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EFFICIENT METHODS OF MEASURING WELFARE CHANGE AND COMPENSATED
INCOME IN TERMS OF MARKET DEMAND FUNCTIONS
by Yrjd O, Vartia
The Research Institute of the Finnish Economy, Helsinki,
Finland

Abstract

When evaluating the effects of economic policy upon individuals
the concepts of utllity, well-being or welfare change are often
used. These are usually unobservables which are approximated
using index number calculations or consumer surplus measures
based on observable information.

We consider a situation where a consumer maximizes a (unob-
served, ordinal) utility function u(g) under the budget restric-
tion. Consumer's market demand system h{(p,C) 1s supposed to be
known but the utility function is unknown to the researcher.

The problem is to evaluate whether the change in utility bet-
ween two arbitrary equilibrium situations (po,qo) and (pl,ql)

is.positive, zero or negative. Revealed preference theory tells
that h(p,C) in principle gives sufficient information to solve
the problem.

Our operational solution 1s based on the theory of Divisia-
T8rngvist chain indices and consumer surplus measures. We
present an algorithm to calculate the compensated income
Bt - C(pl,qo) and the compensated (or Hicksian) demand

al = H(pl,qo) = h(pl.C(pl.qO)) for any (pl,qo) using only
the known market demand system q = h(p,C). The algorithm is
easily interpreted using index number theory or consumer

surplus measures and it is shown to work efficiently.

EFFICIENT METHODS OF MEASURING WELFARE CHANGE AND COMPENSATED

INCOME IN TERMS OF MARKET DEMAND FUNCTIONS®

1. Introduction

The problem is here formulated in terms of consumer

theory. A consumer chooses'a bundle of goods q = (ql,...,qn)
as if he were maximizing a well behaving ordinal utility
function u(g) under a budget constraint p-q = Zpiqigc, where
p = (pl,...,pn) and C > 0 denote exogenous positive prices

and expenditure. Let qo and ql be two equilibrium points
corresponding to price - expenditure §ituations (po,co) and
(pl;cl). Our problem is to find out whether the welfare change
from q0 to ql is positive (q0 < ql), negative (qO > ql) or

zero (qo ~ ql), when the utility function is unknown to us.

If we do not know the demand functions q; = hi(p,c),i=1,...,n,
the problem cannot be generally solved. All we can infer if
we know only two equilibrium points (po,qo) and (pl,ql) is
presented in the following revealed preference table, see

Vartia (1976), Afriat (1972, p. 20, 1977, p. 64-78).

P_=1 P >1
Pq <1 a q
Incon-
1 0 sistent Inconsistent
Lq <1 T <aq prefe- preferences
rences
s IR 1 0 Inconsistent
By=1 qren e 9 ~4q preferences
Zone of 1., 0 1 0
Lq 21 Indeterminacy 1 =4q a > 4

*) I am indebted to L. Térnqvist and P. Vartia for helpful
conversations and advice and to H. Vajanne for programming
the algorithm.
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,po) = pl.ql/p -g  and Lq = QL(q 9 PP )=

Here pq =of (ql,qorp
po'q]/pooqo are Paasche's and Laépeyres' quantity indices.
Instead of "Inconsistent preferences" we perhaps should write

"Impossible under utility hypothesis". Note that 4f

Py = o (at,q%,pt,0% > 1 then gty o°
< 1 then ql< qo-

and if L_ = o"(qt,q%,pt,p%

In the Zone of Indeterminacy any two equilibrium points (pO,qo)
and (pl,ql) giving Pq <1< Lq could be generated by numerous
alternative preferences some of which order qo and ql differ-

ently. This was demonstrated already by Samuelson (1947).

Therefore we have to assume something more to proceed. We
suppose that the demand system h(p,C) = hl(p,C),...,hn(p,C))
satisfying the standard utility hypothesls is known to us
although the utility function is not. Although the known

h(p,C) describes completety the market behaviour of our
consumer it is still difficult to evaluate when his satis-
faction or utility has increased and when remained constant.
The revealed preference theory shows that demand functions

give all the information needed to determine the indifference
surfaces, see Samuelson (1948 and 1953), Houthakker (1950),
Uzawa (1960) and Stigum (1973). The upper and lower sequencies
of 'offer curves' used in revealed preference arguments approxi-
mate the indifference surface from above and below respectively
and converge therefore slowly towards it. Our algorithm gener-
ates sequencies of quantity vectors that approximate the in-
difference surface more accurately and converge quickly towards

it. The principle of our algorithm was stated e.g. by

Bergson (1975, p. 39).

The approximation of economic index numbers or measurement of
consumer surpluses is complicated because of this kind of
mainly computational difficulties clearly demonstrated by
McKenzie and Pearce (1976) . Their theoretically elegant
solution to the same problem is based on high order derivates
of the demand functions and its applicability depends on how

easily these gan be evaluated, see also G. McKenzie (1976) .

Therefore their solution is as such unsuitable for computer
simulation. Our proposed solution presented in our algorithm
is based on the theory of Divisia-T8rngvist indices and
consumer surplus measures and it is easily taught even to

the "labourous full idiot", the computer.

2, Conceptual background

_ n+1
Let @ = nz+ be the non-negative quadrant of (n+l) dimensional
Euclidean vector space and 9Q* its subset. Consider functions
. n
h: Q* o nz+ assigning to any price-expenditure pair (p,C) in
Q* one and only one guantity vector qg = h(p,C) in nzﬂ. We are

: n
liberal and call h: Q* - R, a demand function (or system) if

h(p,C) is an element of the budget set B(p,C) = {glp-q < C},

i.e."if h satisfies BC:



BC. Budget condition: Y (p,C)€Q*: p<h(p,C) < C.

