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Abstract

Symmetry and homogeneity constraints are imposed stochastically in
a system of cost share equations. This 1s done using both mixed
information and hierarchical representations. The approaches are
compared in a Monte Carlo study and using data from U.S. manufac-

turing.



I Introduction

Economic theory often implies constraints on the parameters of a set
of behavioral equations, both within and across equations. Obvious
examples are homogeneity and symmetry constraints in demand systems.
To obtain estimates consistent with the behavioral assumption, these
constraints should be imposed in estimation. Alternatively, one may
want to test the constraints by estimating the model in both
constrained and unconstrained form. There are, however, some reasons
for allowing the constraints not to hold exactly. First of all, the
type of data usually available e.g. in demand or cost studies 1is
rather aggregate and hence the same constraints that hold for micro
units may no longer hold. Hence, testing the constraints or imposing

them exactly may be 1nappropr1ate.2)

Second, the optimizing behavior that leads to the parameter
constraints may be imperfect. A common justification for adding an
error term in behavioral equations is optimization errors, which lead
to first-order conditions for the optimum not to hold exactly. By the
same token, one may want to treat the parameter constraints stochastic
due to optimization errors. Third, varying the a priori strictness of
the constraints allows us to study how fragile the results are to
imposition of the constraints and hence, how useful the point
estimates are.3) Finally, we may note that some recent work has

shown that the standard tests may be biased towards rejecting

4)

hypotheses on parameter constraints in large demand systems.



Stochastic prior information of parameter values and constraints has
been taken into account in the work on consumer demand systems where
occasionally Theil-Goldberger (1961) mixed estimation has been used
(e.g. Paulus (1975)). Kiefer (1977), on the other hand, used the
hierarchical model to impose constraints stochastically in a demand
system. Kiefer's approach has been used in a cost function context by
ITmakunnas (1985) who also estimated underlying second-stage
parameters and in Tsurumi, Wago and ITmakunnas (1985). For the
first-stage parameters the constraints hold stochastically, whereas in

the second stage they are exact.

The purpose to this paper is to compare the mixed and hierarchical
approaches for specifying parameter constraints, using estimation of a
cost share system as an example. We will study how the demand and
substitution elasticities change when the a priori strictness of the
constraints i1s changed. In a Monte Carlo study we compare the
approaches in terms of the mean squared errors of the estimated

parameters.



II The model and the estimation methods

In this section we will briefly describe the model studied and the
alternative ways of imposing the constraints. We consider the

estimation of a KLEM translog unit cost function

1
InC = ag * z1oc11nw1 + 2§§B1J1nw11nwj (1)

where C 1s average total cost and Wy (1=K,L,E,M) 1s the price of

input 1. By Shephard's lemma we obtain a system of cost share equations

o, + ZBU]an 1=K,L,E,M. (2)
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The following 1inear parameter constraints are implied by the
properties of cost functions:

813 = 831 (symmetry) (3)

(homogeneity) (4)

(adding-up) (5)

In addition, inequality constraints are implied by the concavity and
monotonicity of cost functions. We will, however, not consider the
latter constraints in this paper since they cannot be expressed as
linear equalities. The traditional stochastic specification of the

model is to add an error term to (2) to reflect optimization errors.



Due to the adding-up constraint the system is singular; hence the
materials share equation is dropped. The vector of errors of the
remaining three equations is assumed to be normally

distributed with zero vector mean and covariance matrix Z8I.

The constraints (3) and (4) can be imposed stochastically in two
different ways. Define the T x 5 data matrix X with t -th row

(1,1nwKt, 1nth, 1nwEt,
"SET)‘ Finally define a 1 x 15 vector of parameters B' =

1ant) and a 1 x 3T vector of cost shares y' =

(SK1"'

OBy BrLPReBKMOLr - - PEM) -

The unconstrained cost share system can be written as

y = (IBX)B+ e . eWN(0,281) . (6)

In the mixed approach we specify the constraints in equation

RB u™N(0, o) (7

n
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-

where R 1s a 6 x 15 matrix. The constraints have the form BKL - BLK = Uy,

and hence E(BKL = BLK) = 0, etc. The mixed estimator of B is, assuming o

and os known,

be = (27 aX'x+R'07TR) Tz X )y (8)

Mixed estimation has been criticized by Bayesians (e.g. Zellner
(1975), Swamy and Mehta (1983)) on the grounds that R 1s considered

fixed although u is stochastic in (7). One can, however, give the



method a Bayesian interpretation (e.g. Theil (1971), pp. 670-2), using

(7) as the prior distribution of the parameters.

