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Abstr~ct. When a finite linear distributed lag model is

aggregated over time and only aggregated observations are

assumed to be available, not all the lags of the original

model are observable. This paper is concerned with the

prediction of the temporally aggregated dependent variable

using both the aggregated model in which the unobservable

lags are missing and the original model. It al~o considers

the estimation of the total response of the dependent variable

to a change in the independent variable us"ing the two models.

Necessary and sufficient conditions for the predictions/

estimates from the aggregated model to be superior to those

from the original one are derived' and their properties

discussed in the light of a simple example.

KCYhords: biased estimation; distributed lag; improved

estimation; quadratic risk; temporal aggregation.



1. Introduction

1

Sometimes the unit time interval thought to be appropriate in

modellillg economic relationships may be too short in the sense

that there arc no observations Clvailable for estimating the

parameters of the model. In such a case building the model on

temporally aggregated data involves a loss of information ancl

the properties of the model will be affected by the aggregation,

for discussion see e.g. Zcllner and Montmarquette (1971).

Since the economic relationships are often dynamic, at least if

the appropriate time unit is sufficiently short, the models may

contain distributed lags. An early discussion of'te~poral

aggregation in distribut,ed Jag models can be found in Theil

(1954), Chapter 4. ~Iundlak (1961) and Engle and Liu (197i) have,

considered geometric distributed lag schemes, while Brewer (1973)

has shown how the rational distributed lag structures change due

to temporal aggregation. Sims (1971) and Geweke (1978) have

studied temporal aggregation in connection with distributed lags

starting from a continuous time model.

Ti80 and Wei (1976) have addressed the problem of estimating t.he

dynamlc relationship bet'ween two time series using temporally

aggreg~lted models. They have concluded by some examples that

the ) O~; S 0 f ace u r a c y m(l )' b e sub s tan t i (1 1 i n par Cl met ere s t i IlW t i 0 Jl

hut less severe in prediction. The unbiased cstinwtion of fin:ite

'. distl'jbutctl Llg models from tCllipol'J.l1y aggrcg~lt.cc1 tbtll hns been

studied by We.i. (1978) \\'ho pointed out spccjfic rC~lsons rO'f the



loss of e[ficie~cy due to temporal ~ngregotion. A reccllt pDP?r

by Wci and Mehta (1979) cOl1t~lins some results on forccasUng

the temporally aggregated dependent variable using MOllte Carlo

techniques.

This paper discusses the circumstances uncleI' which tempoTol

aggregation in distributed lag models before estimation does

not imply reduced predictidn or estimation accuracy as compared

to temporal aggregation after estimation. The organisation of

the paper is as follows: The distrihuted lag model is defined

in Section 2 while the next section discusses its temporal

aggregation. Section 4 contains the theoretical results of the

paper which arc illustrated by virtue of an example in Section

S. Finally, Section 6 offers a brief comment on some results of

Wei and Mehta (1979) in the light of the present findings.

2. The distributed lag model

Wc assume a finite distrihuted lag model

pk~lr) 2
.- .~, P.' x t _. + Et ' 8 t ~ J1 (0 i G ) ,1' == 1 , .•• ,n le, E C t t: s -- 0, 1'15

J==O.l .I .

or, in 1ll,1trix form

2
Y .- XG + e, C ~ N(O,o' Ink)

(1)

(2)

. ~-':P'~'~~'~""","~". ' •• j'l\ ,."", ~. ••• -. • ••, .... "'t'!".. ., ' •••. '="'_OVt'
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where y and care stochastic nk x 1 vectors, X IS an nk x pk

observation matrix with full column rank and B is a pk x ,

para me t er vcc tor. Further assume that k > 1. Temporal agg re go tj Oil

-
means aggregating k subsequent observations to a new obscrvatioJl.

