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1. INTRODUCTION E

Among Fisher's (1922) most interesting contributions are

his propositions concerning the biases of index number formulas.
Weighted index numbers (omitting modes and medians) seem to
cluster into five groups according to the type of the average
and the weights used. Fisher explains this using the concepts of
'type bias' and 'weight bias' interacting with each other, see
Fisher (1922) p. 83-117 and 352-6. His theory is condensed in a
graphical representation,called:the Five-tined Fork, each £ine
representing index numbers having the same 'dose of bias'; 1ies,
2+, 1+, 0, 1- or 2-. For instance the group 2+ consists of
weighted index numbers (except modes and medians) having a

double upward bias, see Fisher (1922) p. 202-205.

Fisher concludes on p. 204-5:

"Thus, barring 'simples' and 'modes' and their derivates (and
possibly medians if we wish to have our results very closej,

we find that, although we have numerous forﬁulae, they all fall
under only five.clearly defined heads, namely, those without
bias, those with single bias up or down, and those with double

bias up or down.

The five tines include all the arithmetic, harmonic, geometric,
and aggregative weighted index numbers and their derivates

which we have obtained."

Fisher's 'Five~tined Fork' may be well described as a 'quantum

theory' of index numbers to distinguish it from an ordinary view,

* I want to express my gratitude to my teacher, prof. Leo Tdrngvist
for numerous stimulating conversations and to the participants of
the symposium for valuable comments. Jaakko Railo, M.A., has
checked my English.All remaining errors are mine.



according to which the results of various index formulas

disperse continuously without gaps making a broom-like picture.

Let al"‘?'an be n commodities or groups of commodities for which
the indices will be defined. Denote the value of a; by vy (in
money units), its quantity by q; (in physical units), price by

P.

1= Vi/qi and value share by w,

; < vi/ZVj. Periods or places are

indicated by superscripts 0, 1 etc. Price and quantity vectors

are denoted p and ¢, p.q = IP;9; is their inner product.

As a summary of Fisher's findings we consider the following

. 1
price )index number formulas

(1) L = pl-qo/po-q0 = ng(pi/pg) r "Laspeyres"
(2) P = pl-ql/po'q0 = l/ZW1(pg/pi), "Paasche"
(3) F = JL-P r "Fisher"

_ 0 1,0 " R . "
(4) log 1 = Zwilog(pi/pi) » "Logarithmic Laspeyres

_— l l 0 n ] -4 "
(5) log p = Zwilog(pi/pi) » "Logarithmic Paasche

1 - :

(6) log t = 5(log 1 + log p) s "TOrnqvist”

_ 1..15-0 " "
(7) Pl = Zwi(pi/pi) » "Palgrave

— 0 O ]- n : "
(8) Lh = 1/Zwi(pi/pi)  "Harmonic Laspeyres

They are classified in Fisher's five tines as follows, see

Fisher (1922) p. 204.

1) We need not consider quantity index number formulas separately

because everything applies analogically to them after changing
p;:s and gy:s.
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Table 1. Fisher™s Five-~tined Fork

Fisher's corre-

Tine Formula sponding symbols
Uppermost (2+) Pl 9
Mid-upper (1+) log p 29

P 4=5=18=19=54=59
Middle (0) F, log t 3531), 123

L 3=6=17=20=53=60
Mid-lower (1-) log 1 23
Lowermost (2-) Lh: 13

The results of Fisher”s calculations are presented in the

following table.

Table 2. The results of Fisher”s calculations
Index Year
number
sl 1913 | 1914 1915 | 1916 | 1917 | 1918
P, 9 100 100.93) 102.33| 118.29( 180.72| 187.18
logp, 29 100 100.63| 101.17| 116.26| 170.44| 182.41
P, 54 100 100.32| 100.10| 114.35] 161.05| 177.43
F; 353 100 100.12 99.89| 114.21( 161.56| 177.65
logt, 123 100 100.12 99.94| 113.83| 162.05| 177.80
L, 53 100 99.93 99.67| 114.08| 162.07| 177.87
logl, 23 100 99.61 98.72| 111.45| 154.08]| 173.30
Lh, 13 100 99.. 26 97.84| 111.01| 147.19( 168.59

1) Fisher's Ideal index F may be defined in numerous different ways,
which is shown by its other symbols 103, 104, 105, 106, 153, 154,

203, 205, 217,

many fruitful interpretations;

of 'L and P'.

