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Abstract

This paper begins by presenting a general framework for linking the
various stages of econometric analysis and utilization: specification,
estimation and selection of optimal policy. It is then assumed that
least squares methods are used to estimate the model, and the influence
of the explanatory power of the model on the optimal decision and on

the effectiveness of economic policy is assessed. It is concluded that
that the statistical criteria for the exercise of optimal policy seem to
justify the standard certainty equivalence use of econometric models

where the residual,and not the coefficients,is the source of uncertainty.



il INTRODUCTION

The quantitative relationships produced through econometric analysis
are widely used in economic forecasting and policy-making. This varies
from the short-cut utilization of impact coefficients to large-scale
simulations of the outcome of various policy alternatives. Recently

it has become common to assume that a natural extension of the
application of statistical methods in economic analysis is to use

estimated models in the explicitsolution of policy selection problems.

The successive stages af econometric model utilization are naturally
linked together. The specification of the model influences the esti-
mation results, which in turn influence the reliability of the fore-
casts obtained from the model. Policy recommendations depend on both

model specification and estimation results.

At the outset the econometric theory of optimal economic policy neg-
lected the vital element of “second order" uncertainty relating to

the full chain of econometric analysis. In this paper we first present
an outline of the stages of econometric analysis needed for the selec-
tion of optimal economic policy. Stress is given to the fact that an
essential feature of the optimal procedure is to consider the effects
of economic policy on the variability of the target variables around
their means and not just on the means as noted by Brainard (1967).
After considering the general case we proceed to the Tinear model

and least-squares estimation, and study the properties of optimal
policy. Only the static case of policy selection is considered in

this paper.



In the latter part of the paper we consider the much discussed problem
whether the policy variables (e.g. the money supply) should be used in
an active way to finetune the economy or set passively at some constant
value. This gives us insight into the influence of the explanatory power
of the model on optimal policy and the effectiveness of policy. We can
then draw some conclusions about the necessity of treating the impact
coefficients as stochastic instead of nonstochastic, which is done in

the certainty equivalence procedure.

The following framework can be used in the analysis of optimal economic
policy. Assume that there is a relationship between the variable y and
variables XyseeesXps denoted in short by x. In a policy context we call
y the goal or target variable and x the policy or control variables.
The basis for statistical model-building is the well-known regression
problem: minimize E(y-f(x))2 with respect to f,1) the solution of which

is 8,80 = (i

The econometric problem is to find or approximate the generally unknown
regression function E(ylx). Let the outcome of the econometric analysis
be the (reduced form) function y(x). It is also assumed that this gives
the solution to the prediction problem. The prediction of y, conditional

upon variables x, is denoted by ye(x).

1) E denotes expectations with respect to variables y and x.
YsX



The economic policy problem is defined as follows. In analogy with the
previous approaches, the guadratic criterion is used so that deviations

of y from its target value y*, which is assigned by the economic decision-
maker, are minimized. We thus have the following formulation of the

policy problem:

(1) Minimize L(x) = 5[(y-y*)zlx] with respect to x subject to the

constraint y = y&(x) + e, where e is the residual term').

Before proceeding to the general case where, in addition to the residual,
the model ye(x) is considered to be partly unknown and stochastic, let

us examine briefly the ideal case where the regression function (the
true model) is known to the econometrician. Because the residual is
uncorrelated with the regression function, we have

z

L(x) = (E(ylx) - y*)~ + Eez, hence the optimal X satisfies

(2) y* = E(yl1%).

This is the classical certainty equivalence result of optimal economic
policy presented in a general form. In his original derivation, Theil

(1958) analyzed the linear model case. When the model is known to the
decision-maker and only the residual is unknown, it is optimal to aim

directly at the target value so that it is also the expected policy

outcome.

1) We do not explicitly consider the case where the model also includes
uncontrollable explanatory variables. They may be simply seen to
be fixed parameters or noncorrelated with y€(x).



2 OPTIMAL POLICY IN THE GENERAL STATIC CASE

In general it is necessary to carry out the econometric analysis first,
which means that the prediction function ye(x) is stochastic. Two impor-
tant assumptions underlying the following analysis (and also much of
econometric inference) are that ye(x) is an unbiased prediction function
and that the residual e is uncorrelated with x. First, we consider the

case of only one target and one policy variable.