We do not consider here demand correspondences or more
general choice functions where h{p,C) may denote a set of
q's, see Richter (1966). The name 'demand function' is often

used only for h's that satisfy

B. Balance: V(p,C)€Q*: p:-h(p;C) = C

H. Homogeneity of degree zero:

V(p,C)€Q*:VA > o: h(Ap;AC) = h(p,C) = K(p/C;1);
see e.g. Kihlstr6m, Mas-Colell and Sonnenschein (1976), Shafer

(1974) . As we saild we are more liberal here.

A demand function h(p,C) may or may not correspond to some

(utility) function u: r"

+ * R. We say that a utility function

u: RT » R represents a given demand function h: Q* - 312 1f

+

h(p,C) is the unique u-maximal element in any budget set B(p,C):
For all (p,C)€Q*: Vvg€B(p,C): q # h(p,C) = u(q) < u(h(p,C)).
Sometimes such a u(g) is said to 'rationalize' h(p,C). We

try to apply here Richter's (1966) terminology, where 'ratlon-

alize' is used only in connection with (preference) relations

R and is therefore more general.

A demand function may satisfy the following (rather weak)

utility hypothesis.

WUH: Weak utility hypothesis

The demand function h: Q* - I{E is representable by some

utility function, i.e. there exists a function u: nzg -+ IR

representing the given demand function.

Note that if u(q) represents h(p,C) and g: R-» IR is strictly
increasing then also ul(g) = g(u(g)) represents h(p,C). If ,
h(p,C) satisfieé WUH then H is true, but e.g. B may well be
untrue. It is a standard practice in demand theory to derive
demand systems using a Lagrangian F(g,\) = u(g) - A(p-g-C),
where u(g) is sufficiently well-behaving utility function,
see e.g. Wold and Jureen (1953), Rajaoja (1958), Malinvaud
(1972, p. 12-42),Phlips (1974). Following this line of

thinking gives rise to the following (rather strong) utility

hipothesis:

SUH: Standard utility hypothesis

The demand function h: Q¥ - 122 is representable by a standard
(i.e. continuosly twice differentiable, strictly increasing

and strictly quasi-concave) utility function u: K!E - IR.

Our standard utility function is more specific than e.q. the
normal utility function of Afriat (1972, o. 32). Between the
weak and standard utility hypotheses there are many intermediate
cases, which complicates the issue. If SUH holds for a h(p,C)

then it satisfies B and H, is continuous and differentiable
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and has many other nice properties. E.g. its Slutsky matrix
A(p.C), a (n x n)-matrix consisting of substitution terms

i i : :
aj(p,C) = hj(p,C) + h'(p,C)h ,, (p,C), 1is symmetric (S) and

negatively semidefinite (NSD) for all (p,C)EQ*. Conditions

S and NSD are Jjust the economic integrability conditions
considered by Hurwicz (1971), see also Kihlstrdm, Mas-Colell
and Sonnenschein (1976) or Chipman and Moore (1976, p. 79 and

111) .

As demonstrated first by Hicks (1946) and Samuelson (1947)
and shown later by Shephard (1953, 1970) in the contex of
production theory, L. McKenzie (1957), Diewert (1971), Afriat
(1972, 1977) and others it is possible to define the minimum

expenditure (or cost) function

C(p,q) = min{CIC = p-J & u(q) = u(q)} = min Pq
q~q

under fairly general conditions on u(g). C(p,gq) 1is the
minimum expenditure needed to bye the well-being determined
by g (i.e. some § indifferent to g) when prices are p. For
any given p the function C(p,q) of q is a utility function,

in particular g ~ a = C(p,q) = C(p,&), see e.g. Afriat (1972,
p. 17 and 36). If g = h(p,C) or (p,q) is an equilibrium pair
then C = p-q = C(p,q) . We will use C(p,q) freely in our later
operations and regard as evident that it is sufficilently well-
behaving when u(q) is a standard utility function. We suppose

in the sequel that our demand system h(p,C) satisfies standard

utility hypothesis SUH and has therefore all these nice prop-

erties.

This assumption (together with minor technical assumptions)
is sufficient for our algorithm to work appropriately.

The questions which assumptions would be necessary or what
would our algorithm do in more general situations (e.g. in
the case of nontransitive consumer, see Shafer (1974)) are

left here aside.

3. Compensated income and compensated demand

The problem is further specified as follows. Choose any
price-expenditure pair (po,co) and let qo = h(pO,CO) be the
corresponding unigue market demand, where h(p,C) is

supposed to be known. Change prices po e p1 and determine the

compensated income (or rather compensating expenditurel))

(1) El = C(pl,qo) = min0 pl-q
a~q
= mi X - 0
= min {CIC = p .q & ul(g) = u(g )}
and the Hicksian (or compensated) demand
- 1
(2) gt = 1etd® = neet,ceta®
. 1 =1 =1
for any given price vector p~. Of course one of g~ and C

determines the other because al = h(pl,El) and El P ql

Here &l is the cheapest bundle of goods under prices pl,

1) To fix-ideas think that prices increase. Then more income
is needed to attain the previous level of living or to
compensate for the price change: ¢l > c0 . Here €l-c0 is

the comoensation (or needed extra income) in monetary units,

lOO(C C )/C in percents and lOOln(Cl/CO) in log-persents,
and Cl is the compensated income, which includes the

compensation. Compensated demand curves are used to definé
the substitution and income effects. Terminology is rather

AN e




-8 -

which gives the same satisfaction as qo and 51 is the least

expenditure needed to attain the satisfaction given by qo

r
when prices have changed to pl. As our h(p,C) is supposed to
satisfy SUH a well-behaving utility function exists but is not
known. The compensated income (1) should be determined using

only the market demand system h(p,C).

