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Abstract

This paper begins by presenting a general framework for linking the

various stages of econometric analysis and utilization: specification,

estimation and selection of optimal poliey. It is then assumed that

least squares methods are used to estimate the model, and the influence

of the explanatory power of the model on the optimal decision and on

the effectiveness of economic policy is assessed. It is concluded that

that the statistical criteria for the exercise of optimal policy seem to

justify the standard certainty equivalence use of econometric models

where the residual,and not the coefficients,is the source of uncertainty.



1. INTRODUCTION

The quantitative re1ationships produced through econometric ana1ysis

are wide1y used in economic forecasting and po1icy-making. This varies

from the short-cut uti1ization of impact coefficients to 1arge-sca1e

simu1ations of the outcome of various po1icy a1ternatives. Recent1y

it has become common to assume that a natura1 extension of the

application of statistica1 methods in economic ana1ysis is to use

estimated mode1s in the exp1icitso1ution of po1icy se1ection prob1ems.

The successive stages af econometric model uti1ization are natura1ly

1inked tagether. The specificatian of the model influences the esti

mation results, which in turn influence the reliabi1ity of the fore

casts abtained from the model. Po1icy recommendations depend on both

mode1 specification and estimatian resu1ts.

At the outset the econometric theory of optima1 economic po1icy neg

1ected the vita1 element of "second order" uncertainty relating to

the ful1 chain of econometric ana1ysis. In this paper we first present

an out1ine of the stages of econometric analysis needed for the selec

tion of optima1 economic po1icy. Stress is given to the fact that an

essentia1 feature of the optimal procedure is to consider the effects

of economic po1icy on the variabi1ity of the target variab1es around

their means and not just on the means as noted by Brainard (1967).

After considering the general case we proceed to the 1inear mode1

and 1east-squares estimation, and study the properties of optimal

po1icy. On1y the static case of policy se1ection is considered in

thi s paper.
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In the latter part of the paper we consider the much discussed problem

whether the policy variables (e.g. the money supply) should be used in

an active way to finetune the economy or set passively at some constant

value. This gives us insight into the influence of the explanatory power

of the model on optimal policy and the effectiveness of policy. We can

then draw some conclusions about the necessity of treating the impact

coefficients as stochastic instead of nonstochastic, which is done in

the certainty equivalence procedure.

The following framework can be used in the analysis of optimal economic

policy. Assume that there is a relationship between the variable y and

variables x1' ... ,xk' denoted in short by x. In a policy context we call

y the goal or target variable and x the policy or control variables.

The basis for statistical model-building is the well-known regression

problem: minimize E(Y-f(x))2 with respect to f,l) the solution of which
y,x

is t, t(x) = E(ylx).

The econometric problem is to find or approximate the generally unknown

regression function E(ylx). Let the outcome of the econometric analysis

be the (reduced form) function y(x). It is also assumed that this gives

the solution to the prediction problem. The prediction of y, conditional

upon variables x, is denoted by ye(x).

1) E denotes expectations with respect to variables y and x.
y,x
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The econom;c pol;cy problem ;s def;ned as follows. In analogy w;th the

prev;ous approaches t the quadrat;c cr;ter;on ;s used so that dev;at;ons

of y from ;ts target value y*t wh;ch ;s ass;gned by the econom;c dec;s;on-

maker t are m;n;m;zed. We thus have the follow;ng formulat;on of the

pol;cy problem:

(1) M;nimize L(x) = E[(y_y*)2 IxJ with respect to x subject to the
y

constraint y = ye(x) + et where e is the residual terml ).

Before proceeding to the general case where t in addition to the residual t

the model ye(x) is cansidered to be partly unknawn and stochastic t let

us examine briefly the ideal case where the regressian function (the

true madel) is known to the ecanametrician. Because the residual is

uncarrelated with the regression function t we have

L(x) = (E(ylx) - y*)2 + Ee2, hence the optimal ~ satisfies

(2) y* = E(yl~).

This is the classical certainty equivalence result of optimal economic

policy presented ;n a general form. In his original derivation, Theil

(1958) analyzed the linear model case. When the madel is knawn to the

dec;s;on-maker and on1y the residual ;s unknown, it ;s optimal to aim

directly at the target va1ue so that it is a1so the expected pol;cy

outcome.

1) We do not exp1ic;t1y consider the case where the mode1 also includes
uncontrol1ab1e exp1anatary variab1es. They may be s;mply seen to
be fixed parameters or noncorre1ated w;th ye(x).