219,

2583, 259,

303 and 305.
it is not just

This means that F has

'the geometric mean
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Figure 1: Fisher’s Five-tined Fork for 8 Price Indices
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According to his-calculations Fisher‘finds thaé L (=54) and P (=53)
give approximately the same results and1c¥assifies them to the group
0 of unbiasedlindex numpbers. On the coﬁ£;;£y log p (=29) and

log 1 (=23) seem to contain respectively a single upward and
downward bias. As Fisher concludes on p. 363:

"Of the 25 formulae mentioned by previous writers as possibly
valuable, we have scen that the following ought never be used
because of bias: 1, 2, 9, 11, 23." And on p. 364 he writes:
"Thus as to the long controversy over the relative merits of

the arithmetic and geometric types, our study shows us that

the simple geometric, 21, is better than the simple arithmetic,

1, but that, curiously enough, the weighted arithmetic, 3, is

better than the weighted geometric, 23."



Fisher (see p. 237) did not regard the close agreement of

L and P as "an accident merely happening to be true for the
36 commodities selected". Fisher ‘admits on p. 239-240 and 410
that L and P are subject to a "sort of secondary bias",
which he regarded, however, as very small. We will show that
these conclusions of Fishér are based on an unwarranted
belief of the representativeness of his daéé and are not
generally valid. For some other data his inductive reasoning

would have given other results.

Our analysis fits in with what has been pointed out by other authors. For
instanceSamuelmnm&Swamy(1974)p.567commentonF%sher'sconceptbeias:
“Exactlywhatzerobiasmeantwasneverthoughtthroughﬂ'The well-known
inequalities connected with Laspeyres' and Paasche's indices show that these
are clearly biased reépectively upwards and downwards as compared to

the 'true indices' in, the case of demand theory:

0,0
(9) P(pl,po; qo) < pl-q /P -qO

=1L

p

(10) P(pl,po; ql) > pl’ ql/po- ql = Pp
: 1 0

(11) Q(ql,qo; po) < po- q /po- q’ = Lq

(12) Q(ql,qo; pl) > Pl' ql/pl' qo = Pq

Here P(pl,po; q*) is the Economic Price Index and Q(ql,qo; p*) is

the Economic Quantity Index as defined by Samuelson & Swamy.

In the case of production theory the inequalities are reversed,

see Samuelson & Swamy (1974) p. 589 and Fisher & Shell.(l972)

p. 58. Only if q0 and ql are indifferent or the indifference surfaces

are homothetic are the Economic Price Indices in (9) and(10) equal and



we have a double inequality for it. Analogously, only if

Apl or under homothetitity have we necessarily

1 0 1 1 0 0
_Q(q,q;p)=Q(q,q.pl5Lq.

o]
Il

lael
A

It is difficult to understand that these bounds have given rise to
so much confusion. Nice examples of the kind of confusion are
given e.g. by Leontief (1936) on p. 47 and by Frisch (1236) on

P« 26

1)

On the other hand it can be shown that log p and

log 1 are linear approximation§ to log P(pl,po; qo) and -

log P(pl,po; ql) in the case of demand theory.

2. EXPLANATION OF FISHER™S FIVE-TINED FORK AND OTHER QUANTUM

THEORIES OF INDEX NUMBERS

These facts suggest that the situation is not so simple as

Fisher thought. We are not, however, satisfied with these results
-0of the economic approach: they are valid only if our data is
generated according to some economic play process, e.g., the demand °
theory. We want to know how much and why the various price and
volume indices differ when prices and quantities ‘'change freely',

i.e., in any way whatsoever. We have calculated relative differences

between various indices using a formula given by Tdrngvist (1936).

