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Abstract. This paper considers the joint problem of variable
selection and estimation of the parameters in a linear model
under certain smoothness conditions. An example of a situation
where this problem occurs in practice is polynomial
distributed lag estimation with smoothness priors. The model
builder usually has to choose the lag length, the order of
polynomial and the degree of smoothing in estimating the
parameters of the model. Another example could be non-
parametric regression when the response is non-zero only if
the input value exceeds an unknown threshold. It is suggested
that the joint model selection and parameter estimation
problem be solved by first generalizing existing model
selection criteria in such a way that they can at the same
time be applied to choosing the lag length and the order of
the lag polynomial, and to determining the value of the
smoothness parameter. The performance of this model
selection/parameter estimation procedure is investigated
through simulation. The measure of performance is the mean
squared error of prediction. The procedure seems no worse than
certain well-known model selection criteria used for selecting
the lag length in the situation where the shape of the lag
function is far from that of a smooth low-order polynomial. If
the lag function is smooth, the present technique outperforms
by a clear margin the model selection criteria which do not
make use of any polynomial or other smoothness assumptions.
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MODEL SELECTION, SMOOTHING AND PARAMETER ESTIMATION
IN LINEAR MODELS UNDER SQUARED ERROR LOSS

1. Introduction

In this paper we continue to pursue the problem of the applied
econometrician who seeks a simple criterion for choosing one of a set
of competing models to describe the sampling process for a given set
of data. In this context we visualize an investigator who has a single
sample of data and wants to estimate the unknown parameters of a linear
statistical model that are known to lie in a high dimensional space B.
However, the investigator may suspect that the data should be modeled by
a lower dimensional parameter space B1 € B, where B1 is a subset of B.

In an earlier paper (Judge, et al., 1986), we considered this
problem within an orthonormal (K mean) linear statistical model context
and proposed an extended Stein criterion called ESP for truncating and
partitioning the parameter space. This criterion made use of Stein's
(1981) estimator that is a partitioned analogue of the Efron and Morris
(1973a) limited translation estimator. In this paper we extend the
problem to a general linear statistical model and consider the problem
of model selection when estimating a multivariate normal mean under
quadratic loss. Our focus will be on simultaneously selecting the
model and estimating the unknown parameters in a small sample situation.

The estimator to be derived for this double purpose which also
considers how the results will be used, is essentially a Stein-type
estimator where shrinkage occurs toward a restricted least squares
estimator. The restrictions are essentially exclusion and smoothness

restrictions, and a choice between different restrictions is made by a
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generalized model selection criterion called the shrinkage criterionm.
Minimizing the shrinkage criterion with respect to the combination of
regressors, the linear restrictions and the amount of shrinkage yields
the model and its parameter estimates. This procedure can be seen as a
generalization of ordinary model selection criteria which choose a model
among a set of alternatives and then use maximum likelihood procedures
to estimate the unknown parameters. It may also be viewed as a general-
ized operational version of a convex smoother (Titterington, 1985).

We shall evaluate the sampling performance of the new procedure by
the mean squared error of prediction (MSEP) measure. As an example a
polynomial distributed lag estimation problem is analyzed. Within this
context a shrinkage criterion estimator behaves quite well even if the
polynomial restrictions on the parameters are not correct. When there
exists a true set of polynomial restrictions, the procedure is capable
of taking advantage of this fact and shows, relative to more tradi-

tional procedures, a considerable reduction in the MSEP.

2. Statistical Model and Estimators

Let the p dimensional random vector B have a multivariate normal
distribution with mean B and known positive definite covariance matrix
L. The location vector § is unknown and the objective is to estimate it

using an estimator §(b) under a squared error loss measure
-1
L(B,5(b)) = (6(B) - B)'E ~(5(b) - 8) (2.1)

where the sampling performance of the estimator G(E) will be evaluated

by its risk function
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0(8,8(b)) = E[L(8,5(B))]. (2.2)

In econometrics one common problem that gives rise to the above involves

estimating the location vector for the normal linear statistical model
y=X +e e~ NQ,D). (2.3)

where y is an (nx1) vector, X is an (nxp) matrix of regressors of rank p,
B is a (px1) parameter vector, and e is an (nx1l) vector of normal random
variables. The maximum likelihood (ML) estimator of the unknown location
vector B is b = (X'X)_lX'z and T = c:z(X'X)_1 is the precision matrix.

