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FISHER~S FIVE-TINED FORK AND OTHER QUANrUM THEORIES OF INDEX NUMBERS

*by Yrjö O. Vartia
the Research Institute of the Finnish Economy

1. INTRODUCTION

Among Fisher's (1922) most interesting contributions are

his propositions concerning the biases of index number formu1as.

Weighted index numbers (omitting modes and medians) s~em to

c1uster into five groups according to the type of the average

and the weights used. Fisher exp1ains this. using the concepts of

'type bias' and 'weight bias' interacting with each other, see

Fisher (1922) p. 83-117 and 352-6. His theory is condensed in a

graphica1 representation, called the Five-tined Fork, each tine

representing index n~~bers having the same 'dose of bias', i.e.,

2+, 1+, 0, 1- or 2-. For instance the group 2+ consists of

weighted index numbers (except modes and medians) having a

double upward bias, see Fisher (1922) p.202-205.

Fisher concludes on p. 204-5:

"Thus, barring 'simples' and 'modes' and their derivates (and

possibly medians if we wish to have our resu1ts very close) ,

we find that, although we have numerous forrnulae, they alI fall

under only five clearly defined heads, namely, those without

bias, those with single bias up or down, and those with double

bias up or down.

The five tines include alI the arithmetic, harmonic, geometric,

and aggregative weighted index numbers and their derivates

which we have obtained."

Fishor's 'Five-tined Fork'Omay be wcll described as a 'quantum

theory' of index numbers to distinguish it from an ordinary view,

* 1 want to express my gratitude to my teacher, prof. Leo Törnqvist
for numerous stimulating conversations and to the participants of
the symposium for valuable co~nents. Jaakko Railo, M.A., has
checked my English.A11 remaining errors are mine.
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according to which the results of various index formulas

disperse continuously without gaps making abroom-like picture.

Let al, •.. ,a be n commodities or groups of commodities for which. n

the indices will be defined. Denote the value of a. by v. (in
~ ~

money units), its quantity by qi (in physical units), price by

Pi = vi/qi and value share by wi = Vi/LV j . Periods or places are

~ndicated by superscripts 0, 1 etc. Price and quantity vectors

are denoted p and q, P'q LPiqi is their inner product.

As asummary of Fisher's findings we consider the following
. 1)

pr~ce index number formulas

(1) L 1 0 0 0= p .q /p .q 010LW.(p./p.)
~ 1 1

, "Laspeyres"

(2)

(3)

(4)

(5)

P

F

log 1

log p

010LW. log (p. /p. )
111

, "Fisher"

I "Logarithrnic Laspeyres"

I "Logarithrnic Paasche"

(6 )

(7)

(8)

10g t

Pl

Lh

1
- 2(log 1 + 10g p)

110LW. (p'/p.)
111

, "Törnqvist"

I "Palgrave"

, "Harmonic Laspeyres"

They are ~1assified in ~isher's five tines as fo11ows, see

Fisher (1922) p. 204.

1) Ne need not consider quantity index number formu1as separately
because everything app1ies analogica11y to them after changing
Pi: s and qi:s.
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Tab1e 1. Fisher's Five-tined Fork

Tine Formula Fisher's corre-
sponding symbols

Uppermost (2+) Pl 9

Hid-upper (1+) log P 29

p 4=5=18=19=54=59

Hiddle ( 0 ) F, log t 353 1 ) 123,

L 3=6=17=20=53=60

Mid-lower (1-) log 1 23

Lowermost (2-) Lh; 13

The results of Fisher's calculations are presented in the

following table.

Table 2. The results of Fisher's calculations

_.. -- .