Lcttjng A == (In ® lie)' where 'k == (1,1, ... ,1)' is a k x ,

vector, the temporally aggrcg<1ted version of (2) can be written

as

where

Ay == 'AXB + Ac

Ac - N(O,cr2kI ) because AA' == kI .n n

(3)

Assume now that only aggregated time series are available. Since

the columns of X are lags of the first column the matrix of

aggregates AX is not wholly observabLe. In fact, only

AX 1 == A(x'l' x k l""'x1 , 1""'xk ( 1) 1)+ >:J + , ' p- +

where x. the .th column of X, is observed, while1S JJ

rC'llwins unobscrvecl. Dividing B into hJO blocks confornwbly

with X, the aggregated model 0) can be written 35

,,,here

Ay == AX (3 + c*
1 1

(4 )

t,lodcl (/1) :is thus [l l1li~;:.;pC'c:ific(l vcr~;:ioll of (2).
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3.

A model builder with only temporally nggregated time serlCS

seldom thinks in terms of B and model (4) but rClthcr lws in

mind the following model

(5)

where y'l.' :::; Ay, X* :::; (AX 1 , AX 3), X3 :::; (xkp + 1 ' x(k(p+l)+l"'"

x ) y*:::; nlim(X*IX*)-'X*lv* is a (p+l) x 1 11arameter
k(p+l-l)+l.'! ,. n~oo

vector and the elements of c** arc i.i.d. with expectation zero

and uncorrelated with X*. The matrix AX
3

contains observable

temporally aggregated lags longer than those in AX,. The model

builder then wants to estimate y* and/or predict y*.

In this paper, attention will also be paid to a special case

of (5),

(6)

\vhich actuCllly is the same model as (4). Model (6) offers

a natura] interpretation for yi in terms of S which is not so

straightfonyarcl for y* in the gcncnlJ case (5), namely

y ;' :::; Clp ® , 1~ ) S. ];0 r 111 ell 1y ( 4) imp li c s y,' :::; B1 Cl ndei :::; c * ,

hut the p,lrameters ,ne usul11ly not. int.erpreted tklt w,ly by Cl

m0 cl c ] b tI :i 1cl l' r who s tar t s fro m (5).
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Before proceccljng further, \\fe strcss the obvious fact that the

i.i,cl, assumptions made <Jbout C,-"1: or c; 00 not hold, beG1USe

the errors arc as a rule autoco!rela1.eo <mu furthermore correlcltcd

with X*) scc Grilichcs (1972), p, 73~, for (l specific example.

In fact, (2) being the 'true mode], these <:lssUlnptions only hoJe]

if {xl.} is wldte noise with expectation zero.

It can be pointed out here that Wei (1978) and Wei and Mchta

(1979) retain (3) as the basic model and estimate the unknown

AX Z' The resulting model is called the conditional aggregate

model

(7)

AA
where Xz is

independent

an estimator of AX Z' and u is an error vector
AA

of Xz and consisting of E and the error caused by

the estimation of AX Z' The parameter vector BZ can be estimated

cO,nsistcntly and unbiasedly from (7) for details scc Wei (1978).

4 . Compari~S?ns between models

In order to considc'r the effects of temporc1l ~lggreg;l.tioll on the

prediction and cstim::l1.ion of p<1l':lTIlcters He choose (S) as our

5 t(1)' 1. illg--point and CStill1:11.C y-},' using OLS. The least SqU;JH'S

est.i.mator of y'/' is

(l t..1- 1 A' f' "11- 1 X' 1\' ~.
P I -I I I ~ • 1"I'I, ~ ..)-,., -1-. 1-, '1" / , .. C

~ ~ ~ - ~. ~ ~
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where'

X13 == (X 1 ' X3) ,M13 • 13 =: X13A I A !'I 3 (J n d

M13 • Z :;: X'3A1AX Z =:(~121,MZ3)_'

with

M.. == X! A 1 AX ., i ,j =: 1) 2 ) 3 .
l.J 1 J

The interest will now be focus sed on two problems. First, we

want to study the circwnstances under wllich the temporally

aggregated dependent variable can be predicted better using

the misspecified model (5) than the correct origihal (2).