In the hierarchical approach, (6) is treated as a first-stage model.
Its parameters 3 depend on hyperparameters Y through the second-stage
model, which can be interpreted as a prior distribution of B8 in a

Bayesian approach:
B =0Qy +v ' vuN(0,Q) (9)

where Q is a 15 x 9 matrix such that RQ = 0 (see Evans and Patterson
(1985)) and v is a 9 x 1 vector. v can depend on third-stage
parameters, but here diffuse prior information on y is assumed. The
parameter constraints hold for the expectation of a 1inear combination
of elements of Y. For example, BKL = Y3 + Vg and BLK =v3 t Vo3

hence EBKL = EBLK = EY3. Similarly, BKM ==Yy =Yg =Yg+ Vg

and EBKM = E(-Y2 - Yq 'Yﬁ) = E(—BKK - BKL - BKE) etc. Because of

the parameter restrictions, only nine second-stage parameters are needed.

Assuming that % and © are known it can be shown, (see ITmakunnas

(1985)) that g and y are normally distributed with means respectively,

by = i laxex 070 - e e Ty oy ey (10)

and

g ={o ')+ o) g Yozt + 2 Tb (11)



where b = (I@(X'X)']X')y is the OLS estimate of 3. An alternative

form for bQ 1s, using the lemma in Smith (1973),

1,1

= axx s o T laxeb + o7 log) (12)

b
which shows that bg is a weighed average of the OLS estimate b and

the second-stage estimates g.

The hierarchical model was originally suggested by Lindley and Smith
(1972) and Smith (1973) in a Bayesian framework, where (9) is treated
as the prior probability distribution of the parameters R. However,
the method can also be given a sampling theoretic interpretation

(Haitovsky (1979)).

The hierarchical model is also closely related to random coefficient
models. They are often used in cross-section models or in pooling to
control for heteroscedasticity. Swamy's (1970) random coefficient
model corresponds in the Lindley-Smith approach to within-equation
exchangeability of the parameters, 1.e. the parameter vectors of
different cross-sectional equations have the same mean vector. Lindley
and Smith (1972) also discuss within-equation exchangeability, i.e.
the parameters of an equation have the same mean. They show this to be
similar to ridge regression estimation. The approach suggested by
Kiefer (1977) and followed here is a variant of the model where
exchangeability is introduced only through the constraints on the

parameters.



Comparison of (8) and (10) shows that in both cases the estimate of B
gives different values for B1j and 331, reflecting the stochastic
nature of the symmetry constraint. On the other hand, the hierarchical
approach gives, in addition, second-stage parameters Y. As

second-stage estimates of the cost function parameters we can

therefore use the vector Qg, where constraints (3) and (4) hold.

The choice between the two approaches depends partly on what 1is
assumed to be stochastic in the model and on how much prior
information of the parameter values is available. In the mixed model,
as presented in (7), the stochasticity is restricted to the
constraints. The parameters themselves are not explicitly stochastic.
In particular, the parameters that do not appear in the constraints,
i.e. the a's, are non-stochastic. If they are made stochastic, we have
to specify prior means by adding a vector r in the right hand side of
(7) and modifying R accordingly. In contrast, in the hierarchical
model (9) all parameters are explicitly stochastic, i.e. they have
their own error terms. If we had prior information on the means of the
parameters, we could replace some of the elements of Yy by the a priori
values. However, if no a priori values are available, we can estimate
parameters v wusing (11). In the mixed model this is not possible. In
this sense the hierarchical model is more flexible in representing

parameter stochasticity.

A problem with both approaches is the specification of the prior
covariances of the parameters, i.e. the off-diagonal terms of @ and Q.
In the empirical part of this paper we study the sensitivity of the
estimates when ¢ +0 and 2 ~0. This is easier to do if we assume the

covariance matrices to be diagonal. In any case, the results would be



dominated by the diagonal elements of the matrices. We therefore

assume in the remainder of the paper that ¢ = ogl and @ =
GSI. Equations (8), (10) and (11) become, respectively,

]

be = (27'BX'X + 2 R'R)(27'RX")y (13)
R
B L 0 DR P
by, = {Z7'AX'X + 2 (I-Q(Q'Q'Q')} (X7 'BX")y (14)
Q GQ
and
g = (Q'(zax'x)"! « GSI)'1Q}'1Q'{ZQ(X'X)'1 % 031}‘% (15)

In what follows we will compare the two approaches using data for U.S.
manufacturing from Berndt and Wood (1975), letting %R and 00

vary and seeing how the estimated bR’ bQ and Qg behave.

Eventually, when 9R and oq approach zero both bR and bQ will

converge to estimates with exact constraints (Brook and Wallace
(1973), Iimakunnas (1985)). In the other extreme, when OR and OQ
approach infinity, bR and bQ converge to the unconstrained OLS

estimates.