For the orthonormal case when X'X = Ip and T = czIp, Stein (1956)
showed that the usual ML estimator 6°(§) = é = X'y is inadmissible,
under squared error loss, for p > 3. James and Stein (1961) demon-

strated that the estimator
s @y = (1 - a0%/8'9)8 (2.4)

has uniformly smaller risk than 60(2) under conditions normally ful-
filled in practice. Baranchik (1964) demonstrated the inadmissibility

of G(JS)(é) by the positive part estimator

A A

0)8. (2.5)

~

(IS)+,5y = Ara — aa2/A0
6U*@) = 102 .y @D - 20”/§

If X'X # Ip the above results hold under a mean squared error of

prediction (MSEP) criterion E[(8(b) - ﬁ)'X'X(G(h) - g)]. Using, for

. -1 -1
example, the spectral decomposition X'X = CAC' and defining S /2 = CA /2,
the problem may be transformed into an estimation problem of an ortho-

-1 1
normal model y = Z8 + e, with Z = XS /2 and 0 = S‘ég. The above results are
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valid for G(JS)(é) and since the MSEP is invariant to this transformation.
Consequently, for estimation purposes the general case can be handled by
transforming the model into the orthogonal space and estimating the
parameters there.

Unfortunately, risk gains with practical importance may be expected
from G(JS)(é) compared to Go(é) only when the prior with mean 90 =0 is
relevant, that is, 08l is not far from zero. If the original model
contains redundant variables and/or exact or approximate linear rela-
tionships between parameters, it is often advisable to focus attention
to them instead of transforming the problem first. Omitting redundant
variables and applying exact or approximate linear restrictions may, in
that case, lead to more substantial risk gains than does shrinkage in
the orthogonal space. Within the context of a squared error loss measure
the problems are i) which variables to delete, ii) how to find the
possible linear restrictions and the degree of approximation, and iii)
how to estimate the corresponding parameters. A solution to these
problems is outlined in this paper. The estimator that results may not
be minimax but if achieving a risk gain relative to MLE over a large
range of the parameter space is our main concern, the present approach

a

will be of interest.

3. Shrinkage Criteria for Model Selection and Parameter Estimation

The model selection-parameter estimation procedure to be discussed
is related to the param;ter truncation and partitioning procedures
developed in Judge, et al. (1986) and to the partitioned Stein-type
estimator proposed recently by Terasvirta and Yi (1986). The latter is

based on the idea of Efron and Morris (1973b) who suggested partitioning
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the problem of estimating § into a set of subproblems, each of

which is solved by estimating the corresponding subvector gj’ j=1,
ces,m; 8 = (O 1,...,9 )' by a Stein estimator (2.3) or (2.4). If the
partition is known, the resulting estimator of § is minimax provided
the Stein estimators for gj are minimax. To ensure a large risk gain
over the ML estimator, an appropriate partition may in practice be

determined from the data. Let § = (8;,...,8 )' where the (pjxl) vec-

1
m
tor 6 is the ML estimator of B, and Z p = p. The j-th subvector of
—1
the partitioned Stein-type estlmator is §, (6) (1- )0 , where cj =1 -
ho ./6'6. so that §(6) = (1—C ® and C = diag(e,I e 8 1 §
ps/8'8,, 6) ) g(lpl, ruTp )

Terasvirta and Yi (1986) suggest that a good partition o may be obtained

by minimizing the shrinkage criterion
o A2, o ~2 . o
8C(a,g™) =0°(g") + o p(c )f(n,p)/n (3.1)

_ (.0 o 2,0y _ =1, QAN oo _ wa®cA
where ¢ = (°1"“’°m(a))’ 6%(c’) =n (y - X87(8))'(y - X67(8)),
. - m(a) m(a)
02 = (n-p) l(y—Xb)'(y—Xb), p(ca) = I (l—c?)pq and = p? = p, over a
e s A o1 J
] J
and Sa‘ Furthermore, f(n,p) is a positive function of n and p, and
lim f(n,p)/n = 0. This yields 6 (6) = (1- cJ)gJ, j=1,...,m(a), where
n>o

O ~2 0,20, A0
c, = ho"p./8.'0, i=1,.0.,m{(a)
i pJ/ 3 J’ =4, ’

with h = £f(n,p)/2.

