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Abstract. When a finite linear distributed lag model is
aggregated over time and only aggrcgated observations are
assumed to be availablc, not all the lags of thec original
model are observable. This papcr is concerned with the
prediction of the temporally aggregated dependent variable
using both the aggregated model in which the unobservable
lags are missing and the original model. It also considers
the estimation of the total response of the dependent variable
to a change in the independent variable using the two models.
Necessary and sufficient conditions for the predictions/
estimates from the aggregated model to be superior to those
from the original one are derived and their properties

discussed in the light of a simplc example.

Keywords: biased estimation; distributed lag; improvcd

estimation; quadratic risk; temporal aggrcgation.



1o Introduction

Somctimés the unit time intecrval thought to be appropriate in
modclling economic relationships may be too short in the scnsec
that thcere are no observations available for estimating the
paramcters of the model. In such a case building the model on
temporally aggregated data involves a loss of information and
the properties of the model will be affected by the aggregation,

for discussion see c.g. Zcllner and Montmarquette (1971).

Since th¢ economic relationships are often dynamic, at least if
the appropriate time unit is sufficiently short, the models may
contain distributed lags. An early discussion of temporal
aggregation in distributed lag models can be found in Theil
(1954), Chapter'd. Mundlak (1961) and Engle and Liu (1972) have
considered geometric distributed lag schemes, while Brewer (1973)
has shown how the rational distributed lag structures change due
to temporal aggregation. Sims (1971) and Gewecke (1978) have
studied temporal aggregation in connéctiéﬁleth dist%ﬁbuted lags

starting {rom a continuous time model.

Tiao and Wei (1976) have addressed the problem of cstimating the
dynamic rclationship betwcen two time series using tcmﬁorally
apgregated models. They have concluded by somec examples that

the loss of accuracy may be substantial in parametcr cstimation
but less scvere in prediction. The unbiascd cstimation of finite
distributed lag models from temporally aggregated data has been

studicd by Wei (1978) who pointed out specific recasons for the



loss of c¢fficiency duc to temporal aggregation. A recenl paper
by Wei and Mchta (1979) contains some results on forccasting
the tcmporally aggregated dependent variable using Monte Carlo

techniques.

This paper discusscs the circumstances undor.which temporal
aggregation in distributed lag modcls beforc cstimation does
not imply reduced prediction or estimation accuracy as compared
to temporal aggrcguation after estimation. The organisation of
the paper is as follows: The distributed lag model is defined
in Section 2 while the next scction discusses its temporal
aggregation. Section 4 contains the theoretical results of the
paper which arc illustrated by virtuc of an example in Scction
5.. Finally, Section 6 offers a brief comment on some results of

Wei and Mehta (1979) in the light of the present findings.

23 The distributed lag model Sewsimie

We assume a finite distributed lag model

pk“‘[ ) 2
Y ® )k}Bjxt_j+et,et~Jn(0,o”),’t:1,:..,nk, Lepes = 0, t#s
J=b - |

or, in matrix form

y = X8 + &, ¢~ N(O,a’1

nk'\j (2)



where y and e arc stochastic nk x 1 vectors, X is an nk x pk
obscrvation matrix with full column raqk and B is a pk x 1
paramcter vector. Turther assume that k > 1. Temporal agpregation
means aggrcegating k subscquent obscrvations to a ncw obscrvation.
Letting A = (In C)1£), where 1k = (1;05.44,1)" i8 8 k x 1
vector, the temporally aggregated version of (2) can be written

as

Ay = AXB + Ae (3)
where

Ae ~ N(O,czkIn) because AA' = kIn.

Assume now that only aggregated time series are available. Since
the columns of X are lags of the first column the matrix of

aggregates AX is not wholly observable. In fact, only

AXg = A Xppqo e 0% ggaga o Xk (p-1) +1)

h

where xj is the jt column of X, is observed, while

AX2 = A(XZ’XS""’Xk’xR+Z"" )

X
> pk
remains unobserved. Dividing B into two blocks conformably

with X, thc aggregated model (3) can be written as

Ay = AX By + e ' (4)

where

c*

I

szﬁz of: AE-

Model (4) dis thus a misspecificd version of (2).



