned out to have

a probabilistic foundation in the Strict Power Condition (SPC), which is one
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way of formalizing inferior players’ practical indifference about joining a winning
coalition. The second example strengthened strict swings to leader swings by
assuming that all inferior players follow the leaders of the game into a winning
coalition, possibly in an attempt to retain at least minimal influence. This pro-
duced the Follower-Leader Index of Power (FLIP) with the related probabilistic
Follower-Leader Condition (FLC). Both SPI and FLIP are merely special cases
from a continuum of indices that implement the inferior player axiom. To see
this and also to get a clearer conception of the relation between SPI and FLIP

let us start with the following generalization of leader swings:

Definition 6: Player i has a §-swing in coalition § C N if

a) ¢ can turn S into a losing coalition by leaving it,

b) ¢ is not inferior in v, i.e. ¢ ¢ I(v), and

¢) the number of inferior players ¢ € I(v) that are part of S is 6.
Formally, let

1Dw):=|{SCN|SeCiv) Ai¢gI{v) A |SNIw) =86}

denote the number of #-swings of player i in game v.

6 = m is the special case of leader swings. The intuition behind #-swings is
that — in contrast to the concept, of leader swings — only a given number § < m of
inferior players might be following the leaders of the game into whatever winning
coalition will be formed.

Compelling arguments in favour of a specific choice 6, perhaps with the ex-
ception of the extreme case § = m, are not evident, though. "Also, for a given 6
there may not exist an actual subset I C I(v) of inferior players with {I| = 8 that
is joining all winning coalitions whereas I(v) \ I is always abstaining. Rather,
the actual set of joining inferior players — in contrast to its cardinality — may
be coalition-dependent. Nevertheless, §-swings are useful as a primitive concept.

f-swings for different values of # can, for example, be weighted and combined.
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This seems a natural way of incorporating especially plausible or empirically rel-
evant assumptions about inferior players’ behaviour. For example, making the
default assumption that every number of inferior participants in an established
winning coalition is equally likely provides a link between f-swings and strict

swings, since, quite trivially, we have
m
- 0
wi(v) = Y1 (v).
=0

With #-swings we can define the following index:

Definition 7: Let m = |I(v)| < n be the number of inferior players. The
0-Follower-Leader Indez of Partial Power (9-FLIPP) 8®) : G — IR" is given by

B0 = o0 ey

- on—-m—1 ’

FLIP is the special case of m-FLIPP, i.e. B = A and SPI is merely a

re-scaling of the sum (or average) of §-FLIPP values taken over all § < m, i.e.

D S0 m
fiw) =T = E ooy 0.
=0

Turning to generalizations in the probabilistic realm, it is straightforward to

— 1

extend the Strict Power Condition of exact indifference, i.e. p; = 3, of inferior

players to an arbitrary acceptance rate p; = ¢ with ¢ € [0,1]. We call this

Generalized Strict Power Condition (GSPC): i is inferior in v = p; =
c, cel0,1].

Note that it is implicitly assumed that ¢ is a common fixed probability or,
more generally, has a common probability distribution for all inferior players.
c = -21- is the special case of SPC. The special case ¢ = 1 corresponds to the
Follower Leader Condition (FLC), except that the latter makes no assumptions

on p; for i € I(v) when all powerful players j ¢ I(v) have an acceptance rate
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of p; = 0 — a zero probability event under most distributions and in particular
uniform distribution of the p;’s.

Characterizing a quite general family of power indices we now have:

Proposition 9: A MLE satisfying the GSPC indicates zero power for inferior
players. The respective Generalized Strict Power Index (GSPI) 3¢ based on

uniformly distributed acceptance rates p; for non-inferior players takes the form

e o mes T ()
Biv) = ;C - s
= > 1-9"" 7w (3)

The proof is given in the appendix.

In the preceding two sections we concentrated on two special cases of 50, namely
B3 (SPI — re-scaled by 2™), and G* (FLIP). Above proposition shows that a
continuum of indices that are both indicating zero power for inferior players
and related to the Banzhaf index by the common assumption of independently
uniformly distributed acceptance rates for non-inferior players can be constructed.

The GSPC - and thus FLC and SPC - restricts the domain of a multilinear
extension to the (n — m)-dimensional unit cubic [0, 1]*7™ where m is the number
of inferior players. Figure 1 illustrates how GSPC affects the MLE in our example
game. The FLC requires py = papc and py = papp. If p4 > 0 we have pg = pc =
1. The domain of the MLE is thus restricted to the line between a = (0,1, 1) and
b= (1,1,1). The SPC requires that we are moving along the line [c, d] having
(0,%,2) and (1,3,1) as its end points. In general, the plane (a,b, f,e) shows
the set of uni-dimensional cases of the GSPC. The fixed rate of acceptance ¢

determines how “high” the horizontal line is located in the cubic.!?