Index Year
number
formula 1913 1914 1915 1916 1917 1918

PI, 9 100 100.93 102.33 118.29 180.72 187.18

logp, 29 100 100.63 101.17 116.26 170.44 182.41

P, 54 100 100.32 100.10 114.35 161.05 177.43

F, 353 100 100.12 99.89 114.21 161. 56 177.65

logt, 123 100 100.12 99.94 113.83 162.05 177.80

L, 53 100 99.93 99.67 114.08 162.07 177.87

logl, 23 100 99.61 98.72 111. 45 154.08 173.30

Lh, 13 100 99.26 97.84 111.01 147.19 168.59

1) Fisher's Ideal index F may be defined in numerous different ways,
which is shown by its other symbols 103, 104, 105, 106, 153, 154,
203, 205~ 217, 219, 253, 259, 303 and 305. This means that F has
many fruitful interpretations; it is not just 'the geometric mean
of' L and P'.
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Figure 1: Fisher's Five·tined Fork for 8 Price Indices
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According to his calculations Fisher finds that L (=54) and P (=53)

give approximately the same results and· classifies them to the group

o of unbiased index numbers. On the contrary log p (=29) and

log 1 (=23) seem to contain respectively a single upward and

downward bias. As Fisher concludes on p. 363:

1I0f the 25 formulae mentioned by previous writers as possibly

valuable, we have scen that the following ought never be used

because of bias: 1, 2, 9, 11, 23." And 'on p. 364 he writes:

"Thus as to the long controversy over the relative merits of

the arithmetic and geometri.c types, our study shows us that

the ~i~pl:.e geometric, 21, is better than the simple arithmeU.c,

1, but that, curiously enough, the ~e~g~t~d arithmetic, 3, is

better than the weighted geometric, 23."
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Fisher (see p. 237) did not regard the close agreement of

L and P as "an accident merely happening to be true for the

36 commodities selected": Fishe,r 'admits on p. 239-240 and <110

that L and P are subject to a "sort of secondary bias",

which he regarded, hOvlever, as very small. He will show tha t

these conclusions of Fisher are based on an unwarranted

belief of the representativeness of his data and are not

generally valid. For some other data his inductive ~easoning

would have given other resu1ts.

Our analysis fi ts in wi th what Thas beeri pointed, out by other authors. For

instance Samuelson & Swamy (1974) p. 567 comment on F~sher' s concept of bias:

"Exactly what zero bias meant was never thought through." The well-known
. -

inequalities connected wi th Laspeyres 1 and Paasche I s indices show that these

are clearly biased respectively upwards and downwards as compared to

the 'true indices' in. ~he case of demand theory:

(9)

(10)

(11)

(12)

P(p1 ° qO) 1 0 °• qO,p ; < p . q /p = L
P

P(p1 ° ql) 1 • ql/p° 1 P,p ; > p .q- p

Q(q1 -0 pOl 0 1 ° ° L,q ; ~ p . q /p . q = q

Q(q1 ° pl) 1 1 1 0
,q ; > p . q /p . q = P

q

1 0 * 1 ° *Here P(p ,p ; q ) is the Economic Price Index and Q(q ,q ; p ) is

the Economic Quantity Index as defined by Samuelson & Swamy.

In the case of production theory the inequalities are reversed,

see Samuelson & Swamy (1974) p. 589 and Fisher & Shell (1972)

p. 58. Only if qO and ql are indifferent or the indifference surfaces

are homothetic are the Economic Price Indices in (9) and(lO) equal and
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we have a double inequality for it. Analogously, only if

° 1
under homothetH:i ty have we necessarilyp AP or

P Q(q1 ° pl) == Q(q
1 ° pOl L:::: ,q ; ,q ; < .q - q

It is difficul t to understand that these bounds have given rise to

so much confusion. Nice examples of the kind of confusion are

given e.g. by Leontief (1936) on p. 47 and by Frisch (19361 on

p. 26.

On the other hand it can be shownl) that 10g p and

10010g 1 are linear approximation~ to 10g p(p ,p ; q ) and"

10110g P(p ,p ; q ) in the case of demand theory.

2. EXPLANATION OF FISHER-S FIVE-TINED FORK AND OTHER QUANTUM

THEORIES OF INDEX NUMBERS

These facts suggest that the situation is not so simple as

Fisher thought. We are not, however, satisfied with these results

"of the economic approach: they are valid only if our data is

generated according to some economic play process, e.g., the demand

theory. We want to know how much and why the various pric~ and

volume indices differ when prices and quantities 'change freely',

i.e., in any way whatsoever. We have calculated re1ative differences

between various indices using a formula given by Törnqvist (1936).