3e Temporally aggregatcd modcls

A model builder with only tcmporally aggrecgated time scries
scldom thinks in terms of £ and model (4) but rather has in

mind the following model

y* = X'k-Y* 4 E** - (5)

where y* = Ay, X* = (AX1, AXSJ, X
=1

5 = (ka+1’ x(k(p+0+1,...,

= nlim(X*'X*) 'X*'y* is a (p+£) x 1 paramctcr

*
X (pel-1)+102 Y oo
vector and the elements of e** are i.i.d. with expeetation zero
and uncorrelated with X*. The matrix AX3 contains observable
temporally aggregated lags Jlonger than those in AX1. The model

builder then wants to estimate y* and/or predict y*.

In this paper, attention will also be'paid to a special casc

of (5),
y* = AX(¥] o+ e} (6)

which actually is the same model as (4). Model (6) offers

a natural intecrprectation for YT in terms of B which is not so
straightforward for y* in the gencral case (5), namecly

Yﬁ = (Ip G>1i)8. Formally (4) implics Y% = B, and E# = £Y,

but the parameters are usually not interpreted that way by a

model builder who starts from (5).



Before procceding further, we stress the obvious fact that the
i.i.d. assumptions madc about e** or c? do not hold, becausc

the crrors arc as a rulc autocorrclated and furthermore corrclated
with X*, scc Griliches (1972}, p. 734, for a specific cxample.

In fact, (2) being the truc model, thesc assumptions only hold

if {xt} is white noisc with cxpectation zero.

It can be pointed out here that Wei (1978) and Wei and Mchta
(1979) retain (3) as the basic model and estimatc the unknown
AX,. The resulting model is called the conditional aggrcgate

modcl
¥ ZAX.B, + XDB, + u (7
Y 18g 2°2

where Xé is an estimator of AX,, and u is an error vector

. CA - .

independent of Xz and consisting of € and the error causcd by
the estimation of AXZ. The paramecter vector 82 can be estimated

consistently and unbiasedly from (7), for details see Weci (1978).

In order to consider the cffects of temporal aggrcegation on the
prediction and cstimation of parvamcters we choosc (5) as our
starting-point and estimate y* using OLS. The lecast squares

cstimator of y* 1s
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where
: - Y1 ' 7
X13 (X1,X3),M13'13 k13A A X3 and
- 1 1 - 1
Mig.p = XjzATAXy = () ,M) 50
with
M.. = X}A'AX., 1,j = 1,2,3
ij i j

The interest will now be fécussed on two problems. First, wc
want to study the circumstances under which the temporally
aggregated dependent variable can be predicted better using
the misspecificed model (5) than the correct origihal (2).
Second, it will be investigated when the total response 1§k8
is more accurately estimated by 1§+tg than by the best lincar

unbiased estimator 1! b,
pk

4.1. Prediction of independent variable

Since we are intcrested in predicting y* it is feasible to

consider its conditional expectation E(y*lX,B,oZ

) = AXE and
ask how well it can be estimated from (2) and (5), respectively.
Let us define a criterion for superiority ol a predictor over
another by saying that of two predictors the one with smaller

predictive mean square cyrror is superior to the other. Hence

we want to know when

pmsc (AXb) - pmso(AX13Q) = B(b-B) "X'AYAX(b-)

= B(AN 28 = AXB) ' (AX gg - AXR) > 0. (8)

&



We have

. pmsc (AXD) = oZtTX'A'AX(X'X)_1'

whercas deriving pmsc(AX13g) requires slightly more computation.
Write

AX 48 - (AX B¢ + AX,B5)

| 1
(AX 4 3My 5. q3X] %

{H

'-I)(AX]B1 + AXZBZ)

~1 15
AXy Mg, q3X 3R e

+

1
11

-1

-1 -1
\
1M1 i

33 R lA'(I AX1 11

[AX M](XIAT + (I-AX M} XJAT)AX,] X1A") 1]

~

“T X1 ave (9)

(AX By + AXyB,) + AX My 1 X52

where

M,

11M.

33.1 = Mzz7Mgy
Then, using (9) and noting that

w B
(AX1M”}\iA'—I)AX1 = 0

we obtain, after a straightforward calculation,

, . p- ! bl
pmse(Ak13g) = Bé(D22-1 D73 1 33 1 37 )Bzio k(p+€) (10)

where

e
Bijex = My MMMy



The first term on the r.h.s. of (10) results from omitting AX,
in (5) whilc the seccond is the variance term. Now, (8) holds if

and only if

1

(17623830, .17Dy5.1P35.1P52. 108y < ETOXCN T XAk (p+L) . (1)

A nccessary condition for (11) to hold is

1

tr(X'X)  'X'A'AX - k(p+£) > 0

indicating the point after which adding ncw lags into the
temporally aggrcgated model never pays off in terms of the

predictive mean square error.