We shall apply the idea of using a shrinkage criterion to the
problem of reducing the dimension of the model and selecting a set of
poss;bly approximate linear restrictions when the design is non-

orthogonal. For simplicity, only the case where ¢ = cI is considered.
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The shrinkage criteria of this paper are a generalization of ordi-
nary model selection criteria. Comsider the model (2.3) with a set of

linear smoothness restrictions
R =0 (3.2)

where R is an (m(R)xp) matrix of fixed finite elements of rank m(R).
Assume furthermore that we have a set R of feasible restriction

matrices under consideration. Our estimator is

ba(e) = by + (1-e)p = b - cUR'(RUR")'Rb (3.3)

_IRQ with U = (X'X)_'l is the restricted least

where PR =b - UR'(RUR')
squares estimator of § based on the restriction (3.2). The estimator
(3.3) is a Stein-like rule that shrinks b toward the restricted least
squares estimator bR' To make (3.3) operational, an optimal com-

bination of ¢, p and R € R may be chosen by minimizing a member of the

following class of shrinkage criteria over c, p and R:

sc(e,p,R) = 62(c,p,R) + o2p(c,R)E(n,p)/n (3.4)

where az(c,p,R) n_l(z—XER(c))'(z—XBR(c)) and

p(c,R) = tr(XUx' - cXUR' (RUR") TRUX')

p - cm(R). (3.5)

Expression (3.5) is called the equivalent number of regressors in the
model and it is a decreasing function of c; p(1,R) = p - m(R) and
p(0O,R) = p. For further discussion see Engle et al. (1986), Terasvirta

(1986) and Terasvirta and Yi (1986).
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Function f is as in (3.1) and specifies a member of the class of
criteria of type (3.4). For example, if f(n,p) = 2, we are dealing
with a generalization of the Cp model selection criterion of Mallows
(1973). Thus, if we minimize (3.4) with f(n,p) = 2, this amounts to

minimizing an unbiased estimator of the conditional MSEP

c}

MSER(by (&) |e = &) = E{(be(&) = §)'X'X(bp(e) = B|e

over ¢, p and R.
Let us for a moment assume that p and R are fixed and find c by

minimizing (3.4) over c. A differentiation yields

9sC(c,R)

l\2 -—] ~
(&R) = 52(c,p,R)" + n 152p1 (e, R)E(n,p)

= 2c;p - n—lazm(R)f(n,P) (3.6)

where ;p = n_lb'R'(RUR')_le. Setting (3.6) equal to zero and solving

for c yields

o c;zf(n,p)m(R)

c = (3.7)
2na
p
In practice, a positive part estimator
x o2£(n,p)m(R) +
(1-¢) = [1 - 2 ] (3.8)

2na

where [a]+ = max(a,0) is always recommended.

Note that bR(E) with (3.7) or (3.8) is a Stein-type estimator of
the form considered by Judge and Bock (1978, pp. 240-241). Its risk
properties and superiority over the ML estimator have been discussed by

Mittelhammer (1984).
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It might be pointed out that defining another family of model

selection criteria

SCZ(c,p,R) = lnaz(c,R) + p(c,p,R)f(n,p)/n (3.9)
and using it for finding a good value of ¢ leads to a second-order
equation in c; see Terasvirta and Yi (1986). Selecting a proper
root of this equation yields a solution that differs from (3.7) by a
factor of order O(n_l). For example, choosing f(n,p) = 2 in (3.9) is
equivalent to generalizing AIC to the problem of determining c.

As pointed out above, the shrinkage criteria may be used as model
selection criteria by varying the combination of regressors and thus p,
and selecting the regressors (and p) and the degree of shrinkage c which
minimize the shrinkage criterion. Extending this procedure to cover
the selection of smoothness conditions requires that for each combina-
tion of regressors considered, there is a set of well-defined smoothness
restrictions. The model selection-parameter estimation problem is
then solved by minimizing the shrinkage criterion over the permitted
combinations of regressors, the degree of shrinkage c and the feasible
set of smoothness restrictions R. The criteria (3.4) and (3.9) permits
one to i) select the model, ii) choose the linear restrictions for the
structural parameters in the model and, iii) determine the degree of
shrinkage towards the restricted least squares estimator specified by
the chosen restrictions.