The objective function can now be written

2 2

L(x) = y*2 + E(®)% + of - 2y*(Ey®).
Replacing E(y®)% = o?(y%) + (Ey®)% and taking the derivative with
respect to policy variable x, we get the following basic equation

for optimal economic policy

() oy BER) - 00

“ a(Ey®)/ox
The denominator on the right hand side is assumed to be different from
zero, i.e. it is assumed that policy variable x is not inefficient with
respect to goal variable y. Equation (3) shows that it is not optimal

to aim directly at the target if the variance of the forecast depends

on the policy decision, cf. Brainard (1967).

Let us now consider the linear case. The variables are measured as
deviations from their means so that ye = bx. Substituting ye for the

unknown expectation Eye = Ey allows us to express equation (3) as
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Q = —E-Q, where t = b/ob

using standard regression theory as an analogy. Equation (4) can be

illustrated as follows.

Figure 1. Optimal policy in the linear case])
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It can be seen that the slope of the right hand side of (4) determines
the solution. If variable x is a poor explanatory variable for y, i.e.
if t is small, it is optimal to use a cautious policy so that the
target y* is not entirely reached. The expected outcome of the optimal
policy always lies in the range (0,y*) (or (y,y+y*), where y is the
mean of y). From formula (4) we see that the "better" the explanatory
variable (in the t-statistic sense), the more the optimal policy
resembles the certainty equivalence policy where the condition

y* = Eye(x) is fulfilled. If the variability of the target variable
increases (if Oh increases) and the ratio b/ob remains the same, the

optimal policy becomes more cautious.

1) The certainty equivalence decision is denoted by xce in the figure.



The analysis can be easily generalized to the case of multiple goals

and multiple policy variables. Let y = (y1,...,yg)' and y* =

be the corresponding vectors of the target variables and

(Y75 ¥g)"
their target values. The criterion function is now specified to be

L = E(y-y*)"' W(y-y*), where W is a symmetric positive definite matrix
of weights. Let 3z/3x be the column vector of partial derivatives
az/axi, i=1,...,k, and £ the covariance matrix of the forecasts,
ie. 5= E(y - Ey?)(y? - Ey?). Taking the derivative of L with
respect to x gives us the generalization of (3)

O .

* e,
(5) :‘: (‘y'i = E.yi(x)) ?w'ij X -7 3%

The weights I Wis 3(Ey§)/ax on the left hand side of (5) denote the
marginal expgcted impacts of the policy variables weighted over various
goal variables j using intergoal weights Wij' On the right hand side,

the marginal impacts of the policy variables on the forecast error
variances and covariances are weighted similarly. Suppose now that

the model is Tinear, y = lIx + e. When calculating £ we generally need

all the covariances between the elements in II. However, as Johansen (1973)
has pointed out, if the matrix W is diagonal, only the covariances

between the coefficients in the same equation are needed.



i THE LINEAR CASE WITH SEVERAL POLICY VARIABLES

Let us now derive the optimal policy in the case where the policy-maker
has one goal and several policy variables at his disposal. First, we

may note that equation (3) applies for each policy variable X =] 5w 5i5kKs
separately, but that the derivative of the variance of the forecast

error with respect to Xs also depends on policy variables other than

X; - We thus have a system of simultaneous equations (5) from which the

optimal policy is derived.

The vector of policy variable coefficients is now denoted by b. The
unbiased prediction function is thus ye = b'x and the variance of the
prediction (error) is cz(ye) = x'cov(b)x + og, where cov(b) is the
covariance matrix of coefficients b. The equation system corresponding

to (5) is
(6) b(y* - y%) = cov(b)3,
from which we solve the optimal policy
A - -1
(7) X = (bB' + cov(b)) "by*.
The matrix inverse in (7) exists generally because the matrix bb' + cov(b)
is positive definite. Thus, the optimal solution is unique, as is well-

known from Brainard (71967).