4. Economic price and quantity indices

These quantities allow us to compute e.g. the (Laspeyres'

type) economic price index

(31 P(pl,posqo):=C(p1.q°)/C(p°.q°L

= &l

and the (Paasche's type) economic guantity index

(4) Q(ql.qo;pl):=C(pl.ql)/C(pl.q°)
=clset
0
(cl/co)/P (pl,po; q)

corresponding to any two equilibrium situations (po,qo) and
(pl,ql), where qt==h(pt,ct), t=0,1. Because Q(ql,qo;pl)
is for fixed qo and pl and for arbitrary variable ql a

utility functionl), it solves e.g. our original problem:

R 1 2
1) That is, Q(ql,qo;pl) = Q(qz.qoipl) if and only if g~ ~ a”,

and Q(ql,qo;pl) > Q(qz,qo;pl) if and only if ql>q . This
kind of general properties of (3) and (4) following from
those of C(p,q) are supposed to be known, see e.g. Samuelson
and Swamy (1974), Theil (1975, p. 112-144), Vartia (1976).

- 9 -
(5) otat,a%ph) 51 e ¢l 5 & = s
0(at,q%p?) =1 e ¢l = El e gt ~ o°

Q(ql,qo;pl) <1 e C1 < (—21 - q1< qO

Or verbally: if the actual income C1 = pl-ql exceeds (falls
short) the income El just compensating for the price change

po - pl then the welfare change from qo to ql is positive

(negative). If El = Cl the welfare has remained the same.
Next we give some differential expressions stating necessary

conditions for movements on the same indifference surface.

S Conditions for movements on the same indifference

surface

Let t denote an auxiliary variable such that 0 £t £ 1 and
o
let p(t) be a differentiable curve in the price space

connecting po = p(0) to p1 = p(l). C(t) is any expenditure

development starting from C0 = C(0). If u(qg) is a poséible
utility function, then V(p,C) = u(h(p,C)) is the corrésponding
indirect utility function. Derivdting V(t) = V(p(t), C(t))

in respect of t we get
aV(p(t),C(t)) dp; () AV p(t),C(t)) dc(t)

av(e) _ 3
(6) & Lk 35, (6] & Y Tcm at

i
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Using Roy's theoreml) we get
av(p(t),C(t)) ) dac(t) =i ) dpi(t)
() =——ge——= A(p(t),-c(t)){ T = Xh™(p(t),C(t)) —at

By the usual assumption A(p,C) > 0 of insatiation a necessary
and sufficient condition for h(p(t),C(t)) moving on the same
indifference surface is that (7) equals zero which leads to
the first order differential equation in C(t):

dc(t) i
(8) =t = 2h" (p(t),C(t))

Note that p(t) and the derivates dpi(t)/dt are here known
functions. Integrating this we get an equivalent integral

equation

dpi(t)

& 4

0 B
(9) c(t)-c” = ¥ fh-Ip(t),C(t))
0

Let p(t) be any differentiable price curve connecting po

to pl. By the definition (1) of compensated income C(t) =
C(p(t),qo) the compensated demand H(p(t),qo) = h(p(t),
C(p(t),qo)) moves on the indifference surface determined

by qo when t€[0,1] changes. Therefore the compensated income
C(t) = C(p(t),qo) is a solution of both (8) and (9) having
the initial value C(0) = C0 = po-q0 = po'h(po,Co)- Using

the uniqueness property of first order differential equations,

1) That is: av(p,C)/3p, = - 2 nl(p,0) = -xp,0nt(p0).

For a short, elegant and very general proof see Chipman
and Moore (1976, p. 74).

P
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see e.g. Henrlci (1964, p. 264),;, the compensated income C(t) =
C(p(t),qo) is the only solution having this initial value.
Therefore by solving (8) or (9) we get just the compensated

income C(p(t),qo)-

Equations (7) and (8) correspond to the usual but somewhat
ambiquous total differential expressions dv = A(dC-Zqidpi)
and dC = Zqidpi, see e.g. Silberberg (1972), Burns (1973),

McKenzie and Péarce (1976) .

By a simple transformation (8) may be expressed equivalently

as
dlogp, (t)
dlogC(t) _ S
(10) 4t = Zﬁi(p(t),C(t)) 3t , where
o = p,ntip,0)/C
Wi(P' Pi ’
is the ith value share. The integrated version 1s
(11) 1068 - 5°f
o Zgwi(p(t) ,C(t))dlogp, (t).

The only solution C(t) starting from C(0) = @ = po.qo is

also here the compensated income C(p(t),qo) corresponding

to the given price curve p(t).

Note that when (11) is solved its left hand side is the
logarithm of the economic price index (3), log[C(t)/Co] =

log[C(p(t),qo)/CO] = logP(p(t),po;qo), and its right hand
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side is the Divisia-Torngvist integral representation of
1ogP(p(t),p°;q0). The value shares in (11) are determined
from demand h(p(t),C(t)) constrained on the same indiffe-

rence surface.

