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A b s t r act

The ~aper contains a general but rather brief discussion
of biased estimators for linear models based on prior
information. It stresses the unfavourable consequences of
model misspecification to some favourable properties of
certain widely discussed biased estimators.
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1 • INTRODUCTION

During the last few years the biased estimation of linear

models has received much attention in the statistical literature.

It has been pointed out that by rejecting the notion of un­

biasedness it is sometimes possible to reduce the mean square

error in the estimation of these models as compared to the

least squares (maximum likelihood) estimation. It has also

been shown that under certain loss criteria the maximum
likelih~~d estimator is inadmissible and an estimator which

dominates the maximum likelihood estimator (the James-Stein

estimator) has been constructed.

In econometrics biased estimation has been a commonplace

technique for a long time. A widely applied feature have been

the linear restrictions between parameters. Although the

restrictions have been imposed as exact J they may not have

been valid: ,in this case the restricted least squares estimators

are biased. A good example of such restrictions are the

polynomial lag restrictions (Almon J 1965) assuming that the

regressi?n coefficfents lie on a polynomial of low degree.

These restrictions which are very rarely exactly true when

they are non-trivial can be written as a set of linear

restrictions as demonstrated by Terasvirta (1970) and Shiller

(1973).

Another example of biased restrictions are the zero restrictions:

a variabie is excluded from the model although its regression

coefficient does not equal zero.

Theil and Goldberger (1961) introduced the use of stochastic

linear restrictions. They were originally considered as un­

biased but it is fully possibly to assume that they are

biased and extend the notion of biased estimation to include

also the so-called mixed estimation.
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These restrictions, deterministic or stoc~astic, are often

introduced because of the multicollinearity among the ·expalana­

tory variables which leads to low estimation accuracy. Very often

they reflect the personal views of the model builder and can be

considered,at least implicitly, to be prior information.

On the other hand, of course, the Bayesian approach offers

a useful strategy for combining prior views and sample

information .. However, later on we shall be largely intercs ted

in the circumstances under which the least squares estimation

can be improved (risk in estimation reduced) by the use of

possibly biased prior information. Since this problem is not

relevant to a Bayesian, the classical framework is adopted

for purposes of this paper.

A wide area of biased estimation in econometrics is the

estimation of the structural parameters of linear simultaneous

equation models .. Those estimators will not be considered

here, however. For a discussion on comparisons between

various structural form estimators the reader is referred

to Theil (1971).

2. BIASED ESTIMATION WITHOUT PRIOR INFORMATION

If there is multicollinearity present in the linear model

y = Xa + E, EE = 0, COV(E) = 0
21 (2.1)

where y and E are stochastic n x 1 vectors, X is an n x p matrix

wi th rank p and independent of E, a is the p x 1 parameter

vector and the number of observations is fairly low, the

least squares estimator b = UX'y where U = (X'X)-l may not be

very reliable. The estimates may have "wrong signs" and be

too large in absolute value and thus unacceptable to the

model builder in the light of his (implicit) prior information.

To improve the estimation, Hoerl and Kennard (1970) suggested

the ridge estimator
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(2.2)

When k grows from zero to infinity the values of (2.2) shrink

toward zero. As a theoretical fact speaking for (2.2), Hoerl

and Kennard pointed out that for any model of type (2.1)
*there always exists a k> 0 such that MSE (b I (k)) < MSE (b) .

This property has nothing to do with possible multicol1inearity.

Whenever ~ f 0, the ridge estimator is biased.

Stein (1956) showed that in estimating the mean of the p x 1

vector y ...... N(l1, I), where p ~ 3, the unbiased estimator is
inadmissible if the quadr;tic loss function q = (C - 11)' (C - 11)

is used. Instead, the estimator

1\
~JS = (1 - a/y'y)y (2.3)

where 0 < a < 2(p-2), dominates the least squares estimator

under quadratic loss as shown by James and Stein (1961). This

basic result' has been extended to the linear models C2.1) when
2e: - NCO,O' I), see"Sclove·(1968). The estimator

. bJS = (1- (p - 2) vs 2 ) b

(V;f-' 2) b 'X' Xb "

where ·s2 is the usual estimator of cr 2 with v degrees of freedom,

dominates b for p ~ 3 under the quadratic risk

R(b,~,X'X) = E(b - (3) 'X'X(b - (3). (2.4)

The James-Stein estimators have been extended and generalized

in many ways, cf. e.g. Draper and Van Nostrand (1979),
Judge and Bock (1978) and Zel1ner and Vandaele (1975) for

references. Among the few econometric applications of these

estimators a study by Aigner and Judge (1977), and Judge

and Bock (1978, Ch. 13) can be mentioned.
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A problem with the ridge estimator is that the values of
*k for which MSE (b I (k)) < MSE (b) arc unknown, and therefore

in practice k must somehow be estimated. A vast amount of

estimators for k have been suggested in the literature and

the properties of the corresponding ridge estimators have

been investigated by simulation experiments; for references

and general discussion see 'Vinod (1978), Draper and Van Nostrand
(1979) and Smith and Campbell (1980). Some "analytical results

of interest in this context can be found in Terasvirta (1981).

