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Abstract

An est'mat'on and 'nference procedure's proposed for t'me ser'es

regress'on models w'th stat'onary regressors and nonstat'onary

autoregress've errors hav'ng roots on the un't c'rcle. It's shown

that the usual GLS or Cochrane-Orcutt procedure should be done 1n

reverse order, namely by start'ng the est1mat10n from the error

structure. The reason for th's 'S the fact that the nonstat'onary

error part dom1nates the stat10nary regress'on part so strongly that

cons'stent est1mation of the nonstationary factor 1n the error model

can be done w1th fast convergence simply by disregard1ng the

regression part. The proposed three-step ordinary least squares

est'mation procedure will yield estimates of the unknown parameters of

the regression part and the error part having known asymptotic

distribut'ons. In part'cular, the estimators of the error part can be

used to test for the existence of roots on the unit circle.



1. Introduction

In this note we will consider a simple time series regression model

with autoregressive error terms of the form

(1. 1)

or equivalently

(1 .2)

2 PcjJ(B) is the usual autoregressive operator cjJ(B) = 1~lB~2B -"'~pB .

If Et is stationary, that is, cjJ(B) has all its zeroes outside the

unit circle, then the usual generalized least squares (GLS) or

Cochrane-Orcutt (CO) procedure can be used to obtain estimates of S

and the parameters of cjJ(B). These procedures start by first doing OLS

to obtain an initial estimate of 6, then estimating the parameters of

the error structure from the regression residuals and finally doing

the GLS or CO transformation of Yt and xt and re-estimating ~S. The

fundamental prerequisite for this procedure to work is that the true

error structure is stationary which makes it possible to estimate 6

consistently at the initial stage. If Et is not stationary the OLS

estimate of S will not be consistent, unless xt has at least a

linear trend in it.
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Our purpose 1s to cons1der s1tuat10ns, where the nonstat10nar1ty 1n

the model ar1ses solely from the regress10n error term Et. Therefore

we want to 1nterpret the model 1n such a way that the level of Yt 1s

exp1a1ned by a stat10nary xt ' and assume that the dev1at10ns from

th1s level are allowed to have nonstationary behavior. We will confine

ourselves to situations where the nonstat10narity arises from ~(B)

having zeroes on the unit c1rc1e. Therefore no explosive cases will be

discussed. If the deviations show a random walk type of behav10r, ~(B)

has a 1-B factor. If the dev1ations have a smooth cyclical pattern,

~(B) may conta1n a factor 1_~B+B2, where I~I < 2, which has a pa1r

of complex roots on the un1t c1rc1e.

We will not consider problems of 1dentify1ng the order of the error

autoregression. The reader 1s referred to a recent art1c1e by Tsay

(1984) on th1s 1ssue. For expository s1mp1icity we w111 first carry

out the discussion by not allowing the autoregressive operator to

contain any stationary factors. Discussion of the mixed nonstationary­

stationary autoregress1ve operator is postponed until the end of the

paper. The important new issues w111, however, all become apparent

already within the simpler models.

The basic thrust of this note is that if we wish to make inference

about the parameters of ~(B) and B, for example to test for the

existence of roots of ~(B) being on the un1t circle, the estimation of

the parameters of the model should be started from the dom1nat1ng

nonstationary error structure by regular autoregressive fitt1ng of the

Yt observat10ns. Then estimate Busing GLS or CO transformation and

f1na11y re-est1mate ~(B) from the regress10n res1dua1s. Therefore the
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usual estimation procedure should be done in reverse order. It is

shown that the three-step ordinary least squares estimates so obtained

have known asymptotic distributions under the null hypothesis of

nonstationarity of the errors. Specifically, if the null has l-B as

the nonstationary operator, then the autoregressive coefficient has

the asymptotic distribution of Dickey &Fuller (1919) and Evans &

Savin (1981). If the null has 1~B+B2 as the nonstationary operator,

then the autoregressive coefficients have the asymptotic distributions

of Ahtola &Tiao (1985a). These distributional results can be used to

test for the existence of roots on the unit circle. The estimator of S

has the usual asymptotic normal distribution. A computationally

convenient feature of the proposed estimation procedure is that only

ordinary least squares routines are needed at each step.