Note that El==c(pl,qo) gives the only solution C(t) of
equations (8)=-(11) for t=1 and for arbitrary price curve

0

p(t) connecting p~ to pl. This means that the same compensated

income El results irrespective the choice of an appropriate
p(t) curve. If the left hand sides of (9) and (11) are written as
line integrals in the (n+l)-dimensional (p,C)-space, these

line integrals are independent of the path of integration,

when h(p(t),C(t)) moves on the same indifference surface.

This is shown and discussed e.g. by Silberberg (1972, ¥

p. 947-948), Burns (1973, 1977) and Bruce (1977).

6. How to move on the same indifference surface

Our algorithm of calculating El = C(pl,qo) is based on
equations (8)-(9); almost as simple algorithms may be

derived from (10)-(11).

Choosing to'tl”"'tN so that 0=t0<t € yewm€ t;=l

L N
we derive from (9) the following

oY

[x hi(p(t),C(t))dpi(t)] .
-1

N
(12) cl-cl==x

’ C(tk)—C(tk_l)]=

[
1 k

I ™M=Z

1
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The bracketed terms are pairwise equal. Approximating the
integrands hi(p(t),C(t)) by the average of their end point

values, cf. Collatz (1960, p. 53), we get for k =1,2;...,N
(13) Cle) - Clty_)) =
it e, e+t e, ).tk 01 (p, (e
ZLhT (plty) . Clyy Pty 1)U 172 (py () =Py (£ _4)) .

Equations (12)=-(13) form the basis of our algorithm. Similar
algorithms are derived using other approximations for the

integrands or starting from equations (10)-(11).

The compensated income (1) and the Hicksian demand (2) may be

calculated simultaneously using the following algorithm.

Algorithm 1l: Let p(t) = p0+t(pl-p0), 0 <t<1, be the linear

price curve connecting po to pl. For a given integer N let

te = k/N, P, = p(tk) and generate a sequence cl""’cN so that

(14) c, -C_.=%q +q_) * (p, -
kK~ “k-1 " 2% T %1 Py

P 1)

where q = h(pk, Ck), k=1,...,N and the starting

values are (p;,q;,Cq) = (po'q°= h(pOICO),CO)-

The solution Ck of (14) is determined iteratively as

follows

(15) cm _ @ 1, (m-1)

k k-1 ¥ 3@y T y) " (P T Pry )y
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m=1 -1
where q(k ) h(pk, C(ﬁ )) and C(£)= Ck_1, k 2 1, when
(m) _ ~(m-1) - _ ~f(m)
IC X C X | 1s negligible set Ck =C X and Qe =9

and start the calculation for the next k.

Theorem l: Under weak conditions given in Appendix C
1

N
= C(Pl'qo) and
1

converges to the compensated income C
qQy = h(pN,CN) converges to the compensated demand a = H(pl,qo)
= h(pl,al) as N increases. The convergence is cubical, i.e.

errors decrease in relation to (l/N)3.

The theorem and convercengel)of(IS) are proved in appendix.
The idea of the algorithm is to move by small steps in the in-
difference surface from qo to &l. Each q approximates ak =
H(pk,qo), the true compensated demand corresponding to Pk and
qo. Equation (14) is an accurate discrete analog for equation
(8). Actually (14) requires that (pk,qk) and (pk_i, qk-l)

are two equllibrium points, for which the Harberger welfare

indicator (see Harberger (1971), Diewert (1976))

1) Note that a practical way of writing (15) is

' (m) _ 1_(m), _
(15") C x = Eq X (pk pk—l) + C*,

where C* = C 7 %qk—l - (pk - pk-l) is independent of m.

1, e )
(16)  Elpy_ysPprBiee1r®) = Pr-1" (O %2 *2 P Pr-1) (9791

1 . -
= 3(P*Pyy) " (G Ty

1.2 1 2,_
is zero. To show this we only need to note that H(p™,p ,q +2 )=
1,2 1 2.1, _ 1,2 1, .2_ 1y e mero UF
ot (g?-gh) + 2p2-ph - (dP-qh) = Fp¥p) t (@ -a)

and only if

1 2 1 2
an ¢ -t = S+ pPph = Hia et )

where C2 = pz-qz and Cl = pl-ql. Equation (17) says

approximately that the change in expenditure is all needed

to compensate for the price changes. Generally, change in

expenditure has a decomposition

1. .3 L . L, 2 T -2 4
ag ¢ - ct = 1ptph - (@?-ah) + 3@ %P

1 2.1 2
= H(pllpz'ql, qz) + Hig ,q",p /")

into arithmetic contributions of quantity and price changes.

i = +
Note that this is the finite change version of dC = Zpidqi

. 1.2 1 2, _ ; 7n.
Xqidpi. Therefore H(p ,p 4 ,q ) = 0 if and only if (17}

The decomposition (18) was the starting point of Stuvel

(1957) to derive his remarkable price and quantity indices.

; fon
Stuvel's quantity index has e.g. the representatio
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§, 2.0 2 / '
(19) Q" (g iq ,p ;pl) = A+ A2 + cz/cl, where

A= SR - Pody o2 o) =1 -Ei’ﬁ)
P'a” P eq TP 27a pg

Stuvel's index satisfies the time and factor reversal tests;
reacts correctly to extreme quantity or price changes, is
consistent in aggregation and has other remarkable properties;
see Stuvel (1957), van Yzeren (1958), Banerjee (1975) and
Vartia (1976, p. 140, 159-172). Van Yzeren shows e.g. that
(19) and Edgeworth's quantity index QE(qz,ql,pz,pl) =
(p2+pl)-q2/(p2+pl)-ql equal one together. We see at once
that this happens exactly if H(pl,pz,ql,qz) = 0 or equivalently
1f (17) holds. These expressions are beatifully symmetric and
easy to work with. These facts enable us to say that (14)
requires (when trying to remain on the same indifference
surface where the economic quantity index is identically
one) that we choose our small steps so that the following

two conditions are satisfied for all kx = 1,...,N:

(Cl) The qgantity vector q, is the demand corresponding
to prices Py and expenditure Ck:

@, = h(p,C) = hipy, P 1qy) -

(c2) Stuvel's (or equivalently Edgewcrth's) guantity index

comparing consequtive pairs (p ) ) remains
egqual to one: k-1 %ke-1 '(pk’qk B

S
Q (qk'qk_lipk’pk_l) = L.