Using a suitable matrix inverse formula, we get the result presented by

Zellner (1971)



A Z—1b
(8) X = ;;ETE:TB- y*, where £ = cov(b).
Let us turn to the linear case and suppose that b has been estimated
by least-squares from the sample (yt, xt]”"’xtk)’ t=1,...,T, which
we denote by (y,X). Let 52 be the estimated residual variance of the
model. Since b = (X'X)-]X'y, the estimate of cov(b) is sz(X'X)_1. In
this case the true regression coefficients of the model, which are
unknown, are approximated by their estimate b and the covariance matrix
T by its estimate. We may also give a Bayesian interpretation to this
case and consider b and sZ(X'X)'] to be the expectation and covariance
matrix of the a posteriori distribution of the true coefficient vector.
The optimal policy rule (7) is interpreted to be the best possible
policy with the given data (y,X). Expression (8) can now be reduced

to

= X'y *
2 1 "] y .
sT+y'X(X'X) X'y

x>

(9)

The numerator consists of the covariances in (y,X) between y and all

the explanatory variables x except factor T'1.

The denominator is the
sum of the residual variance and the sum of squares explained by the
model. From (9) we note that the intensities with which policy variables
are used in the optimal solution relative to their standard deviations
s(xi) in the sample depend only on the pairwise correlations between

the target variable and the policy variables. From (9) we get

7 *
(10) L = r s(y)A, A = Y — -
S(Xi) YsX; 52+y'X'(X'X) 1X'y



The direction in which variable X; changes relative to its mean in
the optimal solution depends on the pairwise correlation of the
variable in question and the relation of the target value to its

mean.

Formula (10) also shows that the degree to which optimal policy is
subject to model misspecification depends on the denominator in A.
Generally if we incorrectly omit an explanatory variable, the
denominator in A is too small and thus the remaining policy variables
have too much to do and deviate more from their means than they

would if all relevant variables were included. The smaller the

=

increment in the R~ of the model when the omitted variable is added,

the smaller the bias is.

4. COMPARISON OF THE OUTCOME OF DIFFERENT POLICIES

We now analyze the outcome of the optimal policy conditional on
sample (y,X). We make the following substitutions 52 = (1-R2)y'y/(T-k),
y'X(X'X)—]X'y = Rzy'y and obtain '

Ly = E-y9)? = E(y* - bR-e)?
y y
2
(1) L + 52
14(T-k-1)R?

It can be seen that the value of the optimal policy is an increasing
function of the explanatory power of the model, i.e. the loss L0

decreases as R2 increases. We may also note that the Toss is at
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a minimum when a passive goal-setting policy is pursued, when y* = 0.
When T approaches infinity, LO approaches the (lower bound) value 02,
the value of LO in the certainty equivalence case, which is asympto-
tically reached in the more general framework as T approaches infinity.
The total loss in (11) consists of two parts, the first depending on the
multiplicative uncertainty related to the coefficients of the policy
variables and the second, 52, being the additive uncertainty related to
the residual of the model. As R2 approaches one, both components go to
zero, but the multiplicative factor goes much more rapidly to zero than

the additive one, as we shall see below.

We define passive policy xP as that which always makes the policy

variables identical to their sample means, x1.P =X = 0. In this case

the objective function L takes the value Lp

(12) Ly = E(y-y*)? = E(e-y%)? = y*° + s2.
We now compare the two policies. In analogy with the usual F-statistic

criterion used to testing whether the coefficient vector differs from

zero, we now consider the function (Lp-LO)/Lo. It can be further written

(]3) t = 2 ’
0 S 252
=— + h(R )
y*

1

where h(Rz) = (1-R2)(1+(T—k-1)R2)' . As T approaches infinity, h(R2)

goes to zero if R2

> 0 and (Lp-Lo)/L0 approaches the asymptotic upper
limit y*zlog . The gain is thus inversely related to residual variance

of the model and directly related to the deviation of the target from
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the mean of the target variable. Thus, the gain in policy-making from
econometric analysis depends partly on the intentions of the policy-
maker and is not solely a theoretical problem.

2 -
Figure 2 shows (13) as a function of R2 when T=25, k=4, and y* = (T-k) ]y'y.