2. The model and the results

Consider a simple regression model

Yt = Sxt + E: t ' t = 1,2, ... ,n

where xt is assumed to be stationary with absolutely summable

autocovariance function and

2where at'\, nid(O,0 }, t = 1,2, ... ,n.

(l .3)

(1.4)
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We further assume that all the xt's are independent of the

"innovations" a1.a2•...• an which drive the error process.

The fundamental distinction between model (1.3) with stationary errors

and model (1.3) with nonstationary errors. at least as far as the

estimation of the unknown parameters is concerned, lies with the

dominance of the error part over the regression part. when the error

process is nonstationary. This dominance is strong enough to allow us

to estimate. with very fast consistency. the parameters of the error

process simply by neglecting the regression part altogether. The

following lemma summarises this preliminary result.

Lemma 2.1. Let the model be (1.3), (1.4) with the assumptions associ-

ated with them. If the error process is of purely nonstationary

type with no multiple roots of ~(B) = 0. then ordinary least squares

regression in ~(B)Yt = errort yields estimates. ~i of the coefficients
- -1of ~(B) such that ~i = ~i + 0p(n ).

Proof. See the Appendix A.

This Lemma is similar to Corollary 2.1. in Tsay (1984), except that

the convergence rate in Lemma 2.1. is faster than that implied by

Tsay. His convergence rate is 0 (n-1/2) if translated to our case.p

We should, however, note that Tsay assumes the regressor variable to

have deterministic values, whereby he cannot utilize the stochastic

nature of the regressor. Suffice it here to say that convergence rate

of op(n-1/2 ) in Lemma 2.1. would not enable us to derive the

properties of the estimators suggested in this paper.
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The next Theorem summarises the properties of the GLS or CO estimator

of S based on the accordingly transformed Yt and xt variables.

- A

Theorem 2.1. Let ~i be the estimator defined in Lemma 2.1. and Yt

and xt be the GLS or CO transformed variables (e.g. if p = 1, then

Yt = Yt - ~1Yt-1 and Xt = xt - ~1Xt_1)· Then regression of Yt
on Xt results in the OLS estimator of S, B, which is consistent and

~ A L 2 -2has the asymptotic normal distribution of vn(s-s) + N(O,0 y ),

1 A2
where y = plim n LXt ·

Proof. See the Appendix B.

A

Now the natural next step is to use the residuals Yt - SXt's to

re-estimate the parameters of the error process. If S were known we

could, of course, use it and the whole model could be returned to a

pure autoregressive model. The following Theorem states that using the
A

estimated residuals Yt - SXt results in the least squares estima-

tors of ~(B) having exactly the same asymptotic distributions as the

ones obtained from the true residuals, that is, from pure auto-

regressive models.

Theorem 2.2. Let Et = Yt - §xt ' where S is the OLS estimate of S

as defined in Theorem 2.1. Then ordinary least squares regression in
A

~(B)€t = errort results in the estimators, ~i' of the coefficients

of ~(B), which have the same asymptotic distributions as the estimators

obtained from the regression of ~(B)Et = at' that is, using the

true errors in the estimation.
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Proof. See the Appendix c.

According to Theorem 2.2. if the errors have an AR(l) model with ~l = 1,
A

then n(~l-l) has the asymptotic distribution of Dickey &fuller

(1979) and Evans &Savin (1981). If the errors have an AR(2) model with

I~l I < 2 and ~~ = -1, then n(~2+1) has the asymptotic distribution of

Ahtola &Tiao (1985a). Specifically, n(~l-l) and n(~2+1)Can be used to

test for the existence of a unit root and a pair of complex roots on the

unit circle, respectively. We may note that in the latter case the

asymptotic distribution of n(~2+1) does not depend on ~l' the parameter

which determines the periodicity of the error process.