_17.,

Similar conditions using other index numbers and approximations
of demand functions (or Engel curves) appear in approximating
the economic or true price index, see. €.9. Frisch (1936), Wald
(1939) or Banerjee (1975) although notation sometimes hides

the principlesl). Banerjee (1975, p- 96-109) uses ecplicitely
Stuvel's index in his "factorial approach” but demand functions
do not appear explicitely. If pairs (pk,qk) are observations
from "demand world" then Cl holds automatically., which is not

necessarily true if the researcher generates them.

Thus our chain of quantity index calculations multiplies into
one. We have, approximately, followed a path of equilibrium
points, where the logarithm of the Divisia-T8rngvist guantity

index, see Samuelson and Swamy (1974) and Vartia (1976},

t n t
(200 Tfw, (B)dloga; () = 3 ,(gwi(p(t),C(t))dloghi(p(t),C(t))
0 i=1

1) The considerations are intimately connected with e.g.
the concepts of consumer surplus, compensated and
equivalent income variations and different Divisia-
Térngvist line integrals, which provide alternative more
or less different means to handle problems. But these ’
are often used too freely (arguments are omitted ete).
Notable recent articles against or in favour of some
use of these measures are e.g. Bergson (1975) , Bruce
(1977), Burns (1973, 1977), Chipman and Moore (1976) ,
Diewert (1976), Foster and Neuberger (1974), Harberger
(1871) , G. McKenzie (1976), McKenzie and Pearce (1976)
and Silberberg (1972). We think that the things would
become clearer if the different measures were discussed
in relation to economic price and quantity indices

P(pl,pozq*) and Q(ql,qo,p*), where g* and p* are some
reference quantities and prices, see Samuelson and
Swamy (1974) and vartia (1976). It is a sad fact that
only in simple homothetic cases these functions are
independent c¢f g* and p*. This is one but only one
source of confusion.
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which £or sll price-expenditure developments (b{E);CiE)) 1f the same method is used to solve the differential

o 0 .0 .
tart i i
BEsciing fxom (p »C ) 48 ldentdecal with equation (10) in logarithms we get the Algorithm 2,

where (14) is replaced by

t
(21) 1og(c(t)/c°) - iji(t)dlogpi(t) =
0
n
1
. n & (22) log(Ck/Ck_l) = ié&f(wi(pk'ck)+wi(pk-l'ck—l))log(pk.i/pk-l:i)
log(C(t)/c) = X [w, (p(t),C(t))dlogp, (t) ;
i=1 0

1) log PT (PkrPk_ququk_l) .

has remained equal to zero. This is a sufficlent™ condition

for movements on an indifference surface. Note that here is no Here we have the TSrnqvist's price index for which

trouble of the possible path dependency of the Divisia~Tdrngvist

line integral because for paths on the same indifference surface (23) 0

.1 0 1 P
logP ™ (p",p ,q7,q ) =25(w; + wg)log(pi/pg)
it is path-independent, i.e. only end points matter. There-
Lol 0.0
P9y

i F— 4 0 I n P.q.
fore any convenient price-path in from p to p may be used. . :El%(;TT;T - pé,;o)1°9(Pi/Pg)-
These economic considerations led to the invention of our Algorithm 2 works perhaps still better than Algorithm 1,
algorithm. Mathematically the algorithm happens to be a because value shares w, o= wi(p,c) = pihi(p,C)/C are usually
special case of Adams interpolation method for numerical solution more slowly changing characteristics than quantities
of differential equations, which is used in proving that it q; = hi(p,c).

works efficiently, see the appendix.
As in (14) iteration 1s also needed in (22) to solve Ck‘

Theorem 1 renamed as Theorem 2 is proved similarly for

Algorithm 2.

Using other price index number formulas instead of (23)
we get other algorithms. It is intuitively clear that
convergence properties are not altered if Tdrngvist's

1) It is also necessary if A (p,C), the marginal utility of
expenditure, is positive. index is replaced by Vartia-Sato index



- 20 - = 21 -

Vs, 1 0 1 0 B Lwpw) 1,0

(24) logP " (p ,p ,9,q ) = & EZ?iI_iﬁ? log(pi/pi) e Illustrative calculations
- 373
where L(x,y) = (x-y)/log(x/y) is the logarithmic mean of It is convenient to present the calculations in a table,
positive x and y, see Vartia (1974, 1976, 1976b) and Sato where columns are reserved for vectors Py and q(ﬁ) and for
(1974, 1976). Evidently any quadratic approximation of (23) scalar C(ﬁz We illustrate the algorithm using the simple
and (24) for small relative changes in p's and gq's, such as example .of McKenzie and Pearce (1976), where h(p,C)=
Fisher's ideal index, Diewert-Sato quadratic mean of order r (;3 B Ep » gi(s—gs—)). The demand system corresponds
indices (see Diewert (1974, 1975, 1975b), Sato (1974), tolthel"uiknowi" indireét utility function V(p,C)=C/pl+C/p2,
Vartia (1978)), Stuvel's or Edgeworth's indices used in which we are not allowed to use here. The two equilibrium
Algorithm 1, or just any good approximations of these points are given in Table 1.
indices, could be used to define a good 'substitute' for
Algorithm 2. Note that Laspeyr2s' or Paasche's indices are Table 1.
not sufficiently good approximations of these indices
and using them in place of (23) will slow down the
Variable p q c

convergence, cf. Algorithm 3 in Appendix 1.
(0) Initial values | 1.0000 | 2.0000"|146.6667|36.6667 |220.0000