If our model is (6), i.e. a direct result of aggregating (2)

and omitting AXZ’ (11) takes thg form

1

2'1 F~ (Y IYY  'vitataAy Y%
(1/co )62D22_162 < tr(X'X) X'A'AX kp; ’ (12)
On the other hand, forming pmsc(AX1g1) - pmsc(AX13g), where
g1 = M;}X{A'Ay, we can conclude that AX13g is supecrior to

AX.lg1 as a . ,predictor of AXE if and only if

i
7 =

(1/0%)81D

¥,
-—t
A
(%]
o
n
]
1

23+1733-

which shows cxactly when a longer lag than inplicd by (6)
improves the prediction accuracy in predicting the aggregated

quantity.
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In general, we can conjecturce from (11) that temporal aggrcgation
may improve our prediction performance ‘if the model (2) is not

a very accurate dcscription of y, di.c. if 02 is not small with
respect to the absolute valucs of %ho‘componcnts of Bz. It 1s
also obvious that if BZ%O, (11) can only hold in small samplcs,
beccause AX13g is then gencrally an inconsistent estimator of

AX3. Of course, if B,=0, then (11) holds trivially, but this

)
is a rare case in practice. The validity of (11) is also dependent
on the covariance structure of the input process {xt}, but (11)
as such does not rcveal anything very specific about the nature

of this dependence. We shall return to this point in the cxample

of Section 5.

4.2, Estimation of total response

The accuracy in estimating total response 1ék6 is measured here

using the mean square error. We need

5 1 sz ' _1 2 - 2., cryy =1

msc(Tpkb) E(]pkb 1pk8) g 1pk(x X) 1pk
and
: ' _ 5
. Y o~ T Z

mso(1ﬁ+tg) E(1p+£g lpkB)
= WO MIY XY ATAY-1', B) 2

T pelT13-13713 ) pk

1 1 - Z

= I3 1 -
L(11 h”

M. ] YR -t ol -
e tM 15013 (g oMy5) Byl ML XA e - L B,)

e i E 0 B ]
O™y a3 My g M) "By g gy By ) a0 XL oMy 2 T



Thus msc(]ékb) —’msc(1§+£g) > 0 if and only ifl

1 2

2 - 2] s
(/0 [1) M5 150y q M50 "By 1) (k-1782]

v r _.1 = —1
C T 0T = KL Mg T (13)

Dividing 1p4£ into two vectors conformably with X13 = (X1,X3),

inequality (13) can be written as

(1/6%) [1.M] M, ,8,-d3D3) D
R e B Rl WA

2
$P33.1032.1827 15 (k- 1) B2

1 1 1

< 1§k(X'X) 1pk-ﬂ[1éM111p+déD33.1d£] (14)

where
-1

d£ = M31M111p~1£-

Again, a mnecessary condition for (13) to hold is that the r.h.s.
of the incquality be positive. Likewisc, it can be conjectured
that GZ should not be small with rcspect to B, if (13) is hoped
to hold and that the sasmple should not be too large if BZ#O. If
our ecstimator is 1§g1, the equivalent of (13) becomes, cf. (14),
~ Iy L

(1/02)(1ﬁM‘| 1262-1ﬁ(kn1)82)2 MNCO k1Ml (15)

L pk " p 11'p’

Finally, adding lags into the aggrvegated model improves the

estimation as comparcd to 1]‘)g1 i and only if



E— 2 e
(1707 [(dph55 1Dy . 18] -2d4D55 1035162

’ =1 =
X (11')1\4111\111282.—11")(}("1)82)]5 E]'E,,D33°1d£

which can only hold in small samples if 82%0 since the r.h.s.

decrcases with sample size.