3. Extensions

Three straightforward extensions of the above procedure are immediate.

first the cases where the error process has some other purely non-

stationary autoregressive process. This case poses no difficulty as

long as we know the asymptotics of the OLS estimates of the co-

efficients of this autoregressive process. The procedure goes as

earlier.

Secondly the case of more than one explanatory variable is easily

solved if for instance the vector ~t of k explanatory variables is

jointly stationary with each individual Xjt having an absolutely

summable autocovariance function. In this case we can merely think

of B as a k-vector and the same with xt in all the results of the

paper. Of course the asymptotic variance of B in Theorem 2.1. becomes

a covariance matrix.
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The th1rd extens10n 1s the case, where the error process 1s of a m1xed

nonstat10nary-stat10nary type. So let us assume that the autoregress1ve

operator 1s of the form ~(B)a(B), where the roots of a(B) are outs1de

the un1t c1rcle, and ~(B) has nonmult1p11cat1ve roots on the un1t

circle.

It can be shown that OLS 1n ~(B)Yt = errort results 1n the est1mators
- - -1
~1' such that ~, = ~1 + 0p(n ). Therefore, we have as fast a

convergence as 1n Lemma 2.1. for th1s 1n1t1al est1mate. The proof of the

above result 1n purely autoregress1ve models can be found 1n Ahtola &

T1ao (1985b).

At the next stage we should est1mate B and the parameters of a(B) j01ntly

from the regress10n model w1th autoregress1ve errors us1ng Yt'S and
A

xt'S, as def1ned 1n Theorem 2.1., as our data. Any asymptot1cally

eff1c1ent (relat1ve to ML) est1mat1on method could be used at th1s

stage to obta1n Band &and the well known results of the asymptot1c

d1str1but1ons for ;-n(S-S) and ;n(~~) could be 1nserted 1nto Theorem

2.1.

At the f1nal stage we would form Et = a(B)(Yt-SXt) and proceed as 1n

Theorem 2.2. to est1mate ~(B). Aga1n, we obta1n asymptot1c results,

wh1ch c01nc1de w1th the known d1str1but10nal results of the purely

nonstat10nary autoregress1ve process.
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Appendix A

Proof of Lemma 2.1: For shortness we only prove the case of ~(B) = 1 - B

where ~l = 1 and

OLS in (AI) gives

(AI)

<PI - 1 = (A2)

which would yield <PI -

may assume E(xt ) = 0,

x = 0, a = 0. Now
0 0

Unless otherwise noted the summations are from 1 to n. Now

Since xt is stationary, LXt(Xt - xt _1) = 0p(n). Therefore to prove

the Lemma we need to show that LEt _1(xt - xt _l ) = 0p(n). (Note that

3/2the use of Cauchy-Schwartz would only give LEt _1(xt - xt _l ) = 0p(n ),

1 = ° (n- l / 2).) Without loss of generality we
p

and without effecting the asymptotics we may set

and
n n

al L x. + a2 L x. +••• + a IX.
j=2 J j=3 J n- n

2 n 2 n 2 2
= a {E( LX.) + E( LX.) +... + E(x ) }

j=2 J j=3 J n
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Appendix B

Proof of Theorem 2.1: We, again, prove this only for ~(B) = 1 - B.

OLS in (Bl) gives

(Bl)

(B2)

The stochastic convergence, to a constant 2Y , of the denominator is clear,

since xt - ~lXt_l is stationary. In the numerator

Threfore, using the results-of Lemma 2.1

Inserting this into (B2), we immediately see that

'" of, 2 -2In(S - S) + N(O,a y )
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Appendix C

Proof of Theorem 2.2: We, again, prove this only for ~(B) ~ 1 - B.

(Cl)

OLS in (Cl) gives

Adding and subtracting BXt _l inside each of the three summations in (C2)

and using the results in Lemma 2.1 and Theorem 2.1 it is straightforward

to see that

(C2)

(C3)

The first term on the right hand side of (C3) comes from applying OLS to
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