Using other efficient numerical methods (which are numerous, (1) Final values 1.1000 | 1.6923 |121.211951.2125 |220.0000

see e.g. Collatz (1960, p. 536)) to solve differential

equations (8) or (10) leads to other efficient algorithms

. You who know the utility function can check that the change
to calculate compensated income and compensated demand.

in satisfaction is zero, or qo and ql lay on the same in-

difference surface.
It is an easy task for a competent ADP specialist to program

1)

the Algorithm 1 for any computer™ . Calculation can even be 0 0 .0
We start from the initial situation (p ,q ,C’), try to move
carried out using only paper, pencil and a functional pocket

step by step on the indifference surface and approach the
calculator as shown below. il 0
point of compensated demand q© = H(p ,q ), which here is

equal to ql = h(pl,Cl) = (121.2119, 51.2125). Let us first

use 4 steps, i.e. N = 4.

1) A program written in GE 635 FORTRAN IV is available

upon request. 1) McKenzie and Pearce (1976) have a missprint here.
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The calculations run as follows: First calculate the linear
; 0

price path p = po,pl,pz,p3,p4 = pl given in Table 2. In the

first row (k = 0) we have the starting values (po,qo,co) =

(po,qo,co). Using the demand system q = h(p,C) calculate

then for (k,m =@,1) q'P= h(py,c‘P) =h(p;,Cy) = (140.0092,

39.7751) . Next form the average %(q(i)+ qo), store it somewhere and

take the inner product %(q(i)+q0)°(pl-po), which gives C(i)=
220.6433. This is a new start and the next row is generated
similarly: q(§)=h(p1,c(i5,c(§)=c0+%(q(i)+qo)'(pl-po)- The
iteration for C(T)converges quickly and after its convergence
calculations for k = 2 proceed completely in the same way.
P2 ¢ P1 ¢

Table 2. D d tem: = h Cc) = (— ==
able emand system: g (p,C) (pl (pl+p2 ' 5, (pl+p2

)

Price steps: Py = Pp_q = (0.025, - 0.076925)

Approximations for the
Price situation compensated compensated

demand income

X m Px g'P ¢'pl
0 1.0000 2.0000 (146.6666 | 36.6666 220.0000
b 1 1.0250 1.9231 (140.0092 | 39.7751 220.6433
2 140.4186 | 39.8915 220.6439
3 140.4190 | 39.8916 220.6440
2 b 4 1.0500 1.8462 [133.9518 | 43.3305 220.8727
2 134.0907 | 43.3754 220.8727
3 a 1.0750 1.7692 |[127.8064 | 47.1849 220.6632
2 : 127.6852 | 47.1402 220.6624
3 127.6853 | 47.1402 220.6634
4 1 1.1000 1.6923 [121.5774 | 51.3669 219.9904
2 121.2066 | 51.2103 219.9918
3 121.2074 | 51.2106 219.9917

T - 23 -

0
The five points q = qo,ql,qz,q3,q4 lie very near the same
indifference surface and 9, = (121.2074, 51.2106) accurately

; =1 0
approximates q- = H(pl,q } = (121.2119, 51.2125). The economic

price index P(pl,po; qo) = (_21/C0 (which equals 1 here) is
estimated by C4/C0 = 219.9917/220 = 0.99996 and the economic

0 -
i pl) = Cl/Cl (which also equals 1 here )

quantity index Q(ql,q
is estimated by Cl/C4 = 220/219.9917 = 1.00004. Anyone who
does not regard these estimates accurate enough may increase
the accuracy without limits by increasing the number of steps
from 4. It is convenient e.g. to half the price steps, or

in some other way go through the previous price situations.

This makes it possible to check the calculations and control

the convergence.

Omitting the figures referring to the iteration steps and
tabulating only the converged values we get for N = 8 steps
the following table, where also the economic price index
P(pk,po;qo) ~ Ck/C0 comparing price situation Py to the

initial prices is included.
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3 d syst Bip,C) B LRL—S), She=C)
s = = (—=(—7F),
Table 3. Demand system: g - B, B,*5; B, B17P,
Price steps: p, -p .= (0.0125, - 0.0334625)
k “k=-1
Approximations for the
Price situation compensated compensated economic
demand income price
index
3 m pk q (I]E)= a“k C(T]:) =Ck P(Pklpoiqol
1.00000
0 1.0000 2.0000 [146.6667|36.6667 220.0000
1 3 1.0125 1.9615 |143.5535(38.2482 220.3732 1.00170
2 3 1.0250 1.9231 |140.4198(39.8918 220.6453 1.00293
3 2 1.0375 1.8846 1137.2260]|41.6002 220.8136 1.00370
4 2 1.0500 1.8462 |134.0924(43.3759 220.8754 1.00398
5 2 1.0625 1.8077 |130.8994145.2219 220.8278 1.00376
6 3 1.0750 1.7692 |127.6878|47.1412 220.6677 1.00304
7 3 1.0875 1.7308 |124.4580(49.1367 220.3921 1.00178
8 3 1.1000 1.6923 |'121.2106)51.2119 219.9976 0.99999

All guantity vectors of Table 3 lie practically on the

same indifference surface. Every second row of table 3

correspond to a row of table 2; which makes it possible

e.g. to control the convergence.