Second, it will be investigated

is more accurately estimated by

unbiased estimator l~kb.

when the total response l~kB

1 I 'g than by the best linear
p+t·

4.1. Predictiort of irtd~pendent variable

S{nce we are interested in predicting y* it is feasibl~ to

consider its conditional expectation E(y*IX,s,a 2) :;: AXB and

ask 110W well it can be estimated from (2) ond (S), respectively.

Let us define Cl criterion for superiority of Cl prec1:ictor over

another by saying that of two prc'dictors the onc with smaller

pred:ictive mean square error is superior to tlle other. Hence

WC \\';111 t to kllO\v ,,,,hen

plllse(AXb) - p1l\s('(Axl:S~n .. E(b-G)'X'A'AX(b-rn

- E (AX 1~g - i\X~'I) 1 (AX I :.;[~ - i\Xr~) ). O. (8)



Wc have

I

pmsc(AXb)
2 -1- a trX'A'AX(X'X)

whereas deriving pmsc (AX'13 g) requires sU ght] y more cOJnImtat i OIl.

Write

X (AX S -l AX Q) AX M- 1 X I A I *
1 l' 2 P 2 + 13 13.13" 13 E:

where

(9)

Then, using (9) and noting that

wc obtain, after a straightforward calculation,

where

)).. 1
1) • "

-1
= ~1. . _. ~1. 1MkkM] .•1J ] \: ., (J
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The f:irst term on the 'r.ll.s. of (10) results from ondtting AX Z

in (5) while the second is the vDTiancc tt:rm, Now) (8) holds if

and only if

A necessary conc1i tion for (11) to hold is

indicating the point after which adding new lags into the

temporally aggregated model never pays off in terms of the

predictive mean squ?re error.

If our model is (6), i.e. a direct result of aggrego.ting (2)

and omitting AX Z ' (11) takes the form

On the other hand, fOrlning pmsc (AX, f,1) .. plTlse Ct\X 1:sg) , where

-1
g1 = M11 XiA'Ay, wc can conclude that AX 13 rr is superior to

AX'l g l as Cl .prcc.lictor ofAXB if ~Illcl onJ)' if

Z - 1
(1/0 )BZ' DZ- l D-- lD_~ 'lB Z < kl

j' ~).)' ~)t..<

which shows exactly wllCn a longer lag tll:111 :implicd by (6)

improves tIle.' prediction aCClIl';lcy ,'in prC:ll ict:ing the aggl'cg:11r.'tl

Clll:lIl tit)' .

~ ..... ~ ...... ,. ~t~\··~·· .....

(1 2)



In general, wc' can conjecturc from (1"1) that temporal aggregation

may improvc our prcdiction performance 'if thc model (2) is not

a very accurate description of y, ~.e. if 0
2 is not small with

respect to the absolute v2lucs of the 'compollcnts of P2' It is

also obv.ious that if S2~O, (11) CClll only hold :in small samples,

because Ax
13

g is then gencralJ.y an inconsistent estimator of

AX (30 Of c our se, j f 13 2 = 0, t 11 cn (11) lJ 0 1ds t r i v i Cl 11 y, but t 11 is

is a rare case in practice. The validity of (11) is also dependent

on the covariance structure of the input process {x t }, but (11)

as such does not reveal anything very specific about the nature

of this dependence. We shall return to this point in the example

of Section 5.