4.3. Estimdting the aggregatéd impulse response function

As mentioned shortly, model (6) allows for an interpretation

of YT as a vector of aggregated componcnts of B. The componcnts
of y* can then be regarded as points of the temporally
aggregated impulse response function of y. Procecding as above,
we can easily derive a necessary and sufficient condition for
this vector to be estimated better using g1 than Bb, where

B = (I,,C) with C = (I, ® 1)_p, if the superiority criterion

is again the mean square error. The condition beccomes

1

B'B-KtrM] ]

2 T el S
(1/0 )‘Bé(MHI\HZ"C)!(1\1111\112 C)BZ < tr(X'X) 11°

All the above conditions depend on the unknown paramcters of the
truc model aﬁd the unobservablce XZ' 1f X2 were observed, the
validity of the conditions could be tested as discussced in Toro-
Vizcarrvondo and Wallace (1968). This is a hypothetical casc,
however, and in order to asscss the practical significance of
conditions (11) and (13) we have chosen to illustrate them with

an example demonstrating when we might expect to gain from



temporal aggregation in predicting the temporally aggregated

independent variable or cstimating the total responsc.

55 ‘ Example

5.1, Prcdiction of depc¢ndent variable

Assume that (2) is the following monthly modecl
Yt ='B1xt+821xt_1+822xt_2+et, o PP | (16)
while its quarterly counterpart (5) is chosen to be

Y:E ='Y?X{;+Y§ _’E"1+€;, t.=1,...,ll ' (17)

I

so that k 3, £ = 1 and p = 1. We also consider the alternative

that YS = 0 corresponding to (6). Further assume that xi ~ AR(1),
as may often be the case in economic time series. Let Lx, =0,
cov(x,) = ci, and let p be the AR-parameter, |p] < 1. The

assumptions concerning €. remain as in Section 2, and

{0

* ) - r +c _ L
£ % By Xg ¥Ry X g ptEgtCa (FEZi 9

In order to obtain illustrative numerical results without
extensive computations the moment matyices in (11) and (13)
arc replaced by their probability limits multiplicd by the

number of obscrvations. We have
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]
Cplim [(/3m) x0]7 = oZf (e 1402 o (183

n-e ; J

see Theil (1971), p. 252.TFurthermore,

my My mzw
; ; _ L2 ¢
plim(1/3n)X'ATAX = o [ m, m, i (19)
n->w
mOJ
; 2 2 o
‘where my = COV(iEOXt_i, iioxtmj"i) and, more specifically,

3+ 4p + 2p>

m, =
m1 = 2 + 4p + sz + p3

2
m, =1+ 2p + 3p° + Zp3 + p4.

Using (18) and (19) wec obtain thce r.h.s. of (11) which cquals
02(3 + 4p + sz), while the r.h.s. of (12) adds up to

202(3 + 2p + pz). From (11) we have, approximately,

29 i . '
(1/0™)plimBy (0,5, 1=Dyz, 1 Pas,1D55,4)8;

N>
) 2, 20 (1) 022 .2 (1) |
= (3noy /o%) [8 77 (B +B5, ) +d, B,y Bys] (20)
where
s (1) - 2. 2¢-1 2 2 2-
1 = my - [mo—kpmz) 1 [mo(m1+m2)-2pm1mzj (21)

.and

u£1) - 2{m1—[m5~(pm2)2]“1[2m0m-

2 ]mzwpmz(m§+m§)}}. (22)



T

Analogously, the 1.h.s. of the superiority condition (12)
corresponding to the model (6) has the form

1y
(1/0 JplimB, (M ZIM11M12)82

n->eo

ea 2, 2000002 | <(0) 2 L (0)
© (Bnog /0TIy Byt Gy Baptly ByB,)

where
&%g) = mo—m61m§, j=1,2
and
_&50) = 2m1(1—m01m2)

After a standardization of (11) and (12) through dividing by the
r.h.s. which in this example is positive in both cases for

-1 < p <1, (11) and (12) take the approximate form

(sn2/6?) [V (82,482,040l P8, 8,7 < 1 (23)
and
| (3n0 /o )[a(?) ;1 (O)BZZ (0)821822] <1 (24)
where
«f) = (rape2oP)NalD, -1,
(0) = 2—1(3+20+p2)—1& ., J=1,2
1j 1)
and
(0= 27T Grapep™y " 1al0),
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In order to illustrate conditions (23) and (24), we have plotted

(1) (1) _(0), (0) 0):  we 0 (o). (07,
Gy Ty 0y, ag Ay, and a, "in Figurc-1. The sum R ELY
strictly comparable to a§1) only when Byy = Bypos but the

essential fcatures of the situation, when 821 and GZ? have the
same sign and arc not too far from cach other, can be capturcd

(0)

morc casily if agg) and ay,” arce pooled togecther. Tor comparison

they are plotted separately in Figurc 2.