-

: < < 1 0
Using 4 steps we ended to the approximation H(p ,gq ) =~

1 0
(121.2074, 51.2106) as 8 steps gave H(p ,gq ) =~ (121.2106,

51.2119). The price steps are rather long even here, as

for the second commodity they are about 2 %. However, the

accuracy is sufficient for most purposes.

In computer simulations perhaps only the last row of tables

1 0
such as 2 or 3 corresponding to H(p ,q ) deserves to be

printed.
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As a final illustration let p> = (1.0500, 1.8462) and

0
]

221.0000. The demand system gives the quantity vector

= h(Pzrcz) = (134.1693, 43.3985), which the consumer

Q
|

would bye in this situation. Is the consumer better off in

situation (2) than in situation (0) of table 12

From table 3 (row k = 4) we see that P(p%,p%;q%) ~ 1.0040 or that
0.40 % more money is needed in situation (2) to compensate’

for the price increase. Expenditure has increased actually

from 220 to 221 or 0.46 %. Hence real consumption has

increased somewhat (about 0.06 $) and the consumer lies on

a higher utility level. Table 2 gives the same results.

8. Conclusions

We have considered a demand system h(p,C) satisfying the
standard utility hypothesis SUH, i.e. which is representable
by some standard utility function u(qg). An efficient algorithm
is presented to calculate the compensated income C(pl,qo) =
min{pl-qlu(q) = u(qo)} and the compensated or Hicksian demand
H(pl,qo) = h(pl,c(pl,qo)) as accurately as one wishes using
only the known market demand system h(p,C). A well-behaving
utility function u(qg) exists by SUH but is not used nor needed
in the calculation. Using the compensated income C(pl,qo) we
may compute the 'true' or 'economic' price index (of the
Laspeyres' type) P(pl,po;qo) = C(pl,qo)/po-qo and its pair,

the 'economic' quantity index (of the Paasche's type)



- 26 -

Q(ql,qo;po) = pl-ql/C(pl,qO) for any two equilibrium points

(po,qo) and (pl,ql). In fact the price index P(pl,po;qo) may
be calculated by our method for any pl. But to determine

Q(ql,qo;pl) for a given quantity vector ql we have to find

first some price vector pl satisfying ql = h(pl,pl-ql).

Of course, if pl is a solution, also Apl is one for any A > 0.
This calls for the inverse demand function r = yY(q), where

r = p/C, see e.g. Chipman and Moore (1976, p. 104). Alterna-
tively we may use some numerical method to solve ql = h(rl,l)

for r1 and put pl = Arl for some X > 0.

Starting from (pl,ql) instead of (po,qo) and using the time

reversal relations

(25) Pe?,ptiqh) = 1/p(pt,p%qh)

l/Q(ql,qo;po)

Q(qo.ql;po)

we may calculate similarly another pair of indices P(pl,po:ql)=_

0
Pl'ql/C(PO.ql), Q(ql,qo;p ) = C(po,ql)/po-qo, see e.g. Samuel-
son and Swamy (1974) or Vartia (1976). These give another de-
composition for the expenditure ratio

0 Lo & ik 1.2,
(26) BP-g_ - pchipoe gl - pipl [0.41)0(41,¢%p").

0 0 0 0
p.q® p’np’,p’.q"%

Index numbers of prices and quantities and different measures

of consumer surpluses have great intuitive appeal to economists

and they are applied constantly. Many of these applications

- 27 -
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Appendix 1: Proof of Theorem 1.

For the proof we need some results from the numerical solution
of differential equations, see Collatz (1960, pp. 48-114, 536)
or Henrici (1964, pp. 263-288). Let f(t,C) be a real valued
function defined for t€l[a,b] and for all real C and consider

a first order differential equation

(1) c' = £(t,C).

Equation (1) symbolizes the following problem, see Henrici
(1964, p. 263): Find a function C = C(t), continuous and

differentiable for all t€[a,bl], such that

(2) c'(t) = £(t, C(t))

for all t€[a,bl.

Let N be a positive integer and tk = a+k(b§a), so that t0 =a

and ty = b, tk-tk_1 = (b-a)/N is often called the step length
or step and denoted by h. A simple but rather crude numerical

method of solving (1) is the "polygon method", where the exact

solution C(t) for points t = to,tl,...,tN is approximated by

values CO'Cl""’CN calculateu by the formula

_ b-a
i8] Cp = Cx-1 * ) fioyr

where f Collatz (1960, pp. 53-59) proves

k-1 = £t 10 Cpq)-
that if a Lipschitz condition is satisfied the error Ck—C(tk)

tends to zero linearly, i.e. like 1/N, as the step (b-a)/N - 0.

= 99 .=

We apply the polygon method for the differential equation

(8) in the text

ace) _ 1 dpi(t)
(4) -l Ih™(p(t), C(t)) BE 4

where the price path connecting po and pl is linear,

p(t) = p° + £e'-p%, 0 < tg 1.
We have dPi(t)/dt = (pi-pg) so that for p(t) = po + t(pl-po)

(5) f(t,C)

h' (p(t),0) (p}-p0)

h(p(t),0) - (p*-p%).