10Note that the GSPC implies that the plane (a,b, f,e) should be interpreted as a set of

parallel horizontal lines [(0, ¢, ¢), (1, ¢, ¢)] . If there is, however, uncertainty about the exact level
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rior player axiom can be constructed, we proposed two example indices, referred
to as Strict Power Index (SPI) and Follower-Leader Index of Power (FLIP). Both
were first analysed in a traditional deterministic setting. For a comprehensive
understanding of the concept of inferior players we then investigated the prob-
abilistic version of our example indices. We derived — and later generalized —
probabilistic conditions that imply SPI and FLIP respectively. We think that
the two alternative restrictions which were imposed in order to adapt established
indices both make sense. Whether SPI or FLIP — or possibly yet a different mem-
ber of the index family derived in section 5 — is most appropriate will typically
depend on the context in which the distribution of power is to be gauged.
Future research may apply the inferior player axiom to other indices than the
non-normalized Banzhaf index, e.g. those of Shapley and Shubik or of Deegan
and Packel. It could be worthwhile to investigate more thoroughly the mathe-
matical properties of the respective adaptations of the Banzhaf, Shapley-Shubik
or Deegan-Packel index in terms of axiomatization, monotonicity, and suscep-
tibility to typical paradoxes in power measurement. The inferior player axiom
could also be extended to the domain of general games in characteristic func-
tion form. The concept of inferior players incorporates an important aspect of
nén—cooperative bilateral interaction into the cooperative world of power indices.
It remains a challenge for the future to provide still more comprehensive non-

cooperative foundations of power measurement.

Appendix

Proof of proposition 2
Proposition 2 claims that the Strict Power Index # is globally monotonic, i.e.

Vie N
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We show that this is true by observing, first, that the the swing numbers 7;(-)
are globally monotonic, and, second, that when player i is inferior in u, u »; v

implies that 7 is also inferior in v.

Lemma 2: u >; v = n;(u) > n:(v).

Proof: For every swing that 7 has in v, there is a coalition S € W(v) withi € S
and S\ {i} ¢ W(v). u >; v implies that S also wins in the ‘better’ game u, i.e.
S € W(u). Suppose that 7 is no longer crucial in S in game u, i.e. S\{i} € W (u).
u >; v then implies that S\ {¢} also wins in the ‘worse’ game v, i.e. S\ {i} € W(v)

— a contradiction. O

First, it follows from the proof that not only is 7’s number of swings non-decreasing
when moving from game v to u, but i keeps his crucial positions in every single
coalition S, i.e. C;(v) C C;(u). Second, note that 7 is not necessarily the only
player that keeps or increases his number of swings when moving from v to
¥ — u >; v may be true for more than one player in N (though not for all,
unless v = v). Finally, note that the reverse of Lemma 1 is not true since
>~; is not necessarily complete: u and v with W(u) = {4, AB, AC, ABC} and
W(v) = {B, AB, BC, ABC} produce n¢(u) = n¢(v) = 0, but neither u >¢ v nor
v >¢ u (AC wins in u but not v, BC in v but not u).

Lemma 3: v >=; v A 7 not inferior in v = % not inferior in u.

Proof: When player 4 is not inferior in v, we can distinguish two cases:

Case 1: Vj #4: 35, € Ci(v): j ¢ S;.

Player i is protected from being played off in game v by having an outside option
S; with respect to any player j # . As it followed from the proof of Lemma 1,
Ci(v) C Ci(u), so S; € C;(u) with j # S;.

Case 2: VS € Cj(v) : j€S.

There is a player j that is member of every crucial coalition w.r.t. ¢ in v. However,

since 7 is not inferior in v, 7 must also be member of every crucial coalition w.r.t.

28



J, implying C;(v) = C;(v). Player i keeps his swings in all coalitions S € C;(v)
in game u, and possibly gains some more. If either j gains no new swings in u,
except when in coalition with ¢, or if there is a new coalition S € C;(u) with
j & S, we are finished.

Otherwise, for i to become inferior in u, it must be true that a) j is part of
all crucial coalitions w.r.t. 4 in u and that b) there is a new coalition § € Cj(u)
with i ¢ . u >; v implies § € W(v). Now, we either have S € C;(v), which
contradicts C;(v) = C;(v). Or § ¢ C;(v), i.e. j is not crucial in § and we have
S\ {j} € W(v). Since S\ {j} U {i} wins in v, it is also winning in the ‘better’
game u. Player i cannot be crucial in S\ {j} U{i} because that would contradict
Case 2. So, §\ {j} € W(u), contradicting S € C;(w). 0

Note that the reverse of Lemma 3 is obviously not true: ; may well be inferior in
the ‘worse’ game v without being so in u.

Now it is clear that Proposition 2 is true: if u >; v and ¢ is neither inferior in
u nor in v, then the number of strict swings 7}; in games u and v is equal to the
number of swings 7; in v and v, for which global monotonicity was established in
Lemma 2. If ¢ is inferior in v only, then 7j;(v) = 0 and 7j;(u) cannot be smaller.
Finally, if u >; v and ¢ is inferior in u, then by Lemma 3 1 is also inferior in v

and 7;(u) = 7;(v) = 0. Hence,

U= Z;Li) > % & Bi(uw) > Bi(v).