1) Rajaoja (1958) proves only that 10g 1 == 10gP (pl ,pO; qO)+ second order
terms in her theorem 8.3. where she makes nnn:'r1lic:::t- i c assumptions
aboutoobseryatt"ons. The change of rea1 income betwee"n observations
(pO,q ), (pl,q ) should be taken into account e.g. in the way
Theil (1967) p. 216 does.
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1Törnqvist considers equa11y weighted moment means aPo and

1
geometric means OP O of priee ratios defined by

(13)

(14)

1 0 a
Lc. (p./p.)

1. 1. 1.

1 0
Lc. 10g (p. /p. )

1. 1. 1.

It may be shown that the momentwhere ci > 0 and LC = 1.
- i

1mean exPO of positive and nonequa1 price ratios is a continuous1y

1 0
increasing function of a, which approaches min(Pi/Pi) when

a. + - 00, the geometric mean åP ~ def ined by (14) when a. + 0 and

1 0max (Pi/Pi) when a + + 00, see Hardy & Litt1ewood & Po1ya (1952).

1 a.Dividing every term of (13) by (oP o ) we get

(15)

where P i = 10g (Pt/p~) - 10g (oP~) is the logarithmic c1eviation
1

) af ~
1the price ratia fram OP
O

. By expanding (15) ta a power series

af a we get for all values of p.:S
1.

(16)

1) Dr the arithmetic deviatian of the log-change in the price af
cammodity a. from the 10g-change in the price 1evel.

1.
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1 )
Taking logarithms and expanding we get formally

(17)
a 2 ~2 .3
-2 s + --6LC.p. + ...

. P 1 1

2 ·2where 8 LC.p. is the variance of the price log-changes
p 1 1

1bg (p~/p~) arounq their mean 10g (oP~), !shortly 'variance of the price changes'.

Specifying a = 1 and a = -1 and neg1ecting the higher order

terms we get:

(18)

(19)

lOg(lP~)
1 1 2 1 ·3- log(OP l ) R:l + 2" s + 6 LC·P·

P 1 1

1 1 1 2 1 ·3
log(_1r O) - 1og(OPl)R:l - "2 s +

6
LC.P·

P 1 1

1 1 0
These express that the ar~thmetic mean lPO = LCi(Pi/Pi)

1
is greater than the geometric mean OP O' which i8 greater than

the harmonic mean -lP~,. lP~ > oP~ > -lP~ , their logarithmic

differences being

. h 2prlce c onges sp

approximately half of the variance of the

This is the mathematical basis for a quantitative

version of Fisher's qualitative and partly inductive theory about the

'type bias' of index number formulas, cf. Fisher (1922) p. 83-91 and

108-111. Although Fisher treated the 'type bias' correctly his

inductive reasoning led hirn to incorrect generalizations in the case

of 'weight bias' as we skall demonstrate.

1) The expansion is valid if the right hand side of (16) does not
exceed 2. This is certainly true if ·1 ap. I < log2 = 0.693 for alI i.
In most practical cases (17) is valid. lNote that the first term
of the expansion always gives the right sign for the left side
difference and they are zero simultaneously.



Using the weight5 ci

-9­

1= wi we get the logarithmic differences

between (2), (5) and (7):

(20 ) log Pl log ·1 2 .+ 1 1·3- P RJ - 51 6"Lwi Pli2 p

1 2 1 1·3
"( 21) log P - log P f':j -Z 5

1p + 6"Lwi Pli .

The5e tell us that 10g Pl exceed5 log p by about half of the

. 2 1·2varlance sl Lw.P
1

, and log p, again, exceeds log P by about the
p 1 1

same amount. This explains comp1etely why PI, p and P are found

in different tines of Fisher's fork. These three indices differ

from each other and Pl > P > ,P unless the variance in the price change5

i5 zero when they are equal. In the same wa~ inserting c i

we get for (1), (4) and (8):

o= w.
1

(22)

(23)

Thus L > 1 > Lh,the relative difference5 being approximately

. 2 0·2 2
equal to half of the variance of the prlce change5 50 =: LW, PO' Rl SlP 1 1 P

'This explains why L, 1 and Lh are found in diff~rent tines of

Fisher1s fork.