4.~. Estimation of total respdnse

The accuracy in estimating total response

using the mean square error. We need

l' !3 IS measured herepk

and

msc (1 'kb)
p'

= E (1 I kb -1 'k 8) 2
p P'

l1lSC (1 P+-C. g) E (1' g ,- 'I' (3) 2
p+-C.' pk

-1 7
_. ]~ (1' I) M1- 13X ~ "A t Ay - 1 t 1 G) -,

P+,\· j' I.) }),

.- E ( 11~ -I-.f ~1~ l. 13 (~'2 1 ,M 23) I 13 2- '\ ]~ -I-.t ~ '1'l. 1 =~ XI :5A ' c * - 11\ (k _ 1 ) B2) 2

1 ?, - 1
.- ('1'.1 () ~ '-I'! < 1 7 (M?'1 ,1'1) ,.) , () ~, ,···1 I (1 _ 1) G? ') .• '1 (1 t- k l' ry ~11" 1" 1 ) .p r.{, • I .J •• .. .) ~ 1) , P '1-.( ~l':, p -I- t
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Thus mse(1'kb) -'mse(1' pg) > 0 if and only if
p P +.c

2

(1/0
2

) [\~-\-tM~~'13(M21 ,M Z3 ) '0 2 - 11~(k-1)SZJ

< 1 I k (X I X) - 1 1 k - k l' pM -1 3~ 1'f 1 f . ( 13 )PP' P +·c • ,) P -I- ~

Divic1:ing 'l
p

+! into two vcctors conformably with X13 ." (Xl ,X 3),

inequality (13) can be written as

where

2 [ , -1. , .. , 'J2
( 1 /0 ) 1pM11 }'!1 2 13 2- cl!D33 • 1D:) 2 • 1 13 2- 1P (k - 1) 13 Z

.~ 11~k (X ' X) - 11Pk - k [1 ~M, ~ 1P -\- ellD; 1. 1dLJ (14)

Again, a necessary condition fdr (13) to hold is that the r.h.s.

of the inequality be positive. Likewisc, it can be conjectured

that 0
2 should not be small with respect to 13

2
if (13) is hoped

to hold and that the sample should not be too large if 8ZrO. If

our estimator is 1~ g l' the e Clu i v Cl 1e nt 0 f (1 3) bee 0 mcs, cf. ( 1L1) ,

( 1/0
2

) (1 1]\1 ~1 ~I M1') (3 ') - 1 ' (k 1) 13 2) Z < l' (X' X) ~ 1 'I .- k 1 'M- 1 1 ( 1 5)
P '-' i. P .. Pk Ple p 1 1 p

Fin~l]ly, <lclcling ][lgS into the agg'rcgatcd lllo~lcl improves the

estimat.ion as cOllll)arccl to 1'0 jf ,mcl onl)r :ifpb 1
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which can only hold in small s8mples jf BZIO SInce the r.ll.s.

decreases with sample size.

4.3. EStim~titig the aggr~gtited im~llse response function

As mentioned shortly, model (6) allows for an interpretation

of yt as a vector of aggregated components of B. The components

of y* can then be regarded as points of the temporally

aggregated impulse response function of y. Proceeding as above,

we can easily derive a necessary and sufficient condition for

this vector to be estimated bctt,cr using g, than Bb, where

B = (lp'C) with C = (1 ® 'k' ,i, if the superiority crit~rionp - , '

is again the mean square error. The condition becomes

All the abo:lTc conditions depend on the unknmnl p8f8Jllcters of the

true model llnd the unobserv<lblc X2 . If Xz 1~cre observed, the

vlll:icljty of the conclihons could DC tested as discussed in Toro·-

vj z c " r I' 0 n d 0 [l 11 c1 lV a 11 ~l c C ( 196 8). This i S Cl hYpothet :i c Cl 1 c <l se,

however, <lnc1 in orcler to assess t.he practic1l1 ~;jgn:i.fjc~lJ1cc of

......,...



temporal aggrcg8,t:i.on in prctlictjng the temporally aggreg;lted

independent vari'.1hlc or estimating the total response.

'S.

5.1.