- 4 -

2. OPTIMAL POLICY IN THE GENERAL STATIC CASE

In general it is necessary to carry out the econometric analysis first,

which means that the prediction function ye(x) is stochastic. Two impor

tant assumptions underlying the following analysis (and also much of

econometric inference) are that ye(x) is an unbiased prediction function

and that the residual e is uncorrelated with x. First, we consider the

case of only one target and one policy variable.

The objective function can now be written

respect to policy variable x, we get the following basic equation

for optimal economic policy

(3)

The denominator on the right hand side is assumed to be different from

zero, i.e. it is assumed that policy variable x is not inefficient with

respect to goa1 variab1e y. Equation (3) shows that it is not optima1

to aim direct1y at the target if the variance of the forecast depends

on the policy decision, cf. Brainard (1967).

Let us now consider the linear case. The variables are measured as

deviations from their means so that ye.; bx. Subs·tituting ye for the

unknown expectation Eye = Ey a110ws us to express equation (3) as



(4)
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2
II °b °b

y* - bx =1) ~ =1: ~, where t = b/ob

using standard regression theory as an analogy. Equation (4) can be

illustrated as follows.

Figure 1. Optima1 po1icy in the linear case1)

y

It can be seen that the slope of the right hand side of (4) determines

the solution. If variable x is a poor explanatory variab1e for y, i.e.

if t is sma11, it is optimal to use a cautious po1icy so that the

target y* is not entire1y reached. The expected outcome of the optima1

policy always lies in the range (O,y*) (or (y,y+y*), where y is the

mean of y). From formula (4) we see that the IIbetter" the exp1anatory

variable (in the t-statistic sense), the more the optimal po1icy

resemb1es the certainty equiva1ence po1icy where the condition

y* = Eye(x) is fulfil1ed. If the variability of the target variab1e

increases (if 0b increases) and the ratio b/ob remains the same, the

optima1 policy becomes more cautious.

1) The certainty equivalence decision is denoted by x in the figure.
ce
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The ana1ysis can be easi1y genera1ized to the case of mu1tip1e goa1s

and mu1tip1e po1icy variab1es. Let y = (Y1, ... ,Yg)' and y* =

* *(Y1,· .. ,yg)1 be the corresponding vectors of the target variab1es and

their target values. The criterion function is now specified to be

L = E(y-y*) 1 W(y-y*), where Wis a symmetric positive definite matrix

of weights. Let oZ/ox be the column vector of partia1 derivatives

OZ/ox., i = 1, ... ,k, and L the covariance matrix of the forecasts,
1

i.e. L .. = E(y: - Ey:)(y~ - Ey~). Taking the derivative of L with1J 1 1 J J
respect to x gives us the generalization of (3)

(5)

e 1\
* e 1\ o[EYj(x)] 1 atr WL

L (Y1' - Eyi (x)) L w.. --"'''~x-- ="2" "xi j 1J a a

The weights L w.. a(EYJ~)/ax on the left hand side of (5) denote the
j 1J

marginal expected impacts of the policy variables weighted over various

goal variables j using intergoal weights wij . On the right hand side,

the marginal impacts of the policy variables on the forecast error

variances and covariances are weighted similarly. Suppose now that

the model ;s linear, y = ITx + e. When calculating L we general1y need

a1l the covariances between the elements ;n IT. However, as Johansen(1973)

has pointed out, if the matrix Wis diagonal, on1y the covariances

between the coefficients in the same equation are needed.
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3. THE LINEAR CASE WITH SEVERAL POLICY VARIABLES

Let us now derive the optimal policy in the case where the policy-maker

has one goal and several policy variables at his disposal. First, we

may note that equation (3) applies for each policy variable x., i=l, ... ,k,
1

separately, but that the derivative of the variance of the forecast

error with respect to xi also depends on po1icy variab1es other than

x.. We thus have a system of simu1taneous equations (5) from which the1 .

optima1 po1icy is derived.

The vector of policy variable coefficients is now denoted by b. The

unbiased prediction function is thus ye = b'x and the variance of the

prediction (error) is cr2(ye) = x'cov(b)x + cr~, where cov(b) is the

covariance matrix of coefficients b. The equation system corresponding

ta (5) i s

(6) b(y* - ye) = cov(b)~,

from which we solv~ the aptima1 po1icy

(7)
A -1x = (bb' + cov(b)) by*.