In the picture the relative increase in the usual sum of squares, R2(1-R2)'],

is also presented. The gain in optimal policy is uniformly greater than

-] -I 1

the corresponding gain in estimation if y*2 3 (T-k) 'y'y. If y*2< (T-k) 'y'y

the curve (Lp-Lo)/Lo in figure 2 rotates downwards and intersects the
curve R2(1-R2)_] approximately in the point where R2= y*2/(T-k)-]y'y. So,

the gain increases more rapidly as a function of Rz when the goal-setting

is more active, i.e. when y"2 increases. On the other hand, the higher

y*2 is, the less explanatory power is needed to attain a required relative

increase in the gain of optimal policy-making over the passive one.

Figure 2. Comparison of optimal and passive policies.
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If, instead of the relative gain in (13), we consider the absolute gain
Lp-L0 which depends only on the multiplicative factor in (11), we observe
that this function very rapidly approaches its maximum value y¥2 (which

is one in figure 2) as R2 increases from zero. In the range where econo-
metric applications usually are located, say R2>~O.4, there is virtually
no absolute gain in optimal policy over the passive one from extra expla-
natory power which improves both policies much in the same way. These
results show that it is not essential for policy-making to reduce the
multiplicative uncertainty related to the coefficients of the policy
variables but the overall additive uncertainty, i.e. the residual variance

of the model, even though these two factors cannot be separated from each

other in econometric analysis.

The previous results reflect the fact that the optimal decision (9) itself
does not depend much on R2 of the model, except when R2 is small. The
reaction of Iﬁi] to an increase in R2 depends on whether this increase
can be attributed to variable x; or not. If k=1 and !ry’xilincreases from

zero, then ]?1| increases very rapidly like L -L  from zero to |y*/b|.

p
If k>1 and lry % I remains the same even though R2 increases, then

>
generally 'iil decreases. For instance, a change in R2 from 0.5 to 0.6

would reduce Iﬁil by 15 per cent.

We should consider carefully the previous results and the assumptions

underlying them. In fact, the above LO is the expected outcome of the

optimal policy when the observations (y,X) are given. In order to
make a fair comparison, we should also let the observed y vary. Thus
the curve in figure 2 should be weighted by the density of the
observed R2 around its "true" value pz. This of course does not alter

the above advantage of an active policy over the passive one.
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Formula (11) can be written

0 s2+ESS

where ESS is the sum of squares explained by the model. Approximating
the term in parentheses simply by sz/ESS allows us to apply standard
distribution theory. If the true coefficient vector were zero, the
ratio z = ksZ/ESS would obey the F-distribution with parameters

(T-k,k) when the residuals are normal and independent. We now have

2
2 (Ji_q = 2(T-2) (k > 4)

ESST T (T-k) (k-2) (k-4)

s 1
E(E—S‘g') X2 and ¢

If T =20 and k

EL0 ~ 0.378y*2 + oi. Generally, the outcome is much better with

optimal policy, and the value of the objective function hardly

5, the expectation of the objective function is

exceeds og, which is the value of the objective function in the

certainty equivalence case.

B CONCLUDING REMARKS

The analysis of optimal policy with a model estimated using least
squares method leads to some interesting results. The determination
of optimal values for policy variables is closely linked to the
partial correlations between the instrumental and goal variables,
and uncertainty in the estimation of the parameters influences the

use of all policy variables in the same way.
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We were also able to draw inferences about the relative advantage of an
active or optimal policy over a passive one. The criteria for the expla-
natory power of the model applied in decision-making depend on the inten-
tions of the policy-maker. The more the target deviates from the mean of

the target variable, the Tess explanatory power in the model is needed

to reach a similar relative outcome in optimal policy over the passive one.

The results also suggest that the standard certainty equivalence use of
econometric models is justified because over the relevant range of
uncertainty attached to coefficients of the policy variables, the
multiplicative uncertainty does not have a significant role in optimal

decision-making.

It should, however, be borne in mind that the same model is applied
in two different ways: to derive the optimal policy and to calculate
the outcome of different policies. The "objective" uncertainty in the
"true" model which the statistical analysis considers is not the only
source of error which confronts the decision-maker. He also has to
choose between the conflicting recommendations of different schools
of economic thought. In this wider context, a passice policy may seem
desirable because it corresponds to cautious goalsetting, and caution
may seem advisable when there are a number of competing models and

economic philosophies.

-
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