1) Rajaoja (1958) proves only that log 1 = 1ogP(pl,p0; qorksecondorder
terms in her theorem 8.3. where she makes unrealictic @SSumptions
about observat}ons. The change of real income between observations
{po,q Yy (pl,q ) should be taken into account e.g. in the way
Theil (1967) p. 216 does.



T6rngvist considers equally weighted moment means aPé and

geometric means OPé of price ratios defined by

|

(13) (apl

1,0
a _ 1, 0.0 _ alog(p./p:)
0) Zci(pi/pi) = Zci e s BT

1 0
(14)  log(,Pp) Zcilog(pi/pi) ,

where c¢; > 0 and Zc, = 1. It may be shown that the moment
- 1
mean aPl

0

increasing function of a, whi¢h approaches min(pi/pg) when

of positive and nonequal price ratios is a continuously

a+ - «, the geometric mean OP% defined by (14) when o -+ o and
max(pi/pg) when o =+ + =, see Hardy & Littlewood & Polya (1952).
Dividing every term of (13) by (OPé)a we get

1,0 1
(15) ((Pa/oPo)® = zc, 109 (Pi/PigPp)
= 5c, e%Pi ’
; 8
1 : 1,0 Ms . . 1) .
where p, = log(pi/pi) ~ log (OPO) is the logarithmic deviation™ " of

the price ratio from Opé. By expanding (15) to a power series

of o we get for all values of éi:s

2 3
1 lia _ o] =2 o -3 i o
sy («Po/oPo) " = 1+ ZyTeyPi + Frrepy f T .

1) Or the arithmetic deviation of the log-change in the price of
commodity a; from the log-change in the price level.
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1)
Taking logarithms and expanding we get formally

L 1 o 2 o’ -3
B 109 (oFgt = loglyBpd =5 8, + Frap; + =55 4

where sé = Zciﬁi is the variance of the price log-changes

- ' ' .
lOg(pi/pg)around theirmeanlog(OP%),ghortly'varimuxzoftheprlceCmﬂ@e&
Specifying o = 1 and o = -1 and neglecting the higher order

terms we get:

1 1 1 2 1 ~3
(18) log(;Py) - log(yPy) & + 5 s, + & >¢;Py

1 1 1 2 1 -3
(19) log(_lPo) - log(OPl)N = 5 Sp + e }Zcipi .

These express that the arithmetic mean lPé = Zci(pi/pg).

il ’ :
is greater than the geometric mean 0PO, which is greater than

; 1 1 1 1
the harmonic mean -lPOC lPO > 0P0 > —lPO 7

differences being approximately half of the variance of the

their logarithmic

price changes s;; This is the mathematical basis for a quantitative
version of Fiéﬁef's éﬁaiitétive and partly induéti&é théofy abéut the
‘type bias' of index number formulas, cf. Fisher (1922) p. 83-91 and
108-111. Although Fisher treated the 'type bias' correctly his
‘inductive reasoning led him to incorrect generalizations in the case

of 'weight bias' as we skall demonstrate.

1) The expansion is valid if the right hand side of (16) does not
exceed 2. This is certainly true if -|op,| <log2 = 0.693 for all i.
In most practical cases (17) is valid. "Note that the first term
of the expansion always gives the right sign for the left side
difference and they are zero simultaneously.
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ﬁsing the weights c; = w% we get the logarithmic differences

between (2), (5) and (7):

v 2 1. 1-3
(20) log P1 ~ log p = 7 Slp'+ ngipli
) L 2 . L 3.3
(21) log P - logpw® -7 S15 7 §ViPy1i -

These tell us that log Pl exceeds log p by about half of the

variance sip = zwiéii and log p, again, exceeds log P by about the

same amount. This explains completely why Pl, p and P are found

in different tines of Fisher's fork. These three indices differ

from each other and Pl > p >:P unless the variance in the price changes

is zero when they are equal. In the same way, inserting c; = wg
we get for (1), (4) and (8):

1 .2 1..0=3
(22) log L log 1 =~ 5 sOp + EzwiPOi

1 2 1_0-3

(23) log Lh 1ogILN-§ sOp + EZWiPOi .
Thus L > 1 > Lh, the relative differences being approvimately

y . 2 _ . 0-2 2
equal to half of the varlancecﬁftheprlcechangesSOD——Xwipoi;sslp

"This explains why L, 1 and Lh are found in different tines of

Fisher's fork.