Figurc 1 demonstratcs the fact that, if 821 and B, do havc the
same sign, gains from temporal aggregation are more likely on
average fhan othcrwise if the ‘input variable is heavily positively
or very heavily negatively autocorrclated. An intuitive explanation
of this is that if the independent variable is heavily autocorre-
lJated then the temporally aggregated lags retained in the modecl
carry almost the same amount of information as the whole sct of

lags. Hence omitting part of them does not have crucial importance.

It can also be noted that for the most part condition (23) is more
casily satisfied in practice than condition (24), indicating that
(5) with £=1 is a better alternative than (6). If By and 822

have opposite signs, (23) is more likely to hold than if they

have the same, sign, except for an interval of ncgative values

of p, sce Figure 1. Whether (23) or (24) rcally holds, depends
also on n, oi, 02 and the size of 621 and 822 as discusscd in

the preceding scction.
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5 Estimation of total rdspoiisc

Next, consider the ecstimation of the total responsc. We obtain

. 9 2
PLIn[1] o435, 13M1M25) " By Th (1) B2

Mo +m

g, 12
= [Groapmy 1) (Baq78y))] 153

and, assuming (06) to be the temporally aggrcgated model,

) T s P S Ity S
lxm[1£M11M1282 1é(k_1)BZJ = [(1 Mg My ) By g+ (T-my m,) B,y] 7. (26)

->00

i
n

In large samples the r.h.s. of (13) now equals approximately

1

(3n) 0;2[13~p)(1+p)_1-6(m0+pm2)"1]

while a similar approximation of the r.h.s. of (15) becomes

(Sn)_1

=4 = -1-
o "[(3-p) (1+p) "-=3m, ].
After standardizing (25) and (26) so as to make the r.h.s.'s

of (13) and (15) cqual onc these conditions become

2,2, (D i 2
(Snox/a )ao (821*622) £ 1, (27)
where
‘(1) - ’]11""1“?‘ 2 . ) _'] __1, __1
“ 7 Sigae ~1 L) (1+p) ™ =6 (myrpm,) 7' |
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and

(3n02/0%) (a6, raly) 8,0 % < (28)

respectively, where

(0) = (1—m61mj)[(3"0)(1+D)—1*3m61]-1, i=1,2.

0]
Figurc 3 depicts the behavious of a61)

(). (0 {0),0(0),2

squarcd sum ay =

and, for simplicity, the

between -1 < p < 1. If B . and BZ

21
have the samc sign then, unlike previously, (6) seems to be a

2

better aggregated altcrnative ihan (5). Our chances of gaining
from temporal aggregation while using (G6) are greatest when p
lies in the neighbourhood of zero or one, or minus one. In general,
a gain is morc likely to occur at positive than necgative values

of p.

It 821 and 822 have different signs then the chances of estimating
the total response more accurately from the aggregatced model
incrcase as compared to the opposite case. In particular, if

821 = ~822, the sum of coecfficients, which then cquals B], is
always estimated Dbetter by ordinary lcast squares from (5) than
from the original model (2). Whether (27) and (28) hold in the
general casc depends again on n, Uy s 02 and the sizec of 821 and

Boyy as discussced above and scen from these inequalities.
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6:; Comments

It can be conjectured that (11) and,(13) arc sufficicnt but no
longer nccessary conditions for the superiority of AX13g over

the corresponding lcast squares predictor from (7). This 1is
becausc b is the best lincar unbiascd estimator of B whcrceas

the lcast squares cestimator of the conditional aggrcgate model,
while still unbiascd, is not efficient. Wei and Mchta (1979)
considered one-step ahead forecasting of y* by simulation using
a somewhat simpler model than (16) with only one lag. The input
was an AR(1) process as in the preceding example, and the number
of aggregated observations was 90. They found no marked differcnce
between the forecasts from the conditional aggregate and
aggregate models when p was varied between ~0.7 and 0.7.
Nevertheless, at p = 0.7 the latter model alrecady seemcd to

have an edge as far as the accufacy of predictions was concerncd.
Judging from the above example; (5) might well pcrform.better
than (7) at higher values of p, even if one-step ahead

forecasting and not within-sample prediction is concerned.
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Figure 1. The graphs of coefficients o , u§1) and aéz) in (23) and (24)
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Figure 2. The graphs of coefficients a%?) and “1((2)) in (24)
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