The matrix inverse in (7) exists genera11y because the matrix bb' + cov(b)

is positive definite. Thus, the optima1 solution is unique, as is we11-

known from Brainard (1967).

Using a suitab1e matrix inverse formula, we get the resu1t presented by

Zel1ner (1971)
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cov(b).

Let us turn to the linear case and suppose that b has been estimated

by least-squares from the sample (Yt' xt1 '· .. ,x tk ), t = 1, ... ,T, which

we denote by (y,X). Let s2 be the estimated residual variance of the

model. Since b = (X'X)-lX'Y, the estimate of cov(b) is s2(X ' X)-1. In

this case the true regression coefficients of the model, which are

unknown, are approximated by their estimate b and the covariance matrix

L by its estimate. We may also give a Bayesian interpretation to this

case and consider b and s2(X ' X)-1 to be the expectation and covariance

matrix of the a posteriori distribution of the true coefficient vector.

The optimal policy rule (7) is interpreted to be the best possible

policy with the given data (y,X). Expression (8) can now be reduced

to

(9)

The numerator consists of the covariances in (y,X) between y and all

the explanatory variables x except faetor T-1. The denominator is the

sum of the residual variance and the sum of squares explained by the

model. From (9) we note that the intensities with which policy variables

are used in the optimal solution relative to their standard deviations

s(xi ) in the sample depend only on the pairwise correlations between

the target variable and the policy variables. From (9) we get

(10)
~.

1
--,-~ =
s(Xi ) r s(y)A, Ay,x

i

= y*
S2+yIXI(XIX)-'Xly
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The direction in which variable xi changes relative to its mean in

the optimal solution depends on the pairwise correlation of the

variable in question and the relation of the target value to its

mean.

Formula (la) also shows that the degree to which optimal policy is

subject to mode1 misspecification depends on the denominator in A.

General1y if we incorrect1y omit an explanatory variable, the

denominator in A is too sma11 and thus the remaining po1icy variab1es

have too much to do and deviate more from their means than they

would if a11 re1evant variab1es were inc1uded. The sma11er the

increment in the R2 of the mode1 when the omitted variab1e is added,

the sma11er the bias iso

4. COMPARISON OF THE OUTCOME OF DIFFERENT POLICIES

We now ana1yze the outcome of the optima1 po1icy conditiona1 on

samp1e (y,X). We make the fo110wing substitutions s2 = (1-R2)y'y/(T-k),

y'X(x'X)-lx'y = R2y'y and obtain

L = E(y_y*)2 = E(y* - b'~-e)2
o y y

(11 ) 2 l-R2
=y*

1+(T-k-l)R2

It can be seen that the yalue of the optimal po1icy is an increasing

function of the explanatory power of the mode1, i.e. the 10ss Lo
decreases as R2 increases. We may also note that the loss is at
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a minimum when a passive goal-setting policy is pursued, when y* = O.
2When T approaches infinity, Lo approaches the (lower bound) value 0e ,

the value of L in the certainty equivalence case, which is asympto-o
tically reached in the more general framework as T approaches infinity.

The total loss in (11) consists of two parts, the first derending on the

multiplicative uncertainty related to the coefficients of the policy

variables and the second, s2, being the additive uncertainty related to

the residual of the model. As R2 approaches one, both comronents go to

zero, but the multiplicative factor goes much more rapidly to zero than

the additive one, as we shall see below.

We define passive policy xP as that which always

variables identical to their sample means, xi
P =

the objective function L takes the value Lp

makes the policy

-x. = O. In this case,

(12)
222= E(e-y*) = y* + s .

~~e now compare the two policies. In analogy with the usual F-statistic

criterion used to testing whether the coefficient vector differs from

zero, we now consider the function (Lp-Lo)/Lo' It can be further written

where h(R2) = (1-R2)(.l+(T-k-l)R2)-1. As T approaches infinity, h(R2)

goes to zero if R2 > 0 and (Lp-Lo)/Lo approaches the asymptotic upper

limit y*2/0~ . The gain is thus inversely related to residual variance

of the model and directly related to the deviation of the target from
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the mean of the target variab1e. Thus, the gain in po1icy-making from

econometric ana1ysis depends part1y on the intentions of the po1icy

maker and is not sole1y a theoretical prob1em.