If it so happens - as in the case of Fisher's data - that L and P are ap»rxoxi-
mately equal, then Pl > p > P = L > 1 > Lh, and the relative'
differences between any two consecutive indices are approximately
equal to half of thevariance:hmthepricechanges.FurthermoreF==/FTi,

t = /Efiinuievenl) vYP1-Lh, being means of indices deviating
symmetrically from the middle tine, all belong to theimiddle

tine of unbiased index numbers. This is the essence of Fisher's FFive-tined

Fork.

1) This is Fisher's formula no. 109, which he classifies in the border line
of 'good' and 'very good' index number formulas.
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Figure 2. Explanation of Fisher's Five-tined Fork

log Pl ==—————i: » 2 +

logp ——— o 1+

logP e — 0 ¢ * O % % log L
1 = ® - log |
2 - 6 —=———— log Lh

However, Fisher's 'quantum theory' of index numbers is not

generally valid because, instead of P = L, we may have, e.g., p~l.

This happens if the wvalue shares remain approximately constant,

il C : .
wg ~ wi, i.e., the commodities are on the averagenormallyelastic.

In this case vwe have a three-tined fork Pl = L > p == 1 > P =~ Lh:

Figure 3. A three-tined Fork

log Pl ————- o 1+ e —~——— Jlogl
log p =—s—==3= o 0 s Aepisie dog |
log P e ———— ® 1 - ] —_— log Lh

The upper tine (1+) of this three- tlned fork containg P1

and L, whlletjmzmlddle tine now . contains p,].and e. g.,F t and
YP1l-Lh as before, the lower tine containing P and Lh. Now p

and 1 are unbiased index numbers while L and P have respectively

one dose of upward and downward bias.

Like Fisher we call an index number unbiased in a given situation if

it is included in the middle tine of the corresponding fork constructed
of the representative two groups of indices of the figures 2 and 3.

As is evident from the geometry of the problem the indices of the pairs
(Pl, Lh), (p,l) and (P,L) are always located symmetrically with respect
éo the middle tine and thus their symmetric ﬁeans, e.g. /P1-Lh, t and F,

are always unbiased. Thus an index number formula f is unbiased in a

given situation 1f it is approximately equal to e.g. Fisher's ideal index

; L.e. log (f/F) is only a fraction of variance in the price changes.
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Our three tined fork occurs in connection with commodities for

which the price and quantity ratios are strongly negatively

correlated, so that the value shares remain approximaltively
constant. This problem was discussed by Fisher (1922) on p. 237-
240, 314-317, 410-412 and 428 unsatisfactorily. Fisher

tried te show that log 1 is unbiased only..if the negative
correlation between the price and quantity ratios p]i/pg and q;.t/q(j)L

is perfect, Fisher (1922) p. 428: "If the price and quantity
elements are thus correlated to the extreme limit of 100 per cent,
the downward bias of 23 will be completely abolished. In the
present case, where correlation is -88 per cent, the bias is

nearly abolished." This analysis is inadequate.

We derive at the end of the paper an exact formula for the

logarithmic difference between 1l and p which solves the problem.

These situations are not the most likely to be met in practice.
The situation usually encountered in analyzing, e.g., consumption data would

be somewhere between them: neither Lnor 1l is unbiased but L

has a small upward énd 1 a small downward bias compared to
unbiased index numbers such as F or t. If these biases of L
and 1l are equal in sizéwe havel, = p and P ~ 1, which leads

to the following new five-tined fork

Figure 4. A new five-tined fork

16y Pl comsisamm—cas o .5 4

log p o o 0.5 + ¢+ —<+———— logl
log F e - 0 © e e e e log t
log P e 0 0.5 - ¢ —“«— logl
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The unbiased index numbers such as F = yP-L, t = V1-p and
vYP1-Lh shown by dotted arrows are situated half way batwecn

L ~p and P = 1. Thus the biases‘of the latter are now half

the former dose of bias, i.e., of the order of %szp. Thus

the three middle tines of this new fork are closer to each

“ e

other than in Fisher's fork.

