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1. Introduction

When considering forecasting an aggregate time series directly or

alternatively aggregating forecasts of its components, several issues

have to be taken into account. First, there is the general question of

whether disaggregated forecasting is better than aggregated fore

casting. Second, if the micro series are forecasted, should they be

estimated and forecasted individually or jointly? Third, if a macro

equation is analyzed, how should it be specified so that it is

consistent with the micro equations? Finally, if the micro equations

are used in forecasting, how are the forecasts aggregated opt1mally?

In this paper we concentrate on the last issue.

The disaggregated series may be aggregated using weights that are

correct by a priori reasoning. For example, the aggregate may be

simply the sum of the micro series. It is shown below that even in

this case it may be optimal to estimate the weights. The procedure we

suggest is closely related to the problem of combining competing

forecasts. In that work alternative forecasts of the same variable are

combined to obtain a better composite forecast. In contrast, we

discuss combining forecasts of different micro variables for

forecasting a macro variable.

In section 2 we briefly review relevant literature on forecasting and

aggregation. In section 3 we present the theoretical results on

aggregating micro forecasts and in section 4 the use of the method is

illustrated in an empirical application. Section 5 concludes the paper.
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2. Aggregate vs. Disaggregate Forecasting

It is commonly agreed upon that disaggregate time series contain more

information than aggregate time series and should therefore be used in

forecasting. There may, however, be situations where macro-level

forecasting is preferable. Aigner and Goldfeld (1974), for example,

argued that ofter aggregate data is measured more accurately than

disaggregated data. This gives rise to a tradeoff between aggregation

bias and measurement error. They showed that when the micro equations

have the same coefficients and this constraint is imposed in estima

tion, micro forecasting dominates macro forecasting. When the micro

parameters are different, there are conditions under which macro

forecasting dominates.

Related work has recently been done in time series analysis. Several

authors have discussed a situation where a macro time series to be

forecasted is a linear combinations (transformation) of micro

variables, which follow e.g. ARMA processes; see e.g. Lutkepohl

(1984a) and references cited these. The common result in this work is

that by mean squared error (MSE) criterion it is preferable to

aggregate forecasts from the micro equations rather than to forecast

the macro relation directly. These results generalize to the case

where the micro series follow a vector ARMA process. Empirically,

however, the optimality of disaggregated forecasting may not hold if

the orders and parameters of the processes have to be estimated

(Lutkepohl (1984b».

A related issue is whether it is preferable to forecast the micro

variables jointly or to forecast them separately and then combine the
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individual forecasts. Ze11ner and Huang (1962) showed in a regression

framework that forecasts from a seemingly unrelated (SUR) system of

equations minimize the generalized MSE, defined as lE I where E is the

MSE matrix of the individual forecasts xe • = (x~, ... ,x~). It is easy

to show that this result holds also for a linear combination w'xe of the

forecasts, where w is a kxl vector of weights.

Similarly, LOtkepoh1 (l984a) shows that it is better to forecast a

linear transformation of a vector ARMA process than to take a linear

combination of univariate ARMA forecasts. The former leads to a smaller

MSE matrix than the latter or the macro forecasts. However, the MSEs

from a combination of univariate forecasts and from the macro forecast

cannot be ranked a priori.

Further, we can note that the macro equation should be consistently

aggregated from the micro equations. Results in aggregation theory

show that if one has equations whose coefficients vary over the micro

units, an aggregation bias is induced by taking a simple weighted

average of the micro equations (e.g. Thei1 (l971b)). As noted above,

this may have an influence on whether micro or macro forecasting

dominates. A related issue is that if the micro series follow ARMA

processes, a macro series, which is a linear transformation of the

micro series, is also an ARMA process. The micro series imply

constraints on the order and coefficients of the macro process. If

these constraints are taken into account, forecasting the macro series

leads to the same MSE as combining forecasts of the micro series. In

practice, since the restrictions and parameters are unknown, fore-

casting the macro equation may lead to a smaller MSE than forecasts

from the micro equations (LOtkepohl (l984b)).
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The papers mentioned above do not discuss how to choose optimally the

transformation (or weights) used for aggregating the micro forecasts.

In the next section we show how this can be done using a regression

procedure.