Figure 2 shows (13) as a function of R2

In the picture the re1ative increase in

*2 -1when T=25, k=4, and y = (T-k) y'y.
2 2-1the usua1 sum of squares, R (l-R) ,

is a1so presented. The gain in optima1 policy is uniform1y greater than

the corresponding gain in estimation if y*2 ~ (T-k)-ly'Y. If y.2< (T_k)-ly'Y

the curve (Lp-Lo)/Lo in figure 2 rotates downwards and intersects the

curve R2(1_R2)-1 approximate1y in the point where R2= y*2/(T_k)-ly'y, 50,

the gain increases more rapid1y as a function of R2 when the goal-setting

is more active, i.e. when y*2 increases. On the other hand, the higher

y*2 is, the less exp1anatory power is needed to attain a required re1ative

increase in the gain of optimal policy-making over the passive one.

Figure 2. Comparison of optima1 and passive po1icies.

2

1

o 1
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If, instead of the re1ative gain in (13), we consider the abso1ute gain

Lp-Lo which depends on1y on the mu1tip1icative faetor in (11), we observe

that this function very rapid1y approaches its maximum value y*2 (which

is one in figure 2) as R2 increases from zero. In the range where econo-
2metric app1ications usually are located, say R >0.4, there is virtually

no abso1ute gain in optima1 po1icy over the passive one from extra exp1a-

natory power which improves both po1icies much in the same way. These

resu1ts show that it is not essentia1 for po1icy-making to reduce the

mu1tip1icative uncertainty re1ated to the coefficients of the po1icy

variab1es but the overa11 additive uncertainty, i.e. the residua1 variance

of the mode1, even though these two factors cannot be separated from each

other in econometric ana1ysis.

The previous resu1ts ref1ect the fact that the optima1 decision (9) itse1f

does not depend much on R2 of the mode1, except when R2 is sma11. The

reaction of I ~ij to an increase in R
2 depends on whether this increase

can be attributed to variab1e Xl' or not. If k=l and Ir 1 increases fromy,x i
zero, then J~il increases very rapid1y 1ike Lp-Lo from zero to IY*/b/.

though R2 increases, then

change in R2 from 0.5 to 0.6

We shou1d consider carefu11y the previous resu1ts and the assumptions

under1ying them. In fact, the above L is the expected outcome of theo
optimal policy when the observations (y,X) are given. In order to

make a fair comparison, we should a1so 1et the observed y vary. Thus

the curve in figure 2 shou1d be weighted by the density of the

observed R2 around its "true" va1ue p2. This of course does not alter

the above advantage of an active po1icy over the passive one.
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Formula (11) can be written

2+ s ,

where ESS is the sum of squares explained by the model. Approximating

the term in parentheses simply by s2/ESS allows us to apply standard

distributian theory. If the true coefficient vector were zero, the

ratia z = ks2/ESS would obey the F-distribution with parameters

(T-k,k) when the residuals are normal and independent. We now have

2(T-2) (
(T-k)(k-2)2(k-4) k > 4)

If T = 20 and k = 5, the expectation of the objective function is
2 2ELo ~ 0.378y* + 0 e . Generally, the outcome is much better with

optimal poliey, and the value of the objective function hardly

exceeds 0~' which is the value of the objective functian in the

certainty equivalence case.

5. CONCLUDING RE~1ARKS

The analysis of optimal palicy with a model estimated using least

squares method leads ta some interesting results. The determination

of optimal values for policy variables is closely linked to the

partial correlations between the instrumental and goal variables,

and uncertainty in the estimation of the parameters influences the

use of all policy variables in the same way.
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We were also able to draw inferences about the relative advantage of an

active or optimal policy over a passive one. The criteria for the expla

natory power of the model applied in decision-making depend on the inten

tions of the policy-maker. The more the target deviates from the mean of

the target variable, the less explanatory power in the model is need ed

to reach a similar relative outcome in optimal po1icy over the passive one.

The results a1so suggest that the standard certainty equivalence use of

econometric mode1s is justified because over the re1evant range of

uncertainty attached to coefficients of the po1icy variab1es, the

multiplicative uncertainty does not have a significant role in optimal

decision-making.

It shou1d, however, be borne in mind that the same mode1 is applied

in two different ways: to derive the optima1 policy and to calcu1ate

the outcome of different policies. The "objective" uncertainty in the

"true" mode1 which the statistica1 analysis considers is not the only

source of error which confronts the decision-maker. He a1so has to

choose between the conf1icting recommendations of different schoo1s

of economic thought. In this wider context, a passice po1icy may seem

desirable because it corresponds to cautious goalsetting, and caution

may seem advisable when there are a number af competing mode1s and

economic phi1osophies.

1
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