Actually we need not have any of the former cases
but the two groups of indices PL > p > P
and L > 1 > Lh may be located huite freely relative to each other.

In a situaﬁion well explained by the homothetic demand theory we

0

have according to equations (9) and (10) Pp < P(pl,p 5 qo) =

0

P(pl,p b ql) < Lp and thus usually P < L. We might, e.g., have

a seven-tined fork where log PL > log p > log L > log F = log t >
log P > log 1 > log Lh. Here the five middle tines are quite close to

each other and only the uppermost and lowermost tines are clearly

separated from all the other ones. On the other hand, if the data is

well explained by the homothetic production theory we have conversely

P_ > P(pl,po; qo) = P(pl,po. ql) > Lp and thus usually P > L.

P
Here we have another seven-tined fork, where the indices
disperse more widely:

Figure 5. A seven-tined fork

lOg Pl a=temicass ° 25 #
log p 1.5 +
log P ==e—=e—g 0.5 +
120G F' oo - 0 P R log t
0.5 ~ ~—————— log L
1.5 = ¢ A log |
2.5 ~ e YOG Lh
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As a summary we have to recognize that, e.g., Fisher's Ideal Index
F and the T6rngvist index t always belong to the middle tine of
unbiased index numbers while Pl, P, p, L, 1 and Lh are all biased

up or down in some situations.

3. HOW ARE THE TWO GROUPS OF INDICES LOCATED RELATIVE TO EACH OTHER:

A THEORY OF THE 'WEIGHT BIAS'

Next we derive an exact and general expression for the logarithmic
difference between p-and 1, which determines the relative position

of the two groups of indices {Pl, p, P} and {L, 1, Lh} using
respectively new and old value shares as weights. Thus what we are going to give

will be essentially a quantitativétheoryofthe'weightbias'.We have
1 0 1,0
4 -~ = —
(24) log p - log 1 Z(wy w;)log(p;/p;) .

There are many useful approximations to the change in the value

1l 1 1 '
share,Awi = wi—wg = vi/Vl = vg/vo, e.g. Theil (1967) p. 202

extensively uses

i) 0 1
(25)  wy - owp o~ gwieed) Dog (vi/vY) - log(vlv0))

N[~

(w%+w9) &. s
i Vi il

The approximation error is of the third degree in the log—-changes

1
log(vi/vg) and 1og (Vl/VO). This leads to

: 1,1, 0 q 5 By =
26 15 - =
(26) og p log 1 =~ Zz(wi+wi)log(Pi/pi) vy
1,1, .0 . -
= Zz(wirwi)pivi

cov(p,v) , where

£ 1,0 1,1 0 1,0 1
(27) P; = log(p;/p;) - I3 (witw ) log (p;/py) = loq(pi/pg) - log t

1%

and cov(p,V) is calculated using the weights -%(wi+wg). For the

ideas behind such covariances, see Theil (1967) or Rajaoja (1958).
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We know, however, the exact equation corresponding to (25):

05, = 1,0
(28) wi—w. = L(wi,wi)log(wi/wi)

= L(wi,wg)[log(vi/vg) - Ty (70 T

where the first line is in fact the definition of the logarithmic

mean L(w},wg) , see Vartia (1974, 1976). Thus, iQentically,

(29) log p = log 1

1 1. .10
ZL(W}-,Wg) log(pi/pi) 5

1 0 = e ¥
():L(wj,wj)) Zwipivi

(1-8)cov(p,v)

where Vvi = L(w%,wg)/ZL(w]JT,wg) are the weights of Vartia Index IT,

(see Vvartia (1976) and Sato (1976)) and now f)i = log(pi/pg?r - zw, log (pi/pg) :

= s 1. 0
Because 6 > 0 is, for small log-changes log (wi/wi), a very small

numbexr
1
(30) o=1- ZL(wj,wg)
1 1,1, 0 1, 052
2»2—(w.l+wi) [log (wi/wi) ]

~ 12
we have apart from terms of the third degree in log (w}/w?)