3. Optimal Aggregation

Consider a situation where a variable Yt is a linear combination of

micro variables Xt = (xlt •...• xkt ): Yt = Xtw. where w is a kxl vector

of weights. For example. if the weights are wj = 1. j = l •...• k. Yt

is the sum of the micro variables. Another example is that the variables

Yt • Xt are in percentage change form and. using bars to denote variables

in level form. Yt is the sum of the elements of Xt. Then the weights wt

are variable over time and are approximately equal to the shares of xit's

in Yt.

From the forecasting point of view an essential question is whether it

is optimal to use the "correct" weights w or some other ones. This

problem is related to the work on taking linear combinations of

competing forecasts. Granger and Ramanathan (1984) have recently

generalized some earlier work in this area. Let ye = (y~ •...• y~) be

competing forecasts of y. Granger and Ramanathan show that the sum of

squared forecast errors is smaller if the forecast of Y is based on

a+yew or yew rather than on yew*. where wand w* are weights to be
I

estimated; ikw* = 1 (i k is a kXl vector of ls). but w is unconstrained.

Our problem is clearly fairly similar to this.

Other proposed methods for combining forecasts that thave worked well

in practice include averages of competing forecasts. i.e. w = ik/k.
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and methods that take into account correlations between forecast errors

(see e.g. Clemen and Winkler (1986) and Figlewski (1983». Clearly,

averaging forecasts makes little sense when the forecasts are on

different variables, as in this paper. The approach where the cross-

correlations are taken into account usually assumes that the forecasts

are unbiased, which is, however, not the case below. We therefore

concentrate on the regression-based approaches along the same lines as

Granger and Ramanathan (1984).

Let y be a nxl vector of the macro variable to be forecasted for n time

periods and xi' i = l, ... ,k, be nxl vectors of k micro variables in

the same time periods. The whole micro data is given by the nxk matrix

e eX = (xl, ... ,xk). The forecasts of xi and X are denoted xi and X ,

respectively.

The usual case is to form first the forecasts X~ individually or

jointly using e.g. SUR or vector ARMA methods. The forecast of y is

then Xew, where wis the kxl vector of by a priori reasoning correct

weights. The sum of squared forecast errors (SSFE) is

SSFE
l

= (y_xew) I (y_Xew)

= QI(X_Xe)I(X_Xe)w (1)

Taking expectations we obtain E(SSFE1) = W'LW, where L is the MSE matrix

of the micro forecasts. As discussed in Section 2, ILl is minimized

using a joint estimation and forecasting method. Clearly, also SSFEl

is minimized by this.

Let us now consider the case where the weights are unconstrained. The

sum of squared forecast errors is minimized by choosing w = ~ = (Xe'Xe)-lxe.y,



We have

SSFE2
eA eA(y-X W)I(y-X w)

= y'M Y (2)2
SSFE1

(_ A)lxelxe(- A)- w-w w-w ,

where M2 = I_Xe(Xe'Xe)-lxe,.

Expression (2) is smaller than SSFE1 . This follows from the simple

fact that any coefficient vector that differs from least squares

coefficients leads to a larger sum of squared errors. Hence the

forecasts can be further improved by estimating the aggregation

We can also consider adding a constant in the forecasting rule, i.e.

using ain+XeW as the macro forecasts for the periods 1, ... ,n. This

amounts to running a regression of y on xe and a constant. The

structure of the problem is exactly the same as in Granger and

Ramanathan (1984), but it is presented here in the same framework as

the methods above.

e* e ~ * e* 1 e*Denote X = (in,X ), w* = (a,wl)l, w* = (Xe IX )- X 'yand
A A

w* = (O,W')I. The sum of squared forecast errors when a constant is

included is then

SSFE
3

(y_xe*~*)I(y_xe*w*)

= y'M Y3
A ~ e* e* A ~

= y'M2y - (w* - w*)'X IX (w* - w*), (4)
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where

when no constant was included.

We can also note that the forecast is unbiased within the sample used

for estimating w*, since the sum of the errors is zero in a regression

with a constant (e.g. Theil (1971b), p. 40). In contrast, the forecast

based on Xew is in general biased if the micro forecasts are biased.

This can be seen by writing the forecast error in that case as

(5)

If Xe is unbiased, the mean of the first term in (5) is zero, but
A

the mean of the whole expression is not zero unless also w is an un-

biased estimate of w.

It seems important to adjust for biasedness in the aggregation stage,

since the micro forecasts Xe can be biased e.g. by transformations

made before aggregation. For example, consider a situation where the

aggregate series is the sum of the micro series, but forecasts of the

micro series are made in logarithmic form. Before aggregation,

antilogs of the micro forecasts have to be taken. Even if the fore-

casts of logx i were unbiased, the resulting forecast of xi are

likely to be biased.