A typical case of tﬂis model selection-parameter estimation problem
is such that there is an ordering among the regressors. Selecting a
combination of regressors is then equivalent to specifying p. An example

of such a situation is polynomial distributed lag estimation where the
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parameters of a finite distributed lag model are related by assuming
that they lie, either exactly or approximately, on a polynomial of low
degree. This topic has recently been reviewed and discussed, for
example, in Hendry, et al. (1984), Judge, et al. (1985, Chapter 9),

and Trivedi (1984). 1If lags are removed from the model one after the
other starting with the longest one, one linear restriction will be
removed for each lag; but the remaining restrictions will not be
affected by an omission of the longer lags. In practical applications,
the lag length is often unknown, and usually there is uncertainty as to
the degree of polynomial that is most appropriate. The analytical pro-
perties of the shrinkage criterion estimators are unknown. We shall
investigate them through simulation when the shrinkage criteria are
applied to the problem of selecting the lag length and the degree of
polynomial in finite distributed lag models. This topic is discussed

in sections 5 and 6.

4, Model Selection in an Orthogonal Space

The shrinkage criterion (3.1) that operates in the orthogonal
space can easily be generalized for model selection purposes. The idea
is similar to that of the ESP criterion discussed in Judge, et al.
(1986). 1In this context, consider the omission of variables whose
coefficient estimates are small in absolute value, where the decision of
omitting variables is based on minimizing (3.1). An advantage of these

criteria is that they offer a possibility of differentiating the degree

of shrinkage.
An estimation problem with approximate linear restrictions may be

transformed into an orthogonal space such that the restrictions in the
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transformed space are simply exclusion restrictions; for the trans-
formation see Judge and Bock (1978, p. 84). It is, therefore, appro-
priate to shrink ML estimates in the orthogonal space toward zero.
However, this can be expected to work only if (3.2) holds. If, in
reality, R8 # 0, all the parameters of the transformed model may be
large in absolute value. Because of this, applying ESP or shrinkage
criteria, which omits variables and shrinks the remaining coefficient
towards zero in the orthogonal space, is unlikely to lead to substan-
tial risk gains compared to the risk of the ML estimator. Comsequently,
procedures that select models and perform the shrinkage in the original
space may .in general be expected to do a better job. One exception is
the case of ill-conditioned data where one or more of the characteristic
roots of the X'X matrix may be near zero. For these reasons, within
the context of the principal components parameter space, ESP may work

well in reducing the MSEP (Hill and Judge, 1986).

5. Sampling Experiment

To obtain information on the sampling performance of the alter-
native model selection—-estimation procedures Monte Carlo sampling
experiments were performed. The experiments involved the general
linear statistical model y = XB + g, where B contains 8 non-zero

2 _ .25, 1, 4.

location parameters and 7 zeroes, and e ~ N(O,GZI) with ¢
The relevant part of the design matrix X was (30x8) where the jth column
was the jth lag of the first column xt. Variable X, was generated by

an AR(1l) process with X, = pX + s with p = 0.9 and v, N(0,1).

t-1
Models M1, M2 and M3 with the following location vectors that reflect

alternative lag structures for the distributed lag were used:
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MLz g, = (1.87, =2.48, =.25, =.25, =.25, =25, =25, =25, Q)'
M2: B, = (1.02, 1.54, 2,05, 1.23, 0.74, 0.45, 0.26, 0.16, 0)'
M3: g4 = (2.07, 1.63, 1.25, 0.92, 0.64, 0,41, 0.22, 0.10, Q).

The first location vector 51 represents a situation where no low-
order polynomial is a reasonable approximation of the lag function.
The lag function depicted by EZ has a sharp peak at lag 2 while the
tail is smooth. Finally, the non-zero regression coefficients of
§3

expected that the shrinkage of b towards bR’ where R contains the

lie exactly on a second degree polynomial. In this case it can be
second (or higher) order polynomial conditions is strong, i.e., c is

close to one in the operational version of (3.3). For comparability,
the elements of all three vectors have been chosen in such a way that
the norms of the vectors are equal.