If it so happens - as in the case of Fisher' s data - that L and P are ap""lxoxi-

mately equal, then Pl > P > P RJ L > l > Lh, and the relative

differences between any two consecutive indices are approximate1y

equal to half of the var iance in the pr ice changes. Furt.hermore F = Ip· L ,

t == Ip·l.and even 1) .,IPl·Lh, being means of indices deviating

symmetrically from the middle tine, alI belon,; to the middle

tine of unbiased index nurnbers. This is the essence of Fisher I s Five-tined

Fork.

H This is Fisher' 5 formula no. 109, which he classifies in the border line
of 'good' and 'very good' index number formulas.
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Figure 2. Exp1anation of Fisher's Five-tined Fork

10g PI .... • 2 +

10g P • 1 +

10g P .. 0 .. .....

1 ..
2 - ..

10g L

10g

10g Lh

However,Fisher's 'quantum theory' of index numbers is not

genera11y va1id because, instead of P ~ L ,we may have, e. g. , p~l.. _.

This happens if the value shares remain approximately constant,

Vl? ~ \-1~, i.e., the commodities are on the average:norma11ye1astie.
:1-:1- . •

1n this ease we have a three-tined fork Pl ~ L > P ~ 1 > P ~ Lh:

Figure 3. A three-tined Fork

10g Pl • 1 + .. 10g L

10g 0 .. 109 I
P ..

10g P 1 - .. log Lh.... •

The upper tine (1+) of this three-tined fork cont~ins P1

and L, whi1e the middle tine now ·eontains p, ~ and, e_..g. ~ F, t and

/Pl·Lh as before, the 10wer tine eontainin~ ~. and Lh. Now p.

and 1 are unbiased index numbers whi1e L and P have rcspectively

one dose af upward and downward bias.

Like Fisher we ca11 an index number unbiased in a given situation if

it is inc1uded in the midd1e tine of th~ corresponding fork constructed

of the representative two groups of indices of the figures 2 and 3.

As is evident from the geometry of the prob1em the indices of the pairs

(P1, Lh), (p,l) and (P,L) ·are a1ways located synunetrical1y with respect

to the midd1e tine and thus their symmetric means, e.g. /P1'Lh, t and F,

are a1ways unbiased. Thus an index number formula f is unbiased in a

given situation if it i8 approximately equa1 to e.g. Fisher's ideal index

F, Le. 10g (f/F) is on1ya fraction of variance in the price changes.
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Our three tined fork occurs in connection wi th cormnodities for

whicll the price and quantity ratios are strongly negutively

correlated, so that the value sharcs remain approximaL-ive1y

const~nt. This problem was discussed by Fisher (l922) on p. 237-

240, 3l4-3l7, 410-4l2 and 428 unsatisfactorily. Fisher

tri~d te show that log 1 is unbiased only if the negative

correlation between the price and quantity ratios p~/~? and q~/q?
1 1 1 1

is perfect, Fisher (1922) p. 428: "If the price and quan"t:Lty

elements are thus correlated to the extreme limit of 100 per cent,

the downward bias of 23 will be completely abolished. In the

present case, where correlation is -88 per cent, the bias is

E.e~rl:Y abolished." This analysis is inadequate.

We derive at the end of the paper an exact formula for the

logarithmic difference between 1 and p which solves the problem.

These situations are not the most likely to be met in practicc.

The situation usually encountered in analyzing, e.g., consumption data would

be somewhere between them: neither L nor 1 is unbiased but L

has a small upward and 1 a small downward bias comparec1 to

unbiased index numbers such as F or t. If these biases of L

and 1 are equal in size we have L R:l P and P R:l l, which leads

to the following new five-tined fork

Figure 4. A new five-tined fork

1. 5 -

1.5+log PI J- •

10g P •
10g F ------------...... 0

10g P ..... 0

0.5 +
o
0.5 -

• 10g L

• -+------------ 1'og t

• ..... 10g

• .... 10g Lh
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'fhe unbiased index number[' such as f:=;p:r:-, t := /l:-p and

/PI-Lh shown by dotted arr9ws are situated half way b~tween

L ~ p and P ~ 1_ Thus the biases of the latter are now half

the former dase af bias, 1. e. '. of the order of }s 2 . Thtis
._. . - _. ...p

the three middle tines af this new fork are c10ser to each

other than in Fisher's fork.