Proof of Proposition 6

Proposition 6 states that applying the Strict Power Condition in the setting of
the probabilistic Banzhaf index implies the probabilistic Strict Power Index.

1

Let 6(S) denote the number of inferior players belonging to coalition S. p; = 3
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for all 4 € I(v) implies the MLE

flor,.om) = Y H(%) 1()(1_—) I » I] a-m

SeW(v) 1€l(v) Jje keS\I(v) 1¢SUI(v)
ie8 j

- > (3)7 () Ia H -

Sew (v) keS\I(v)  I¢Sul(v)

1
-(3) X IO »llar
SCW(v) keS\I(v)  1¢SUI(v)
Obviously, fi(p1,...,ps) = 0= Bi(v) if i € I(v). For powerful players j ¢ I(v)
— suppose these are m + 1,...,n — acceptance rates are uniformly distributed,

i.e.Vje N\ I(v):p; ~U(0,1). This yields

1
B = O [ [ T pe T (-
SEC;(v) keS\I(v)  1¢SUI(v)
S k#j

n—m

)" ICi @) (B) T

)" i (v) = Bi(v)

-
-

N~ Dol

Proof of proposition 7
Proposition 7 claims that the Follower-Leader Condition ensures that zero power
is indicated for inferior players.
Let ¢ be inferior to j. Then p;p; = p; allows for two cases:
Casel: p; >0 A p;=1.
In this case, multilinear extension

fp1,.pn) = ZHPkH L —p)v(S)

SCNkeS ¢S

becomes

fo1, . D1 Pig1s e, P0) = Z H Dk H (1-p)v

SCN kes\li}  1¢S\{i}
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i.e. it ceases to be a (non-degenerate) function of p;. Therefore, under p; >

0 A p; =1 we have

Of(p1,...,pn)

o, = 0.

Case 2: p; = 0.

In this case, f(p1,...,pn) i a (non-degenerate) function of p;. Nevertheless, its

partial derivative with respect to p; is zero since the first term in

filps, - pn) = Z HPkH (1-m)

SeCi(v) keSS  1¢S
jes = k#i I#i

+ Z H Pk H (1-mp)
SeCi(v)keS  1¢S
s Kk I

is zero because of p; = 0. The second term is zero because ¢ is never crucial in

coalitions without j,i.e. {SCN | Se€Ci(v) A j¢ S} =0. ]

Proof of proposition 8

Proposition 8 claims that the Follower-Leader Condition implies the Follower-
Leader Index of Power when acceptance rates of non-inferior players are indepen-
dently uniformly distributed.

Restricting analysis to the probability-one case of p; = 1 for all ¢ € I(v), we have
the MLE

fonom)= > M0 IT » IT (-n)

SeW(v)iel(v) jel(v) keS\I(v) I¢SUl(v)
ieS i¢s

Here, the index set {j|7 € I(v)Aj ¢ SAS € W(v)} is empty whenever all
inferior players are part of a winning coalition S. The second product is 1 in

these cases. Hence,

fon-om)= >, I » II O-m)

SeW(v) keS\I(v)  I¢SUI(v)
I(v)CS
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Obviously, fi(p1,...,pn) =0 = B;(v) if i € I(v). For powerful players j ¢ I(v) -
suppose these are m + 1,...,n — acceptance rates are uniformly distributed, i. e.

Vje N\ I(v):p; ~U(0,1). This yields

1
Efi(pi,...,pn) = // > I 2 II (-p)dpmir.-dpn
o S€C;(v) ke 1¢

S\I (v) Sul(v)
. , I(v)eS  k#j

n—m

= 7(v) (3)"" = Bv).

Proof of proposition 9
Proposition 9 states first that GSPC indicates zero power for inferior players.
Following the proof of proposal 2 this is trivial since c is presumed to be fixed.
Second, it was claimed that the respective GSPI with uniformly distributed rates
of non-inferior players’ acceptance takes the form 3¢(v) = i ¢ (1—e)™° B(w).
Let m denote the number of inferior players in v. Usiiigo GSPC in the MLE

gives

for, ) = Y. [IecIl @-9 II » I[ O-m)

SeW(v)icl(v) jeI(v) keS\I(v) 1¢SUI(v)
€8’ j¢s
= Z A8 (1 - c)m_o(s) H Dk H (1—p).
SeW(v) keS\I(v) 1g¢SUI(v)

Taking the first-order partial derivatives yields
filpr, - on) = Y O - I pm [ O-m)
S€C;(v) keS\(I()UE})  1gSUI()

whose expectation under uniformly distributed acceptance rates for powerful

players is
0(8) —t(S) 1 o(S)-1 1 n—m—o(S)
Efi(pla"-)pn) = Z C (1—C) 5 1-—5
SeC;(v)
Z 0(S) m—0(5) 1 noml
= c (1 — C) 5
SeC;(v)
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where o(S) denotes the number of powerful players in coalition S. This sum can

be simplified and re-ordered to
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