]

The equation (3) becomes Algorithm 3:

1 1_0
k= k-1t WP Cy) 0 (PR

(6) c

C

k-1 ¥ I3 * (Py"Py_q)e

where Py = p(tk) and 9oy = h(pk-l'ck-l)' Here Ck converges

linearly to the solution C(tk) of (4), when the step 1/N and
therefore the price steps Py Pr_q = (pl-po)/N approach zero.
This slowly converging algorithm corresponds to Samuelsons

(1948) "Cauchy-Lipschitz" approximation. Here Cis approach

the compensated income curve C(t) from above.

A more efficient method for integrating (1) is Adams inter-

polation method of order 1 which in the notation of Collatz

(1960, p. 85 and 536) is presented by
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(7 Ypyy = ¥ * h{f - % ) Equation (10) is eduivalent to equation (14) of our
£ + f Algorithm 1. The tnknown Cp contained on both sides of
- *h (—Eili___z) the eguation is determined by iteration as shown in (15) ,
cf.also Collatz (1960, p. 86). The convergence of the
and in our notation by iteration is considered in Appendix 2.
5 ck - Ck‘l * (E%E)(EE%EEZL). We conclude that Algorithm 1 for solving (4) corresponds

exactly to Adams interpolation method of order 1. There-

It may be proved, see Henrici (1964, pp. 280-3), that the fore Alogorithm 1 converges cubically, i.e. Ck-C(tk)

- _ - . . , 3 .
error Cp C(tk) vanishes cubically, i.e. like (1/N)°, as vanishes like (l/N)3, as 1/N and the price steps p,~Py_; =

the step (b-a)/N » 0. A sufficient condition for the (gk-po)/N approach zero. A sufficient condition for the

convergence is that f£(t,C) satisfies the Lipschitz condition,

1 0 G
convergence is that £(t,C) = h(p(t),C) - (p7~p’) satisfies

see Henrici (1964, p. 264): There exist a constant L such the Lipschitz conditiort’(9) or (which is somewhat over-

that for any y,z and all t€la,bl]

restictive)
9 f£(t,y) - £(t, Lliy-zl. - a S (T 1_0
(9) 1£(t,y) (t,2)| < Lly-zl (11) 3c £(8/0) =Igs h (p(t).C) (P;~Py)

This is a very weak condition which is satisfied e.g. if is bounded by some L for all t€[0,1]. If e.qg. all the

the derivate é% £(t,C) exists and is bounded by L for all

"income elasticities” dloghi(p(t),c)/dlogc are bounded

tela,b]. by e and M = max|(pi—pg)/pi(t)l when t€[0,1] we have, cE.

Appendix 2,
Applying the Adams interpolation method (8) to equation

s 0 1 0 i h,
- _ . i a dlogh™ (p(t),C) iy 1.0
(4) with p(t) p + t(p -p ) leads to the following equation (12) |aE £(t,C)l = Iz dlogC (7?)(91 Pi)l
i 1.0
i L _ i h™ (p(£),C)py (£)  Pi=P;
(10) C ® Gy * 3 (qk+qk_l) (pk Pk—l)' < IzZel o llpi(t}¥
wherepy = p(k/N), q = h(py,C) and k = 1,...,N. While in equation <e - M

(6) the price change was weighted by the "old basket"

Py "Pro1

. 1 S e
%3 = BlBp.qCpitr W6 have here the pean baskeb S{gyda, q)« 1) Note that this is just the condition 6. of Stigum (1973,

p. 412).
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so that L = eM works as a Lipschitz constant. It is difficult
to imagine cases where the Lipschitz condition is not satis-
fied. Therefore the convergence 1is quaranteed in most practical

cases.

Especially for t = ty = 1 Cx approaches C(tN) = C(1) (=the
compensated income El C(pl,qo) as discussed in the text)

l - -
and therefore dy = hip 'CN) - h(pl,Cl) = ql, the compensated

demand, when 1/N - 0. Theorem 1 is proved.
Appendix 2: Convergence of the iteration over m in Algorithm 1.

Iteration (15) over m is the ordinary cob-web-iteration

X, = f(xm_l), m=1,2,..., where

- 1 . -
(1) f(x) =C ;1 + S(h(p,x) + q ;) (Py=Pp_) -
A sufficient condition for its convergence to a unique
solution x = f(x) for all starting values xoe[a,b], is
that f(x) is differentiable and

(2) I1£'(x)1 < L for all x€[a,bl,

where L is some constant smaller than 1, see e.g. Henrici

(1964, pp. 61-66). Derivating (1) we get

N

2 i
ET=—h (pk,x)(pk,i - pk_l,i)

(3) £ (x) =

L Blochi i
P - L -
% (5} P,y pk—l,i)‘

2 T3logx

- 33 =

Let M = ma_.xl(pk,i - pk-l,i)/pk,il be the greatest relative
i

change and choose a constant e so that all the income

price
elasticities
i
(4) ei(pk,x) = 3logh (pk,x)/alogx

are bounded by e, lei(pk,x)l < e, when x€la,b]. Then

i
I

h™ Py 4 Pr-1,4

!
Pr.,i

(5) T£' (x) 1

1A

B
% R d
7 Eiei(perﬂt =

i
Pr,i PPk, 5, ¥ _ e

eMz

=7 %

3

because of the budget constraint. Therefore (2) is satisfied

when only M is chosen sufficiently small.

5 then choosing all the relative price changes

E.g. if e

I+

less than 0.4 or 40 % is sufficient to quarantee the

convergence.
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