(31) log p - log 1 = cov(}:'),\'r)

This formula determines the relative positions of p and 1 and therefore
of the two groups of indices {Pl, p, P} and {L, 1, Lh} using respectively
new and old value shares as weights. If wg=wi for all i we have trivially
p = 1. The some happens if.the price and value log-changes are uncorrelated
or cov(p,v) =0. Note that log pg- logl if andonly if cov(f),\'r)<Z 0, so that
cov(f),\'/) and a variance in the price changes s;=cov(f),f)) determine the
type of our fork. Knowing only three parameters, a=1ogt, b=cov(p,Vv) and

c= %Sf;, we may approximately estimate all the indices considered in our paper.
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When vy =Py + gy (i.e. the factor reversal test PéQé = Vl/V0
applies to the index number formula used in the calculation

of the logarithmic deviations) we have

(32) log p - log 1 N.cov(é;ﬁ) = s; + COV(é,é) '
where ég = cov(ﬁ,é) is the variance of the price changes and
(33) cov(p,q) = Zjiﬁiéi

1)

is the covariance of price and quantity log-changes.™’ For instance,

the logarithmic quantity deviation

3

(34) q,
i

1 1
log(qi/qg) - log Q

~ 1,0
1og(q1/qg) - zw,;log(g;/qy)

is positive if the relative change in the quantity of a; consumed,
log(qi/qg), is greater than the relative change in the quantity of
total  consumption, log éé. This means that the quantity of a; has
increased more than the average quantity of consumption. The
covariance of price and quantity log-changes (33) is negative if
positive (negative) price deviations éi are associated with

negative (positive) quantity deviations éi' see Theil (1967).

This should be the case according to demand theory.(if real
consumption does not change much or under homotheticity) because,
if the price of a, increases morethantheéverageprices (éi>0),the
consumer would decrease his consumption of a, or at least increase
it by less than the average volume of consumption (éi< 0) . Only in the
nonhomothetic case, when real consumption changes, may positive

deviations of price changes §i>0 on the average be associated

1) This isparticularly interesting because log P - log L =~ cov(p,q
as will be shown later. g g ) (p,q)
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with positive deviations of quantity changes éi > 0. This may happen
if the ceteris paribus effects of price change deviations éi>0

are eliminated by positivé income effects ~e.g., the commodities

for which the prices increase more than average prices happen to

be luxuries, which react strongly to rising real income.

We can write for cov(p,q), as for any covariancer

(35) cov(p,q) = s 5. x(P,d) , where
(36) sp=\/sg - (z;\,ii)i)l‘/z

(37) qu‘/sz - (s0,q) /2

(38) r(p,q) = cov(lg,é_,)/sp. s € [F1,1]

Here sP and sq are the standard deviations of price and quantity

log-changes and r(p,q) is the correlation between the price and

quantity log-changes.

An exact condition for the equality of 1, p and t = /I p

according to (29) and (32) may be written
3 . . _ 2 - -
(39) covip;v) = sp + cov(p,q) = O

40 b,q) = -
(40) r(p,q) (sp/sq)

If the standard deviations in price and quantity log-changes are equal,

sp==sq, then their negative correlation r(é,é) should be -100 % (as

Fisher demanded) in order that 1 (or p) could be 'unbiased'. A much lower

1) Cf. Theil (1967) p. 254. According to equations (9) and (10) we may have
L<P only in the nonhomothetic case and (because logP-logLscov(p,q) only
then cov(p,q) may be definitely positive.
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correlation is sufficient if Sp<sq' Note that log I. and log P

. 1 2 1 . -
differ now from log t = log F by approximately Esk)w-§cov(p,q)

as is shown in our three-tined fork.

If the standard deviation of the quantity changes sq is much
smaller than Sp (as may be the case for necessities with low
income and price elasticities) then (40) cannot be satisfied.