Actually we need not have any of the former cases

but the two graups of indices PL > P > P

and L'> 1 > Lh may be 10cated quite freely relative ta each other.

In a situation

have according

well explained by the homothetie demand theory we

to equations (9) and (10) P < p(pl,pO; qO) :=
p -

101
P(p ,p ; q ) ~ Lp and thus usually P < L. He might, e.g., have

a seven-tined fork where log PL > log p > log L > 10g F ~ log t >

log P > log 1 > 10g Lh. Bere the five middle tines are q'..li te close to

each other and only the uppermost and 10wermost tines are clearl~

separated from all the other anes. On the other hand, if the data is

well explained by

Pp ~ p(pl,pO; qO)

the homothetie praduction theory we have conversely

101= P(p ,p . q ) ~ Lp and thus usually P > L.

Here we have another seven-tined fork, where the indices

disperse more widely:

Figure 5. A seven-tined fork

10g PI • 2.5 +

10g p • 1.5 +

10g P .. 0.5 +
10g F -----------~ • ° • -et------------ 10g t

0.5 - • 10g L

1.5 - • 10g

2.5 - • log Lh
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As asummary we have to recognize that, e.g., Fisher's Ideal Index

F and the Törnqvist index t always belong to the middle tine of

unbiased index numbers while Pl, P, p, L, 1 and Lh are all biased

up or down in some situations.

3. HOW ARE THE TWO GROUPS OF INDICES LOCATED RELATIVE TO EACH OTHER:

A THEORY OF THE 'WEIGHT BIAS'

Next we derive an exact and general expression for the logarithmic

difference between p.and 1, which determines the relative position

of the two groups of indices {Pl, p, p} and {L, 1, Lh} using

respectively new and old value shares as weights. Thus what we are going to lJive
;

will be essentially a quantitative theory of the 'weight bias' . We have

(24) log p - log 1 1 0 1 0L(w.-w.)log(p./p.)1. 1. 1. 1.

There are many useful approximations to the change in the value

110] 100
share,bw. = W.-w. = v:/v - v./V , e.g. Theil (1967) p. 2021. 1. 1. 1. 1.

extensively uses

(25) 1w.
1. °- W.

1.

V.
1.

The approximation error is of the third degree in the log-changes

log(v~/v~) and log (Vl/vO). This leads to

(26 ) log P - log 1 110 1 °~ L-2 (w.+w.)log(p./p.)1. 1. .1. 1.

= ",1 (1 0). .L."2 wi+wi Pivi

cov(p,v) where

(27) 1 °log (p. /p. )1. 1.
110 1 0

L-
2

(w. +w. ) log (p. /p.)
1. 1. 1. 1.

1 0log(p./p.) - log t
1. 1.

and cov(p,v) i5 calcu1ated . th . h 1 (1 0) For theuS1.ng e we1.g ts -2 w, +w. .
1. 1.

ideas behind such covariances, see Theil (1967) or Rajaoja (1958).
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We know, however, the exact equation corresponding to (25):

(28)
1 0

w.-w.
1 1

1 O· 1 0L (w. , w. ) log (w. ;'v. )1 1 1 l

1 0 1 0 1 0
L (w. I w.) [log (v. /v.) - log (V /V )] I

1 1 1 1

where the first line is in fact the definition of the logarithmic

1 0mean L(wi,w
i
), see Vartia (1974,1976). Thus, identically,

(29) 10g p- 10g 1 1 0 1 0
EL(w~,w.) log(p./p.) v.

1 1 1 1 .1

where w. L(w~,W?)/LI,(W~,W~) are the weights of Vartia Index II,
111 J J .