An alternative way to correct for biases is to aggregate the micro

forecasts using first the "correct" weights ~ and then adjust ye for

systematic biases by choosing a and S to minimize the sum of squared

forecast errors (y-a-Sye) I (Y_a_Sye) (e.g. Theil (197la), pp.
A A e A A e A A

34-5). The corrected forecast is a + sy = a + SX Q, where a and S
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are least-squares estimates. Although unbiased, this forecast would be

less efficient than the ones considered above. It would, however be

better than using the unadjusted forecast with weights w.

Denote e* (. e) (. Xe-) (i Xe)-* Xe*-* -* lr 1 OJy = 'n'Y = 'n' w = n' w = w, w = 0 w '
Ok is a kxl vector of zeros, y = (a,S)1 and Y = (/*!/*)-lye~,y.
For the unadjusted forecast y = y = (0,1)1. The sum of squared forecast

errors is

SSFE4
e*/'o e*A

= (y-y y)l(y_y y)

= y' M4y
A _* I * I *.. /'0

= SSFE1 - (y_y) IW xe xe w(y-y) (6 )

y'M Y
~ _*A e* e* ~ _*A

= + (w-w y) IX I X (w-w y) ,
3

where e* e*1 e* 1 e*1 e*- e* e*- 1- e*M4 = I-y (y Y )- Y = I-X W*(W*IX IX w*)- W*IX I.

Hence the sum of squared forecast errors is smaller than in the

unadjusted case, but larger than in the case where the aggregation

weights are also estimated together with the adjustment for bias.

The discussion above deals with situations where the aggregation

weights are estimated using data from the same period where the

forecasts are made. The optimality of the presented methods therefore

applies only within the sample period. The relevant question in actual

forecasting is how well the methods perform out of sample. Then even

the adjustments do not guarantee that the forecasts are unbiased. We

study this issue empirically in the following section of the paper.
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4. An Application

We have estimated short-run autoregressive forecasting models for the

volume of building construction in Finland. Ten different subcategories

and total building construction are forecasted. The micro forecasts

are interesting by themselves, since they can be used for predicting

construction investment in different industries. They can also be used

for forecasting the aggregate volume using the methods described above.

The data used is the index of the volume of building construction

(1980=100). Quarterly data 1975.1-1983.4 was used for specification

and estimation of the models and 1984.1-1985.2 for out-of-sample

checking. Before estimation the data was transformed to four quarter

differences of the logarithms of the variable. In the aggregation

stage the forecasts were transformed back to the levels of the volume

indexes. The way the volume indexes are calculated was changed in 1985.

The new indexes have the same base year 1980 as the old ones, but they

are available only from 1982 onwards. The four quarter log changes of

the old series were used for forming index series for the period

1975-81, which are consistent with the new indexes.

The autoregressive models were specified individually and estimated

with OlS. First, four lagged values of the volume and a constant were

included in the models. Using the t-values and Schwarz's Bayesian

Information Criterion (SBIC), unnecessary terms were dropped. The

estimation results are shown in Table 1. Residual autocorrelation was

tested with the lagrange multiplier test. Fourth-order autocorrelation

was rejected in all models at the 1 % level and accepted in only one

model at the 5 % level.
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The spec~f~ed models were est~mated again as a SUR system using the

error covariance matrix estimated from the univariate OLS residuals.

The SUR estimates did not differ much from the OLS estimates, and are

not presented here.

We have compared 6 different forecasts of total bu~lding construct~on

(i) macro forecast, (ii) weighted sum of the micro forecasts using

a priori chosen we~ghts, (iii) we~ghted sum of the micro forecasts,

using estimated weights, (iv) as (iii), but w~th a constant, (v)

weighted sum of some of the principal components of the micro fore

casts, w~th estimated weights, (vi) m~cro forecasts summed as in (i)

and the sum corrected for bias. forecasts (ii)-(vi) were calculated

also using SUR estimates in forecasting the micro var~ables. for each

case we calculated root mean squared error, RMSE (min~mizing SSfE

~mpl~es minimizing also RMSE) , mean absolute error, MAE, and mean

error, ME, of forecasts.

The volume of total bu~ld~ng construction is the sum of the volumes of

the subgroups at 1980 prices. Therefore, the a pr~ori weights for the

forecasts of the subgroup indexes are the volume shares of the

subgroups in 1980; they are shown in Table 1. This implies an

additional way of aggregating the forecasts. We might consider
I

estimating the weights w subject to the constraint that i kw=l.