In this case we have

(41) r(p,q) < = (s,/5,)
(42) cov(é,&) = s; + cov(é,é) > 0
(43) log p =~ log 1 +,cov(§,&) > log 1

It is even possible that log p<logl, which happens if
(44) r(p,d) < 0 and |r (P, | > sp/sq

This implies that Sp< Sq' The condition (44) is not probable if
the periods from which our data (pi,qi) comes are long, say one
year. In the analysis of, e.g. monthly data it may well be satis-

fied because of wild fluctuations in the quantity log-changes.

To sum up:

1. If the variance of the price. changes 32 is considerably
greater than the variance of the quantgty changes s%, then
log p>log 1.

2. 1If the variance of the price changes sz is small compared to
sZ2 and the price and quantity changes Pare negatively
cgrrelated,thenwe may have log p < log 1.
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The relationship between log p and log 1 makes it possible to
derive a useful expression for the difference between log P and

log L. Subtracting (22) from (21) and inserting (26) we get

1,.2 2
(45) log P - log L = (log p - log 1) f(slp + sop)
i . 2 1.2 2
~ cov (p,q) + sy ~ 6y * Sop) -

Consider the variances of the price changes:

z 1 2
(46) J(s2, + 82 ) = whtwp + wd) Dog(pi/p3) 1% -5(1og p) 2 - 1 (log 1)

1]

1, 1 0 1,0, _ )
5wy + wy) [log (py/py) log t]

2 1 2
+(log )% -3 (log p)° - 5(log 1)

2 Q. 2
sp + z(log p log 1)

Therefore, apart from terms of the third degree in éi and éi’
- 1 it
(47) log P - log L=cov(p,q) + E(cov(p,v))
Ncov(ﬁré) .

Here the covariance is calculated using the weights %(wi-kwg) and
the deviations éi and éi are, from the corresponding Tdrnqgvist indices,

log £t and log t
I % % g

The covariance cov(ﬁ,é) may be calculated using the weights Gi of any

superlative log-change ‘index number (e.g., the weights of Vartia Index II

S

as in (33)) without invalidating (47). Thus the covariance
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between price and quantity log-changes causes L and P to deviate

1 but the

from each other. This has been qualitatively known
relationship (47) seems to be new. However, Bortkiewicz (1922,
1924) has derived a very similar and exact relationship for

the ratio of P and L, see Allen'(l975) p. 63:

1+ ro o /L L

(48) P p%q’ g p

1,0 1,0
cov (Pl/Plr ql/ql) /Lqu'

where r is the coefficient of correlation between price and

quantity relatives, Op and Qq are their standard deviations

and cov(pi/pg, qi/qg) = rcpoq their covariance, all calculated
usingwg éstheweights.Ourformula(47)seemstolx3moreeasily combined

with other formulas.

4. COMMENTS ON SOME UNBIASED AND 'SUPERLATIVE' INDEX NUMBERS

Our method applies aswell to index numbers belonging always to the middle

tine of unbiased index numbers.

Calculate, e.g., the difference between

o d 1,10 1,0
(49) log t = 2(log p + log 1) = Zf(wi+wi) log (pi/pi)
and

(50) log F = %(1og P + log L) .

Summing (21) and (22) we get

2 2 1, 1:3 0°3
= + flad o
1p~Sop) T ip (WP, *+ Iwipg,)

(51) log F - log t = —-%(s

For the difference between the variances we get by direct éalculation

2 V2 1 0 “e Xos 0, 22
2 e F6 - - 2
(52) slp B ™ Z(wi wi) [log (Pi/pi)] - (log p)“ + (log l)2

1_.0 1,0 2 1 0, .
Z(wi wi)[log(pi/pi)-log t]® = Z(wi - wi)pi'

1) See, e.g., Fisher (1922) p. 411, Samuelson & Swamy (1974) p. 592
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Inserting Theil's approximation (25) into (52) leads to

11 1 0, 2"

(53) log F - log t = _sz (wi + wi)pivi
11,1 0,3
+ 62 2(wi + wi)pi

R - %cov(éz,\}) + —(l;cov(1;>2,ﬁ>) =
This shows that the logarithmic difference between F and t is of the
third degree in the deviatigns of price and value log-changes or
very small indeed. In other words,log F and log t are quadratic
approximations of each other; quadratic in variables éi and
éi ] éi + éi' Note that the variance of the price changés s; or
the covariance cov(fn,c.]) has no effect on their difference logF - log; ts which‘

depends only on the 'skewness' or the other third degree properties of the

two dimensional distribution of the pair (log (p]i‘/p?_) 5 log(qi,qg) with the
weights%(wi-+wg).Thecovariances in (53) may be combined ina variety

of ways to get other approximations.