J' .. ,
~:xamp,-e

Prcdictiort of dep0rtdcrtt Varitiblc

Assume that (2) is the "following monthly model

while its qurirterly couritcrpart (5) 1S chosen to be

Y * == 'y*x~:+Y2*x* 1+E: *, t"==l, •.• ,n
t 1 t t- t

(16 )

C1 7)

so that k == 3, .e. =: 1 and p = '1. We 'also consider the a1 ternative

that y~ =: ° corresponding to (6). Further assume that x~ - AR(1),

as may often be the case in econDmi~ time series. Let ~Xt == 0,

2cov(x t ) == ox' and let p be the AR-paramcter, IpJ < ,. The

assumptions concerning E: t remain as in Section ~, and

In order to obtain ilJustrat:ivc numerical results 'vithout

cxtcns:ivc comput.8tions the moment nlntr:i.cc~ :in (11) uncl ("13)

(l re rep Ll C l~ cl by the i r prokl 11 i 1 it)' 1 i mits 11I U 1. U P l.i.l' cl by l 11c

nUllIlwl' of obscrvat:ions. Wc have

'\' " ....... ." 9," "'.. .. , .... t~., . ......~ ,.... .... ' .... "'~r" 'J."\ , . p. I ..



plim
n-)-oo

13

[(1/3n)(X'X)]-1 :::

, -p

2
l+p

o

-p

,
(18)

sce Theil (1971), p. 252. furthermore,

.i IDO m, m -1

2 I
plim('/3n)X'AIAX

2 .
--

Ox l mO m, ,
n-rOO I

moj

2 2
·where m. ::: cov( E x

t
" Ex, ,) and, more specifically,

J -1 1'--0 t-J-1i==O

3 4p 2p 2mO
::: + +

2 4p 2p 2 3m, ::: + + + p
') 3 41 2p 3p
L. 2p1nZ

::: + + + + p •

(19)

Using (18) and (19) we obtain the r.h.s. of (11) which equals

2 2o (3 + 4p + 2p ), while the r.h.s. of (12) adds up to

20
2 (3 + 2p + p2). From (11) we have, approximately,

(ZO)

where
~. (1)

:::a,

and

C'(~ 1) •.

(21)

(22)
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An ~J1. 0 go us 1y, the. 1. h . s. 0 f the super i 0 r j t y con cl jt j 0 n (1 2)

corresponding to the model (6) has the form

(1/o2)plim6~(M22-M21M~~M12)B2
n-~oo

where
_(0) -1 2 j:= 1 ) 2a 1j = mO-mO m. ,

J

and
~ (0) -1 m2)·'a := 2m 1 (1-mO2

After a standardization of (11) and (12) through dividing by the

r.h.s. which in this example is positive in both cases for

-1 < p < 1, (11) and (12) take the approximate form

and

where

et ~ 1) -- (7 4 ? 2)-1-(1) j := 1 ,2J+ p+ .. p a.,
J. J

(0) 2-'(3 2 2)-1- j := 1 ,2a 1 . := + D+P C't 1j ,
:J

Dnd

0:(0)- 2-1(7? 2)-1-(0)
2 - .J+ •• p+p a

2
•

(24)
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whe~ 621 = 622 , but the

In order to illustrate conditions (23) (lnt! (24), we

(1) (1) (0) (0) (0)..
Cl,1 ,a2 ,all +(X'2 and (X2 In

strictly compurable to ail) only

Figure·l. The sum

have p]otteJ
(0) CO) (0).

(XI = a11 + 0, 2 1 S

essential features of the situntion, whcn 13 21 and 822 have the

same sign ancI arc not. too far from each other, can be captured

more easily if ai~) and ai~) arc pooleel together. 1:01' comp,HLson

they are plotted separately in Figurc 2.

Figurc 1 demonstrates the fact that, if 821 and 622 elo have the

same sign, gains from temporal aggregation are more likely on

average than otherwise if the input variable is heavily posi.tively

or very heavily negatively autocorrelateel. An intuitive explanation

of t]lis is that if the independent variable is heavily autocorrc-

latec1 then the temporally aggregated lags retained in the model

carry almost the same amount of information as the whole set of

lags. Hence omitting part of them does not have crucial importance.