(see Vart:ia (1976) and Sato (1976» and n01t1 p. == log (p~/p01') - LW .1og (p~/p?) .
1 1 _. 1 1 1

1 0
Because e 2: 0 is, for small 10g-changes log (wi/wi)' a very small

number

(30) e 1 01 - LI, (w . , w . )
J J

1110 102
R1 12 E2 (w

i
+wi ) [log(wi /wi )]

1 0we have apart from terms of the third degree in 1og(wi /wi )

(31) 10g P - log 1 ~ cov(p,v)

This formula determines the re1ative positions of p and 1 and therefore

of the two groups of indices {Pl, p,

new and old vaIue shares as weights.

p} and {L, 1, I,h} using respectively

If w? == w~ for all i we have trivially
1 1

p == 1. The some happens if the price and value Iog-changes are uncorrelated
• • > • • >

or cov(p,v) ==0. Notethatlogp== log1 ifandonlyif cov(p,v)==O, so that
< . <

• • 2 ••
cov(p,v) and a variance in the orice changes s == cov(p,p) determine the- p-

type of our fork. Knowing only three parameters, a == log t, b ==cov (p, v) and

c == is~, we may approximately estimate alI t-he indices considered in our paper.
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Pi + qi (i.e~ the factor reversal test P~Q~ = vl/vO

applies to the index number formula used in the calculation

of the logarithmic deviations) we have

(32) 10g P - log 1 ~ cov(p;v)
2

s + cov (p,q)
P

2
where s cov(p,p)

p

(33) cov(p,q)

is the variance of the price changes and

is the covariance of price and quantity 10g-changes.1 ) Forinstance,

the 10garithmic quantity deviation

(34) 101= 10g(q./q.) - log Q
1 1 0

10- 1 0= log(q./q.) - Lw.log(q.jq.)
1 1 111

is positive if the relative change in the quantity of a. consumed,
1

1 0 .
10g(q./q.), is greate~ than the relative change in the quantity of

1 1

tota1- consumption, 10g Q~. This means that the quantity of a
i

has

increased more than the average quantity of consumption. The

covariance af price and quantity log-changes (33) is negative if

positive (negative) price devia~ions p. are associated with
1

negative (positive) quantity deviations qi' see Thei1 (1967).

This should be the case according to demand theory (if real

consumption does not change much or under homotheticity) because,

if the price of a. increases more than the average prices (p. >0) , the
1 1

consumer wou1d decrease his consumption of a. or at least increase
1

it by 1ess than the average volume of consumption (q.< 0). Only in the
1 .

nonhomothetic case, when real consumption changes, may positive

deviations of price changes p.>O on the average be associated
1.

1) This is particu1arly interesting because 10g P - 10g L ~cov(p,q)
as will-be shown later.
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with positive deviations of quantity changes qi > O. This may happen

if the ceteris paribus effects of price change deviations p.>O1.

are eliminated by positive income effects - e.g., the commodities

for which the prices increase more than average prices happen to

b 1 . h 1 t ., 1 . 1)e .uxur1.es, w ich react strong y 0 r1.s1.ng rea lncome.

We can write for cov(~,~), as for any covariance,

(35) cov(p,q) s s r(p,q) , wherep q

(36) s ==v0 - '2 1/2(L\V. P . )P p 1. 1.

(37) s == v7 (Lw.q~)1/2
q q 1. 1.

(38) r(p,q) cov(p,q)/s . s E [-1,1]
P q

Here sp and Sq are the standard deviations of price and quantity. .
log-changes and r(p,q) is the correlation between the price and

quantity log-changes.

An exact condition for the equality of 1, p and t

according to (29) and (32) may be written

(39)

(40)

cov(p,v)

r(p,q)

2
s + cov(p,q)

P

-(s /s )
p q

o

If the standard deviations in price and quantity log-changes are equal,

s == s , then their negat.ive correlation r (p,q) should be -100 % (asp q

Fisher demanded) in order that 1 (or p) could be 'unbiased ' • A much lower

1) ef. Theil (1967) p. 254. According to equations (9) and (10) we.ffic}y have
L<P only in the nonhomothetic case and (because logP-logLR:lCov(p,q) only
then cov(p,q) may be definitely positive.
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corre1ation is sufficient if s <s . Note that log L and 10g P
P g

1 2 1 ..
differ now from log t Rl log F by approximately "2 sp N -"2 cov (p,q)

as is shown in our three-tin'ed fork.

If the st~ndard deviation of the quantity changes s is muchq

smaller than s (as may be the case for necessities with low
p

income and price elasticities) then (40) cannot be satisfied.