3. LINEAR PRIOR INFORMATION AND BIASED ESTIMATION

J
"

Even if some Bayesians have objected, see e.g. Kiefer and

Richard (1979), the ridge estimator (2.2) has sometimes

been given a Bayesian interpretation. In fact, (2.2) is the

posterior mean of a if normality of errors in (2.1) and a
normal-gamma prior distribution for (a,02) are assumed so
that alo2 ",N(O,(o2/k)I) and o-2",rco 2,O). From the prior

information point of view the interpretation is illuminating
I

since it shows the fact, also stressed by Kiefer and Richard,

that the "prior" seldom reflects the actual prior information

possessed by the researcher. He should thus be able to choose

an estimator, based on his prior knowledge, which out­
performs the ridge estimator.

One popular alternative in economic applications have been

the linear restrictions

r o = Ra (3.1)

where R is an mx p matrix with rank m. These restrictions may

not fully reflect the researcher's prior information either

but may come closer than the r~dg~-type restrictions. The

restricted least squares estimator of a is

(3.2)
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If the restrictions (3.1) hold exactly, bR is unbiased and

has smaller mean square error than b. Generalize the concept of
'"quadratic risk (2.4) of b by defining

R(b,B,A) = E(b - B) 'A(b - B) (3.3)

where A ~ 0 (non-nega tive definite). Then a necessary and

sufficient condition for

for all A~ 0 is (Toro-Vizcarrondo and Wallace, 1968)

(3.4)

where So = r O - R[3. Inequality (3.4) shows that even if

(3.1) is not valid so that (3.2) is biased, the restricted

least squares estimator can be superior to the least squares

estimator. If (2.4) is used for the comparison, the corresponding

necessary and sufficient condition for the superioritY,of bR
over b is q(sO) ~m, see Wa1lace (1972). The~e is no general

result implying the existence of such a positive k that
*MSE(bI(k)) ~MSE(bR)' Note, however, that if (3.1) is valid,

then the estimator

has smaller risk than bR for some k >0, see Terasvirta (1981).

The above restrictions are deterministic although the prior

information of the researcher is often more vague. One way of taking
this into account is testing the validity of the restrictions

first and using bR only if the restrictions are accepted.

This reasoning leads to the pre-test estimator, cf. e.g. Judge

and Bock (1978), which can be written as
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(3.5)

Indicator function I (Q) has value one if the null hypothesisex
(3.1) is rejected at a given significance level ex in favour

of r O f RB and zero otherwise. Estimator (3.5) is biased unless

So = 0, and from Cohen (1965) lt can be inferred that if the

risk criterion (2.4) is used, it is inadmissible as well. Judge

and Back (1978) contains a good discussion on the performance

of (3.5) vis-a-vis the least squares estimator.

Another way of allowing for uncertain prior information in the

classical framework consists of making (3.1) stochastic by

"observing" rand R which are related as

r = RB + lP , (3.6)

'where rand lP are stochastic mx 1 vectors, Er IRB = ra, Ell' = 0,
cov(lP) = (02/ k )I and cov (E,lP) = O. This additional information

is then incorporated into the sample and the resulting mixed

estimator is (Theil and Goldberger, 1961)

bR(k) = (X'X + kR'R)-l(X'y + kR'r). (3.7)

Estimator (3.7) is biased unless r O = RB. It has smaller risk

than b for all A ~ 0 if and only if

(1/0
2

) sOSksO ~ 1 (3.8)

-1 -1where Sk = (k I + RUR') . Note that the ridge estimator
is not exactly a special case of (3.7) with R = I and r O= 0

since r is stochastic and its components have positive variances.

However, if r is observed as zero and R = I, (2.2) and (3.7)
yield identical estimates.
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The left-hand side of (3.8) is a monotonously increasing

function of k and approaches zero as k -+ 0+. When k -+ co, it

converges towards (3.4). Thus for given X, R, r O' ~ and 0 2

we have the theoretical result that there is always such a

k>O that (3.8) holds, cf. Terasvirta (1981),_. but in practice
nothing is known about the range of the values of k satisfying

(3.8) and the size of the maximal reduction in risk.

Condi tion (3.8) has no direct' practical significance

because it depends on unknown parameters ~ and 0 2.

However, (3.8) is a testable proposition. Under HO:

(1/202)sOSksO;;; 1/2 the compatibility test statistic

(3.9)

1\ 1\2 -1 .where s = r - Rb and 0 = (n - p) y' (1 - XUX')y 1S the unbiased

estimator of 0 2, follows a non-central F(m,n - p,1/2) distribution,

see Yancey ~!~. (1974) and Bock and Judge (1978), and HO is

rejected if (3.9) exceeds the critical value.