It can also be noted that for the most part condition (23) is more

easily satisfied in practice than condition (24), indicatillg that

(5) with £.=1 is a better alternative than (6). If f,Zl and 13 22

have opposite signs, (23) is marc likely to holel than if they

hnve the S<-lllle sign, except for Dn interv81 of negDtive values

of p, sce Figure 1. Whether (23) or (24) rc>al1y ho] c1s, depends

2 2
Dlso 011 n, ox' 0 and the size of 621 and 13 22 as discussed in

the preceding section.
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5 . 2 . Est j ma t j 0 n 0 f tot et 1 .r ci s Ii 0 J1 s e

Next, consicler the cstjlllotion of the total response. Wc obtDin

m +m
'" [( 1 2 ( )J 2m +pm -1) fSZ1+8Z2

o 2

and, assuming (6) to be the temporally aggregated model,

(25)

1 -.: [1 11\1- 11\'1 B-1 I B I 2 =P ~_m _1'- 111""12 2 (k-l) 2J
n~oo p p

In large samples the r.h.s. of (13) now equals approximately

-1 -2[ -1 -1 J(3n) Ox (3-p)(1+p) -6(rn O+ pmZ)

while: a similar approximation of the r.h.s. of (15) becomes

-1 -2[ --1 -1 1(3n) Ox _(3-p) (1+p) -3111 0 _ .

After stanclarclizing (ZS) and (26) so as to make the 1'.11.5.'5

of (13) anu (15) equal onc these COIHlitions hecollle

\\'here

(27)

0: (1)
o

m1+111? 2 [ - 1 - 1· '- 1
00 ( ------- - 1) , . (:5 .- ()) (1 -I- P) -. 6 (llll) +PJll Z) .J

JIlO+(llllZ \
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and

(28)

respectively, where

Figure 3 depicts the bchavi.ous of a~1) and, for simplicity, the

s quCl red sum a 60
) == ( et ~ ~) +Ci6~) )2 betwee n - 1 < p < 1. I f 132 '1 an cl S2 2

have the same sign then, unlike previously, (6) seems to be Cl

better aggregated alternative than (5). Our chances of gaining

from tem~oral aggregation while using (6) arc greatest when p

lies in the neighbourhood of zero or onc, or min~s onc. In general,

a gain is more likely to occur·at positive than negative values

of p.

If B21 and 13 22 have different signs then the chances of estimating

the total response more accurately from the aggregated model

increase as compared to the opposite case. In particular, if

13 21 == -13 22 , the sum of coefficients, which then equals 13 1 , is

Cll\vays estimatel1 better by ordinary least squares from (5) thelJl

from the origina] model (2). Whether (27) and (28) bold in the

general caic depends 8gain on n, 2 2 ,
ox' (} <Jnu the si zc of 13 21 and

13 22 , as discussed above and seen from these inequalities.



6. COl1nTlcn t,s--_._--
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It can be conjectured that (11) and (13) arc suffjcient but no

longer necessary conditions for the superiority of AX 13 g over

the corresponding least squares predictor from (7). TJljS is

because b is the best linear unbiased estimator of (3 whereas

the least squ~res estimator of the conditional aggregate Inoc1cl,

while still unbiased, is not efficient. Wei and ~1chta (1979)

considered onc-step ahead forecasting of y* by simulation using

a somewhat simpler model than (16) with only one lag. The input

was an AR(1) process as in the preceding example, and the number

of aggregated observations was 90. They found no marked difference

between the forecasts from the'conditional aggregate and

aggregate models when p was varied between ~O.7 and 0.7.

Nevertheless, at p = 0.7 the latter model already seemed to

have an edg~ as far as the accuracy of predictions was concerned.

Judging from the above example, CS} might well perform better

th~n (7) at higher values of p, even if onc-step ahead·

forecasting ~nd not within-sample prediction is concerned.
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