Interest is focused on the performance of (3.3) where c, p and R
are determined by minimizing (3.4) with f(n,p) = 2. Within this con-
text, the shrinkage criterion is thus a generalization of Cp' The
degree of polynomial q-1 is varied from zero to six and an alternative
with no polynomial restrictions at all is included in the minimiza-
tion. If the degree of polynomial equals ¢-1, say and p > q, then the
jth row of the ((p-q) x p) constraint matrix Rq is [Rq]j = (0,+0.,0,1,
- (g),..., (—l)j(§),...3(—1)q,0,...,0) cf. for example, Terasvirta
(1976). The number of zerés in the beginning of the row is j-1 and at
the end p-q—j. The lag length is varied from 6 to 15; however, for

p £ 7 we set Qax = p-l.
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To evaluate the performance of the "generalized Cp“ (GCP) we in-
cluded some ordinary model selection criteria in the MSEP comparisons.
Since all the criteria to be used are based on the squared sum of
residuals, the MSEP is a natural choice for assessing thelr perfor-
mance. The model selection criteria were allowed to select one of the
models with no polynomial restrictions and lag lengths from 6 to 15.
The criteria used were Cp’ AIC and SC; for exact definitions cf. e.g.,
Judge, et al. (1985, Chapter 21), Of these, the SC is dimension con-
sistent in the sense that asymptotically it selects the correct lag
length with probability one. For the other two criteria there is a
positive probability of overestimating the lag length even asymp- ‘
totically. 1In fact, they have the same asymptotic behavior. However,
in this experiment n = 30, so that we are far from the asymptotic
situation., This will be obvious from the results.

Table 1 contains the theoretical values of R2 for each of location
vectors ML, M2 and M3 and thus conveys an idea of how large the values
02 actually were. When 02 < 1, the models are quite good with high
Rz. When 02 = 4, R2 is below 0.9 and as n = 30, at least this case

may call for smoothness restrictions and estimators of type (3.3).

6. Results

The computations were performed on a CYBER 175 computer. The
main subroutine library-was ISML and the random number generator GGNML
of ISML was used to generaté Xt (once) and 100 samples of yt. The para-
meters of M1, M2 and M3 were estimated for each sample, and an MSEP esti-
mate was computed from the 100 samples. Another interesting statistic,

the sample mean of the equivalent number of regressors, is also reported.
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Before studying the performance of the shrinkage criterion we shall
note some general features of the model selection criteria in these
experiments. Terasvirta and Mellin (1986) have derived finite sample
approximations to significance levels of model selection criteria in
the case of nested model alternatives. When n = 30 and the models con-—
sidered have 8 to 15 regressors (7 to 14 lags), the significance levels
of AIC, Cp, and SC are .537, .340, and .229, respectively. Table 2
contains the corresponding observed frequencies for these criteria in
Ml to M3 when 02 = ,25, Although in the present experiment, underesti-
mation of the true lag length (seven) is allowed, the frequencies corre-
spond quite closely to the significance levels. The tendency for
underestimation increases with 02. From the significance levels we
may conclude that the sample mean of the equivalent number of regressors
will be largest for AIC, clearly smaller for Cp and smallest for SC.

AIC and Cp are asymptotically equivalent criteria, but their significance

levels imply considerable differences in their behavior in this experiment.

6.1 Model M1

Table 3 contains the results for the Ml parameter vector, where
large gains cannot be expected from imposing polynomial restrictions.
The shrinkage criterion GCp has almost as small an MSEP as SC when
02 = 0.25. As the error variance increases (02_2 1), the GCp is still
better than the AIC and.Cp but not as good as SC. It is worth men-
tioning that, depending on 62, the polynomial restrictions selected by
the GCp are those of a polynomial of order zero in 75 to 79 cases out

of 100. Thus using the criterion very often leads to deleting a few

lags and shrinking the remaining ML estimates towards their grand mean.
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Theoretically, one could then expect the GCp to improve upon the ordi-
nary Cp’ which does not shrink the ML estimates of the selected lag
coefficients. That also happens in this experiment when 02 <1.
However, considering a whole set of polynomial restrictions together
with the lag length and choosing a combination of them adds to the
uncertainty compared to the case where the only polynomial considered
is of degree zero. The extra added uncertainty translates into
increased risk in estimation. It is thus conceivable that GCp could
have higher risk than Cp in some cases where all low-order polynomials
are very bad approximations of the true lag function. This is the case
here when 02 = 4.

The AIC criterion is inferior to the Cp and SC criteria in Ml
for reasons explained above. Note that the strong tendency of AIC of
overestimating the dimension of the model does not depend on 8 or 02
but is dependent on the sample size which was not varied in this
experiment.

The sample mean of the equivalent number of regressors (ENR) decreases
as 02 increases. This is natural as an increase in the error variance
is equivalent to a decrease in the relative amount of sample informa-
tion and thus in the number of parameters it is profitable to estimate

from the data.