In this case we have

(41) r(p,(~r> < -(5 /s )P g

(42) cov(p,v) 2s + cov(p,g) > 0
p

(43) log P Rl log 1 +,cov(p,v) > log 1 .

It is even possible that log p< log 1, which happens if

(44) r(p,q) < 0 and Ir (p,q) I > s /s
p g .

This implies that s < s • The condition (44) is not probable iip q

the periods from which our data (p.,g.) comes are long, say one
1 1

year. In the analysis of,e.g., month1y data it may well be satis-

fied because of wild fluctuations in the guantity log-changes.

'ro sum up:

1. If the variance of the price.changes s2 is considerab1y
greater than the variance of the guant~ty changes sa, then
log p> log 1.

2. If the variance of the price changes 52 is small comparcd to
s~ and the price and guantity changes Pare negatively
cärrelated, then we may have log p.< log 1.
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The re1ationship between 10g p and 10g 1 makes it possible to

derive a usefu1 expression for the difference between 10g P and

10g L.

(45)

Subtracting (22) from (21) and inserting (26) we get

1 2 2
10g P - 10g L ~ (log P - 10g 1) - 2(s1P + sOp)

Consider the variances of the price changes:

(46)

,1:( 1 0) [ (1/ 0) 1 t]2= L 2 wi + wi 10g P i Pi - og

2 1 212
+(log t) -2(1.og p) -2(log 1)

212
sp + 4(10g P - 10g 1) .

.
Therefore, apart from terms of the third degree in P i and gi'

(47)
. 1 •. 2

10g P - 10g L ~cov(p,g) + 4(cov(P,v»

1 1 0Here the covariance is ca1culated using the weights Z(w
i

+ wi) ano

the deviations p. and g. are, fromthecorresponding T6rngvist indices,
~ ~

10g t and 109 t .
P g

The covariance cov(p,q) may be calcu1ated using theweights wi of any

superlative 10g-change 'index number (e.g., the weights of Vartia Index II

as in (33» without invalidating (47). Thus the covariance
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between price and quantity log-changes causes L and P to deviate

from each other. This has been qua1itative1y known1 ) but the

re1ationship (47) seems to be new. However, Bortkiewicz (1922,

1924) has derived a very similar and exact re1ationship for

the ratio of P and L, see A11en' (1975) p. 63:

(48) P/L 1 + ra a /L LP q q P

:::: cov 1 0 1 0
(Pl./Pl" q./q.)/L L ,

1 1 q P

where r is the coefficient of corre1ation between price and

quantity relatives, a and Q are their standard deviations
P q

1 0 1 0
and cov(p./p., q./q.) :::: ra a their covariance, a11 ca1cu1ated

1 1 1 1 P q

using w? ~s the weights. Our formula (47) seems to be more easi1y combined
1

with other formu1as.

4. COf1MENTS ON SOME UNBIASED AND 'SUPERLATIVE' INDEX NUMBERS

Ca1cu1ate, e.g., the difference between

(49) 10g t 1
L-i(W~-I'W?) 1 0'2(log P + log 1) = 10g (Pi/Pi)1 1

and

(50) 10g F
1
'2(log P + 10g L) •

Summing (21) and (22) we get

For the difference between the variances' we get by direct ca1cu1ation

(52) s2 _ <.2
lp "Op

0) • 2w. P.,
1 1

1) See, e.g., Fisher (1922) p. 411, Samue1son & Swamy (1974) p. 592 .
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Inserting Theil's approximation (25) into (52) leads to

( 5 3 ) 1 1 t .:. 1:
4
,2

2
" (w

l

1. 0) . 2 .og F - og . ~ L + wi Pivi

1 1 1 0·3
+ "6 L -2 (vIi + wi ) p i

1 . 2' 1 . 2 .
~ - '4 cov (p ,v) + "6 cov (p ,p) •

This shows that the 10garithmic difference between F and t is of the

third degree in the deviati~ns of price and value log-ch~nges or

very small indeed. In other words,log F and 10g t are quadratic

approximations of each other; quadratic

~. ~ p. + g.. Note that the variance of
l l l

in variables p. and
l

the price changes s2 or
p

, '
the covariance cov(p,q) has no effect on their difference 10g F - 10g t, which

depends only on the I skewness I or the other third degree properties of the

two dimensiona1 distribution of the pair (log (p~ /p?), log(q~ ,q?) with the
" l l . l l

Weights! (wf + w~) , The covariance~ in (53) may ~~ combined in a variety

of ways to get other approximations,

We conclude that there is no apparent tendency for F tobe

greater than t, or vice versa, as could have been expect.ed from alI

of our forks, It is no accident that Fisher (1922) p. 265 places

only 14 formulas ahead of t, or his 123.