Granger and Ramanathan (1984) show this to lead to a larger SSfE than

estimation of the weights freely. We have transformed the a pr~ori

weights to w= i k by multiply~ng the subgroup forecasts by the 1980

volume shares. We therefore expect to f~nd estimates of the we~ghts to

be close to one. Th~s procedure gives approximately the same result as

constrain~ng the we~ghts to add up to 1. S~nce all volume ~ndexes have

the same base year, the sum of the estimated weights times volume

shares has to be close to 1 when no constant ~s ~ncluded.



Table 1. OLS estimates of the models.

Subgroups - Total
bullding

0 1 2 3 4 5 6 7 8 9 construction

Constant .11 .18 .13
(2.56) (2.91 ) (4.72)

VO_l .36 .53 .62 .56 .94 .37 .31 .55
(2.36) (3.76) (4.69) (3.48) (5.86) (2.20) (1. 81 ) (3.81 )

VO_2 .31 -.43
(1. 82) (-2.75)

VO_3 -.35
(-2.83)

VO_4 -.36 -.49 -.47 -.45 -.41 -.39 -.46 -.29 -.33
(-3.26) (-2.90) (-2.21) (-2.63) (-2.30) (-2.58) (-2.67) (-1.51) (-2.79)

SBIC -69.89 8.89 -3.50 12.12 -.34 4.86 -17.48 -.39 9.53 -27.77 -64.55 -'
-'

lM4 12.78 4.73 8.99 10.87 2.79 8.98 6.77 5.27 2.57 .34 5.33

w .541 .052 .034 .035 .039 .038 .118 .051 .031 .061

VO four-quarter log difference of volume of construction
w volume share 1980
t-values in parentheses
SBIC Schwartz's Bayes1an information criterion
lM4 lagrange multiplier test stat1st1c for testing 4th order autocorrelation; distributed as X2(4),

critical values 5 %: 11,1, 1 %: 13.3
0 Residential bu11d1ngs
1 Shop, accommodation and restaurant buildings
2 Institutional buildings
3 Office buildings
4 Build1ngs for assembly
5 Educational buildings
6 Industrial buildings
7 Warehouses
8 Buildings for agriculture, forestry and fishing
9 Transport service buildings and other buildings

~
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SBIC Schwartz's Bayesian information criterion
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critical values 5 %: 11,1, 1 %: 13.3
0 Residential buildings
1 Shop, .accommodation and restaurant buildings
2 Institutional buildings
3 Office buildings
4 Buildings for assembly
5 Educational buildings
6 Industrial buildings
7 Warehouses
8 Buildings for agriculture, forestry and fishing
9 Transport service buildings and other buildings
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Table 2. Estimation of the aggregation weights;
OLS forecasts

Constant 20.142

(1.108)

xe 1.050 1.2610
(2.846) (3.968)

xe -.698 .1411
(-.455) ( .105)

xe -.208 1.3622
(-.084) ( .668)

xe 2.191 1.2133
(1.378) (.912)

xe .852 1.0134
(.648) (.769)

xe -1.837 -.8865
(~1.043) (-.573)

xe 1.376 1.9096
(1.529) (2.496)

xe 2.834 2.4567
(2.605) (2.362)

xe .250 -1.0808
( .107) (-.534)

xe -.238 - .1799
(-.204) (-.152)

-2 .888 .996R

t-values in parentheses

xe is forecasted volume of act1v1ty 1n subgroup 1.1
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Table 2 shows the estimation results when the index of total building

construction was regressed on the forecasted volumes of the 10 sub

groups, multiplied by respective 1980 volume shares. The results show

that the estimates differ slightly from one although the difference is

not statistically significant. In the case where no constant is

included F-value for testing w = i 10 is .83 with 10 and 18 degrees

of freedom. Hence the equality of the estimated and a priori weights

is clearly accepted. The results when SUR estimates were used in

forecasting were similar.

The estimates show that only a few of the aggregation coefficients are

significantly different from zero and some are negative. One would

expect that subgroups that have large forecast variances would get

smaller weights than their volume shares indicate. Also the

correlatedness of the individual forecasts affects the signs and

magnitudes of the coefficients. If the forecasts are highly correlated,

it is not possible to obtain precise estimates of the individual

elements of w. This may explain the large standard errors we obtained.