6.2 Model M2
From Table 4 it is seen that M2 is already a favorable case for
shrinkage criteria, in spite of the fact that the lag function still

has a rather jagged shape. For 02 21, GCp has a lower MSEP than the
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model selection criteria. The shrinkage in GCp is in that case
substantial as indicated by the values of ENR. A wide variety of com—
binations of lag length and degree of polynomial are chosen in the 100
trials. On average, however, the longer the lag length, the higher

the degree of polynomial.

6.3 Model M3

The parameters of M3 lie exactly on a second degree polynomial, so
that the actual number of coefficients to be estimated is only three.
As can be expected, the model selection criteria are overwhelmed by
GCp because the former are only applied to selecting the lag length and
not the degree of polynomial; see Table 5. This limitation is probably
an advantage in Ml and to an extent in M2 but has an adverse effect on

the performance of the criteria in M3. Under this specification the

ch criterion results in the selection of a wide spectrum of lag lengths
with the second order polynomial as the most popular alternative. This
is understandable from (3.5) where now m(R) = p~q. When ¢ + 1, the
weight of p in (3.5) approaches zero and only q matters. Of course,
the choice of p still affects the residual variance of the model.
Overall, the shrinkage criterion behaves well in the experiments
conducted here. It is not appreciably inferior to model selection
criteria when the potential gain from polynomial restrictions is
small. On the other hand, Fhe GCp is able to benefit from polynomial
restrictions if they do hold. Both the model selection criteria and
the shrinkage criterion are clearly superior to the ML estimator

because M1-M3 contain several redundant lags.
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6.4 Other experiments

We also experimented with the use of an orthogonal space in
solving the model selection and estimation problems. The lag length
was varied from 6 to 15 while it was assumed that the non-zero coef-
ficients of the lag function were points on a second-order polynomial.
The parameter space was transformed for each lag length using the
Judge and Bock (1978, p. 84) transformation. In the orthogonal space,
the ESP criterion was employed to omit variables and shrink the
remaining coefficients towards zero. The final estimator was chosen
by the ESP (the minimization was extended over the lag length). It
was not possible to vary the degree of polynomial due to lack of com-
parability of the values of the statistic for different polynomials.

In theory this approach should have worked in connection with M3
where the coefficients indeed were points of a second order polyno-
mial. In spite of this the results were disappointing and showed at
best only marginal risk gains over the ML estimator. Therefore, we
were not able to suggest a suitable technique for doing the model
selection and parameter estimation partially in an orthogonal space

when the original model is non-orthogonal.

7. Directions for Further Research

Another way of taking account of smoothness restrictions (3.2) is

to apply the estimator
% -
by() = (X'XAR'R) 1 gy (7.1)

that has been discussed, among others, by Golub et al. (1979), Engle

et al. (1983) and Titterington (1985). In (7.1), A 1is a smoothing
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parameter. This estimator coincides with (3.3) when A » 0 and ¢ + 1
so that both (7.1) and (3.3) in that case approach bR' Their paths
leading to bR are different, however, which makes it interesting to
know whether these differences are also reflected in the MSEP of these
estimators. It is likely that (7.1) will emphasize local smoothness
of the lag function more than (3.3); see e.g., Titterington (1985).
Using (7.1) requires determining the value of the smoothing para-
meter A. Golub, et al. (1979) have suggested a solution which involves
minimizing the generalized cross-validation criterion (GCV). Within
this context Terasvirta (1986) has considered the possibility of
generalizing other existing model selection criteria to find a good
smoother and evaluated the asymptotic properties of the generalized
criteria. These generalizations can also be extended to choosing p and
R. However, A can only be determined numerically, which may cause a
relatively heavy computational burden if p and R are varied as well.
For this reason, (3.3) combined with a member of (3.4) to determine c
is computationally an attractive altermative because there is an analy-
tical expression for E. The research to compare the small sample MSEP

properties of (3.3) with those of (7.1) is currently under way.

8. Summary comments

For the general linear statistical model we have considered under
squared error loss and Vithin a simultaneous context the problems of i)
which explanatory variableslto include and 1i) how to estimate the
corresponding parameters. Consequently, we have sought a solution as

to which zero order constraints to impose when estimating § and how to
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best estimate § subject to these constraints. In this situation, under
a MSEP criterion, it is tempting to reparameterize the model in an
orthonormal (g space) and use the ESP or some other model selection
criteria to select a proper subspace. Unfortunately, our prior infor-
mation is usually on the original B space and not on the transformed 6
parameters. Because of this, some model selection procedures such as
ESP and (3.1) do not perform any better than unconstrained maximum
likelihood procedures.