By similar arguments but starting from (20) and (23) we get

(5-1 ) rr-- 1 ,2' 1 '2'
10g tPl'Lh - log t ~ '4 cov(p ,v) + "6 cov(p ,p),

which showi that even from usually badly biased index numbers

wc may get a very good formula.



.... 21-

Finally we wil1 show some connections wi th the economic theoryof

index numbers. Our moment' means'P(a,c) = [Lc, (p~/p?)o:]l/o:
111

using the weights c i = w~ are Economic Price Indices corresponding

to the generalized CES utility function give~ e.g~ by Lloyd

(1975), if 0: = 1 - a, where a is the constant elasticity of

substitution. We have,e.g., P(l,wO) = L, P(O, w01 = 1 and

P(-l, wO) = Lh for a = 0, a ~ 1 and a = 2 respectively, which

here are thus I exact index numbers', ta use Diewert I s (1976)

terminology.

We must have here L = P, 1 = P and Lh = P1 if a = 0, 0 ~ 1 and

o = 2 respectively, because the pairs (L,P), (l,p) and (Lh, Pl)

are time antitheses af each other and the Economic Price Index equals

in the homothetic case its time antithesis (Le., satisfies the time

reversa1 test)~)ThereforeFisher's Five-tined Fork corresponds

to the case a = ° (zero substitution case, ql = kqO) , our three-tined fork

to the case 0 + 1 (or Cobb-Douglas case, w~ = w~) , while a = 2 results in a
1 1

new five-tined fork, where 10g1, > logl > 10gLh = logPl > logp > 10gP.

Here the substitution effects are unusually strong and now L and P have a

double bias in respect to the unbiased Lh = Pl R: F Rl t.

The assumptions leading ta these cases are, however, rather
,

special andthe formulasPl, p, P, L, 1 andLh give alI in turn biased

resu1ts as our analysis reveals.

Diewert (1976) defines the quadratic mean af order r unit cost

function cr(p) as follows

a ...
)1

nn
r/2 r/2]1/r =[L La" p, p, , a i ),

i=l j=l 1) 1 )
c (p)

r
(55 )

1) See Samue1son & S~amy (1974). Curiously theyartia Index II, a,n ideal
log-chcll1<]e index 1:w i 10g (pl/pQ) usinCJ w· ights w, given in (29) , lS exact
here for al1 values of er as prDv d by Sato (1976f.
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He shaws that the Ecanamic Price Index carrespanding ta it

is the quadratic mean af .arder r price index Pr :

(56)

which may be written using geametric means af the mament rneans

as fallaws

We have e.g. P 2 = F, Po = t and P- 2 = v'Pl.Lh, which alI belang

ta the rniddle tines in aur farks. Just as befare we get far

the relative difference between P r and t:

(58 ) lagPr - Iag"t ~
r .2. r 2 .2
- cav(p , v) + -- cov(p , p}.
8 24

Thus, P r and t are far all rand srnail price and value deviations

Pi and vi very accurate appraxirnatians af each other and thereforp.

P r is" always unbiased, i. e. P r is cantained for alI r in the rniddle tines of our

forks.

Inserting (53) into (58) the reIative difference between Prand

F is derived. Diewert (1976) shaws, using the dernand or production

theary, that the P : sand t are I superlative index nurnbers' in eir

specified sense and are therefore good approxirnations of each

other. Equation (58) expresses approxirnately the sarne thing

withaut any assurnptions about, e.g., the rnaximization behaviour of i:he

ecanornic agents. To derive our equation (58) arithrnetic alone was needed.
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