If k were known or if we assumed k = co, we 'could form another

pre-test estimator on the basis of the result of the test.

The difference. is that here the test is not for the unbiasedness

of (3.6) (or truth of (3.1)) but rather for the hypothesis

that the risk of estimation is reduced through the use of the

mixed estimator bR(k) (or restricted estimator bR) instead

of b.

A similar procedure can be developed for the case A = XIX .

. However, for k < co, we can only test the validity of a

sufficient condition for the risk reduction, cf. Terasvirta

(l980a), whereas q (sO) ;;; m is a necessary and sufficient

condition for bR to be superior to b.
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4. NON-LINEAR PRIOR INFORMATION

The prior distribution discussed in the preceding section

is linear. It is perhaps less known that the sampling­

theoretic framework is also suitable for handling non-linear

prior information. Assume that

(4.1)

i.e. the regression coefficients are located within or on

an ellipsoid in the subspace of the coefficient space. The

ellipsoid need not be centred in the origin of the subspace

but any other point will do as well. I f we use A =. aa' where

a # 0 is a p x 1 vector, minimizing the supremum of the

quadratic risk under (4.1) yields the minimax estimator

(4.2) "

see for instance Kuks and Olman (1972), Bibby and Toutenburg

(1977) and Peele and Ryan (1980). This biased estimator is

identical to the ridge estimator when R = I. In this case the

ellipsoid in (4.1) becomes a sphere. It has smallest minimax

risk for all a # 0 if (4.1) is valid, cf. Bunke (1975).

In practice, if we want to apply (4.2) in a situation where

information of type B'R'RB ~ c exists, the unknown variance

0
2 has to be estimated so that k can be determined. An

interesting suggestion has been made by Toutenburg and

Roeder (1978) who consider the case where the researcher has

non-linear information of type ~j ~ aj ~ aj , j = 1, ... ,p. There

is no closed form estimator based upon these inequality

constraints although the estimates can be found using non­

linear programming methods. The authors suggest that the
restri~tions be approximated by, the smallest ellipsoid

containing the cuboid defined by the above inequalities,

whereafter (4.2) can be applied using an estimat~ of 0 2 .
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Even here "the prior information can be incorrect and the

question is how this affects the optimality.properties

of (4.2). The model builder may have thought that (4.1) holds

and used (4.2). Later on, he may obtain more accurate infor­

mation indicating that, in fact,

(4.3)

It is obvious that if we choose c small enough in (4.1) so

that (4.1) contains (4.3), then (4.1) is also correct and the

estimator (4.2) has smaller minimax risk than b. But then,

if c is small, the minimax estimator is already close to the

least squares estimator. We do not elaborate further here but

refer to Terasvirta (1980b) fora more detailed treatment of

the properties of (4.2) when (4.3) is valid.

5. LINEAR RESTRICTIONS AND MODEL MISSPECIFICATION

All the above considerations have been based upon correctly

specified models. It will be demonstrated in this section that

the misspecification of models deprives the mixed estimators

of the theoretical properties discussed above and sometimes

used as arguments in favour of them. Write (Z.l) as

(5.1)

where Xj is an nx Pj matrix, j = 1,Z; PI + Pz = p. Suppose that
the researcher incorrectly sets eZ = 0 and estimates

Y - X e + E(l)
- 1 1

subject to biased stochastic prior information
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It can be shown (Terasvirta, 1981) that the mixed estimator

(5.2)

is superior to b, the least squares estimator of the correctly

specified model, for all A ~ 0 if and only if

(5.3)

where

~ necessary condition for {S.3) to hold is that

(5.4)

which is a necessary and sufficient condition for the risk
of the least squares estimator of the misspecified model to

be smaller than that of b in the estimation of a = (ai,a z).
There is a k1 > 0 such that (S.3) holds only if (5.4) is valid.

If we apply the weaker superiority condition with the risk

(2.4), our superiority condition is Q12(sl) ~ (ml + P2). The
condition corresponding to (S.4),

2 -1
(l/a )a ZG 13 2 ~ P2

is no longer necessary for ql2 (sI) ~ ml + P2'

(5.5)
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Similar conditions could be obtained for the superiority of
. -

ridge estimators over b. Thus the argument of Hoerl and Kennard

(1970) for the ridge estimator mentioned above does not extend

to the estimation of parameters in misspecified linear models.

The above discussion shows that the potential benefits of

prior information heavily depend on the specification of the

model. A correct specification and ordinary least squares

without restrictions may often be a better combination than

an incorrent specification with biased stochastic or deter­

ministic prior restrictions. The message thus is that careful

specification of the model remains a most crucial thing and

that more or less artificial prior restrictions should not be

used as a substitute for the specification effort.
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