To mitigate this outcome a generalized Cp (GCP) criterion was
developed and applied to alternative parameter structures for a
distributed lag problem. Using Monte Carlo procedures the proposed
GCp procedure under a MSEP measure, in each case compared well with
the traditional information criteria and outperformed the unconstrained
ML estimator. The GCp criterion is easy to apply and it has the novel
feature of simultaneously considering, within a decision theory context,
the joint problems of model specification and estimation in a non-

orthogonal setting.
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Footnote

lTer'ésvirta and Mellin (1986) define three categories of model
selection criteria, two of which appear generalized in (3.4) and (3.9).

A corresponding generalization of their third category would be
~2 ~2
5C4(c,p,R) =07 (e,p,R) + 0" (e,p,R)P(c,R)E(n,p(c,R)) /0, (3.10)

This category contains several well-known criteria: one example is the
generalized cross-validation criterion GCV (Golub et al., 1979). How-
ever, deriving the "shrinker" c¢ by minimizing this generalization would
have to be done numerically. The reasons for that are that f may now
be a function of ¢ and az(c,p,R) also appears in the second term of
(3.10). Minimizing the value of the criterion then amounts to solving

a higher degree equation in c.
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Table 1

Theoretical Values of the Coefficient Determination R2 in
Models M1, M2 and M3

.2
0.25 1.0 4.0

Model

Ml - R .974 .904 .701

M2 - R .989 .958 .851

M3 - R .988 .955 .842




Table 2

Observed Frequencies in 100 Trials for Choosing a Longer
Lag than Eight for Mi-M3 and g2 = .25 Using Model Selection Criteria,
and Significance Levels for the Same Criteria when the True Model
has Lag Length 7, the lLongest Lag Considered is 14 and n = 30

Criterion Model Significance
M1 M2 M3 level
Cp 36 33 33 «340
AIC 55 53 48 .537

sC 27 26 18 +229




Table 3

The Mean Squared Error of Prediction and Equivalent Number
of Regressors (ENR) of Shrinkage and Model Selection Procedures

for Ml
Shrinkage
or model 02 = 0.25 02 =1 02 = 4
selection
criterion MSEP ENR MSEP ENR MSEP ENR
GCp (3.4) 2.50 8.38 10.19 7.75 41.14 6.42
Cp 2.64 8.93 10.39 8.37 39,34 7.58
AIC 2.97 10.14 11.94 9.80 45.10 9.03
SC 2.44 8.53 10.10 7.66 36.67 7.00
MLE* 3.66 15.00 14.64 15.00 58.54 15.00

*The ML estimator estimates all 15 coefficients; no model selection.




Table 4

The Mean Squared Error of Prediction and Equivalent Number
of Regressors (ENR) of Shrinkage and Model Selection Procedures

for M2

Shrinkage
or model 02 = 0.25 02 =1 02 = 4
selection
criterion MSEP ENR MSEP ENR MSEP ENR
GCp (3.4) 2.72 7.25 9.34 5.72 33.76 4.65
Cp 2.63 8.58 10.03 7.84 36,06 7.25
AIC 3.02 9,90 11.78 9.50 43.51 8.76
SC 2.54 8.19 9.88 7.48 34.66 6.85
MLE#* 3.66 15.00 l4.64 15.00 58.54 15.00

*The ML estimator estimates all 15 coefficients; no model selection,



Table 5

The Mean Squared Error of Prediction and Equivalent Number
of Regressors (ENR) of Shrinkage and Model Selection Procedures

for M3
Shrinkage
o wadel o2 = 0.25 o2 = 1 o2 = 4
selection
criterion MSEP ENR MSEP ENR MSEP ENR
GCp (3.4) 1.55 3.89 6.74 3.59 23.95 3.30
Cp 2.47 8.18 9.68 7.54 34,91 7.17
AIC 2.90 9.63 11.42 9.21 42.70 8.72
5C 2.41 7.58 9.36 7.13 32.60 6.69
MLE* 3.66 15.00 l4.64 15.00 58.54 15.00

*The ML estimator estimates all 15 coefficients; no model selection.
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