In the present case multicollinearity is not a problem within the

sample used for estimating the weights, since one still obtains good

estimates of Xew. However, out of sample, imprecision of the

estimated weights may have a large effect on forecast accuracy.

Therefore it is useful to re-estimate the weights using principal

components.

If all the principal components are used, RMSE is naturally the same

as when all 10 weights are estimated. If less principal components are

used, within sample RMSE will increase, but out of sample forecasting

performance may improve since the parameter estimates are more precise.
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Below only the first principal component is used. The largest eigen-

value of the covariance matrix of he micro forecasts, multiplied by

1980 volume shares, was 117.557. This accounted for 89.8 percent of

the trace of the covariance matrix. The corresponding principal

e e e e ecomponent is pc1 = .969xO + .018x1 + .010X2 + .041x3 + .043X4
e e e e e- .007xS + .09SX6 + .131x7 + .108x8 + .141x9.Regression of the

volume of total building construction on the first principal component

and a constant yielded VO = 12.673 + 1.S77pc1 (t-values in parentheses,
(1.817)(12.432)

R2 = .8S1). This equation was used in forecasting case (v).

Finally regression of the volume of total building construction on the

aggregate of the micro forecasts using a priori weights resulted in

equation VO = -2.499 + 1.01Sew (t-values in parentheses, R2 = .889).
(-.362)(14.745)

If the aggregated series were unbiased, we would have a=O, B=1, which

is clearly accepted by the estimation results.

Table 3 shows the comparison of the forecasting performance of the

different forecasts. Within sample the macro forecast performs worse

than the aggregated one with weights w. When the weights are

estimated, the forecasting performance improves further. The use of

principal components results in the highest RMSE. Table 4 gives the

comparison out of sample. Here the principal component forecast

results in the smallest RMSE and the macro forecast the second

smallest. Therefore disaggregated forecasting pays inour example only

if principal components are used. We experimented forecasting with

more than one principal component. This led to a smaller RMSE within

sample but a larger one out of sample. With two principal components,

RMSE was 5.731 within and 6.132 out of sample. The RMSEs in Table 4 are

slightly larger than in Table 3, except for the principal component and macro
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forecasts. Estimation of the weights again leads to lower RMSE than

using the a priori weights. When also a constant is included, RMSE,

MAE and mean error are slightly larger than when the weights are

estimated without constant. The results also show that out of sample

all the forecasts are biased.

Joint estimation of the micro equations with SUR did not seem to

matter much. Within sample the RMSEs were slightly smaller in cases

(ii) and (iii). Out of sample SUR led to larger RMSE than OLS in all

cases. The fact that the forecasts did not improve from the use of SUR

may be due to a deviation of the estimated covariance matrix from the

true but unknown one.

Table 3. Performance of one period ahead forecasts
wit hi n samp1e ; OLS estimates

RMSE MAE ME

( i ) Macro forecast 6.555 5.304 .794

( i i ) A priori chosen
weights 6.133 5.120 -1.013

(i i 1) Estimated weights 5.077 4.215 .086

( i v) Estimated weights
with constant 4.903 3.918 .000

(v) Principal component 7.017 5.660 .000

(vi) A priori chosen
weights with
adjustment for bias 6.043 4.963 .000
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Table 4. Performance of one period ahead forecasts
out of sample; OLS estimates

RMSE MAE ME

( i ) Macro forecast 4.718 3.754 -1.825

( i i ) A priori chosen
weights 6.912 5.549 -5.212

(i i i) Estimated weights 5.686 5.024 -2.867

(iv) Estimated weights
with constant 6.186 5.070 -3.899

(v) Principal component 3.811 2.961 1.216

(vi) A priori chosen
weights with
adjustment for bias 6.305 5.175 -4.244

5. Conclusions

Out of sample only the forecast based on the first principal component

of the micro predictions was better than the macro forecast. Part of

the reason for this may be that some of the autoregressive models do

not fit very well. Further work is under way to experiment with ARIMA

models and models that include other variables, e.g. construction

permits. In any case the results show that the gain from dis-

aggregation may be outweighted by imprecise estimates caused by

multicollinearity when the aggregation weights are estimated.

The aggregation methods might be developed further. Comparison of the

methods when forecasting several periods ahead would be interesting.

On the other hand,estimation of time-varying aggregation weights would

allow aggregation of the micro forecasts directly in percentage change

(or log difference) form; in the case of combining competing forecasts

this has recently been suggested by Engle, Granger and Kraft (1984).
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