We conclude that there is no apparent tendency for F to be
greater than t, or viceversa, as could have been expected from all

of our forks. It is no accident that Fisher (1922) p. 265 places

only 14 formulas ahead of t, or his 123,
By similar arguments but starting from (20) and (23) we get

(54) log /P1°Lh - log t = % cov(éz,é) + % cov(éz,ﬁ),

which shows that even from usually badly biased index numbers

we may get a very good formula.



=21=

Finally we will show some connections with the economic theory of

0 u]l/a

index numbers. Our moment means:P(ax,c) = [Zci(pi/pi)

using the weights ci=w?_ are Economic Price Indices corresponding
to the generalized CES utility function given, e.g., by Lloyd
(1975), if oo = 1 - o, where ¢ is the constant elasticity of
substitution. We have,e.g.,P(l,wo) =1L, P(0, wol = 1 and

Pi(=1, wo) = Lh for 0 = 0, 0 » 1 and ¢ = 2 respectively, which
here are thus 'exact index numbers', to use Diewert's (1976)

terminology.

We must have here L = P, 1 = p and Lh = Pl if ¢ = 0, o0 - 1 and

¢ = 2 respectively, because the pairs (L,P), (1,p) and (Lh, P1l)

are time antitheses of each other and the Economic Price Index equals
in the homothetic case its time antithesis (i.e., satisfies the time
reversal test)})Theréfbre Fisher's Five-tined Fork corresponds

to the case 0 = 0 (zero substitution case, ql =kq0) , our three-tined fork
to the case o+ 1 (or Cobb-Douglas case, wg = wi) , while 0 =2 results in a
new five-tined fork, where logL > logl > logLh = logPl > logp > logP.

Here the substitution effects are unusually strong and nowL and P have a
double bias in respect to the unbiased Lh=Pl ~ F =~ t.

The assumptions leading to these cases are, however, rather

special and the formulas P1l, p, P, L, 1 and Lh give all :in turn biased

results as our analysis reveals.

Diewert (1976) defines the quadratic mean of order r unit cost

function cr(p) as follows

n n

- /2 /2,1/r _
(55) c.(p) = [iil jil a;4P; Py ] ooy g B Ay

1) See Samuelson & Swamy (1974). Curiously the Vartia Index II, an ideal
log=-change index ).'wilog(pl/p()) using weights w, given in (29), is exact

here for all values of o as proved by Sato (1976) .
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He shows that the Economic Price Index corresponding to it
is the quadratic mean of .order r price index Pz

_ 0, 1, 0,x/2 1,1 0.~r/2:1/r
(56) P = [zw, (p;/p;) " "/zw; (P;/P;) ] '

which may be written using geometric means of the moment means

as follows

1. . 1/2
(577  »_ = [p(x/2,u") P(-x/2, w12
We have e.g. P2 = F, PO = t and P_2 = \VP1.-Lh, which all belong

to the middle tines in our forks. Just as before we get for

the relative difference between Pr and t:

2 .
02 a 12 0
(58) logP - logt = - % cov(p”, v) + EZ cov(p™, pl.

Thus Pr and t are for all r and small price and value deviations
éi and Gi very accurate approximations of each other and therefore
Pr is always unbiased, i.e. Pr is contained for all r in the middle tines of our

forks.

Inserting (53) into (5§)the relative difference between P and

F is derived. Diewert (1976) shows, using the demand or production
theory, thatthePr:sandt:are'superlativeindexnumbers' in &
specified sense and are therefore good approximations of each

other. Equation (58) expresses approximately the same thing

without any assumptions about, e.g., the maximizaﬁion behaviour of the

economic agents. To derive our equation (58) arithmetic alone was needed.
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