In this sense the estimators are somewhat similar to the ridge
regression estimator. In ridge regression all parameters are shrunk
towards zero. Here, however, not all parameters shrink since the
matrices I—Q(Q'Q)"1Q' and R'R have some zero rows. Also, the

shrinking happens towards the constrained estimates, not towards zero.



Analogously to ridge regression, the use of the proposed estimators
can be justified by the possibility of studying the stability of the
estimates. In ridge regression this happens along the ridge trace.

Here stability of b_., Qg and bR when 0_ or o, is changed gives

Q Q R

an indication of how reliable any point estimates may be. However, the
obtained estimates need not be superior to the unconstrained OLS
estimates or the exactly constrained estimates by the mean squared
error criterion, since the MSE properties of the hierarchical
estimates depend on the true, but unknown parameter values (Smith
(1973)); this is again similar to ridge regression (see e.g. Judge et
al. (1980), ch. 12.6). Below we compare the MSE properties of the
estimators in a Monte Carlo study. In any case, introducing exact or

stochastic constraints leads to more efficient estimates than

unconstrained OLS (see e.g. Anderson (1973)).

We can also estimate Ob. and Z together with the other parameters as

is done in Kiefer (1977) and ITmakunnas (1985). In this case the

estimate of @ is

2_

¢ = B'(1-(Q' Q) BAS (16)

A
Y]

The estimate of B is

™
]

(Y-XB)'(Y-XB)/T (17)

where Y is a T x 3 matrix with t-th row (S ) and B 1is

Kt SLt’ St
a 5 x 3 matrix with typical row (BK1’BL1’BE1)’ i = K,L,E,M. The
estimators are obtained by iterating the equation system (14), (15),

(16), and (17) until convergence. The variances (16) and (17) are the
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modal estimates suggested by Lindley and Smith (1972), using
noninformative priors for the var1ances.5) Estimating the variance
of the parameters rather than fixing it a priori may make more sense
when a random parameter model is used for pooling time series and
cross section data, as e.g. in Swamy (1970), Smith (1973) and Trivedi
(1980). However, it would be interesting to see in our simulation
experiment whether we obtain an estimate of o which is close to the

Q

value which 1s used for generating the data.



n
III Results of the Monte Carlo comparison

We compared the estimators in a Monte Carlo study. The data used was
that in Berndt and Wood (1975). First we obtained estimates of the
parameters of the model, g and f, using the iterative Zellner method
with symmetry and homogeneity constrained. In each replication three
series of normally distributed random variables were generated, which
have zero mean vector and covariance matrix L. A fourth series of
normal random variables was used for generating random parameters,
which have % as their mean.ﬁ) The error vector of the parameters is
distributed as N(O,Ioz); o2 was given different values. Given the
input price data, these random variables were used for generating new
data of cost shares. This design corresponds to the hierarchical
model. Since the parameters are stochastic, so are the constraints. As
discussed above, the mixed model 1s more difficult to interpret as a

random coefficient model.

For each value of 02 we made 100 replications. In each case we
estimated the model with the hierarchical approach, the mixed
approach, unconstrained OLS and with exact constraints, all
conditionally on . We compared the estimators in terms of mean
squared errors (MSE). To save space, we do not report the MSEs of all
15 parameters. In Tables 1-4 the following symbols are used: "X>>Y"
implies that for all the parameters estimator Y leads to a smaller MSE
than estimator X. "X>Y" implies that for all the parameters Y has
smaller or equal MSE than X. "X (>) Y" denotes a case where for at
most 4 parameters Y has larger MSE than X and at least for 8

parameters X has larger MSE than Y. We interpret all these three
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cases to give evidence that Y is in MSE sense a "better" estimator
than X. Finally, in all other cases we use notation "X Z Y". These

are interpreted as inconclusive cases.

When the true o is zero, 1.e. the parameters are nonstochastic and
have exact constraints, the MSEs for the other estimators tend to be
larger than for the exactly constrained estimator. The MSEs increase
with the value of op and 00. For a given op = oq, the mixed

approach tends to have smaller MSE than the first stage hierarchical
estimator.

equal

When the true o is increased to .001 or .01, using o, or o

R Q
to the true value tends to lead to a smaller MSE than other values of
och*oQ, as could be expected. However, when ¢ is increased to .1,
using the true value does not necessarily lead to smaller MSE. Only
in the case of second-stage hierarchical estimates is there a clear
improvement. It can also be seen that the second-stage estimates are
better than the constrained ones for a wide range of values of OQ
when the true o is large. This holds to some extent for the other
estimators, too. For large values of o even unconstrained OLS

estimates have smaller MSE than the exactly constrained ones.

In sum, we could say that if the parameters are not stochastic, using
hierarchical or mixed approach gives worse estimates, judged by MSE.
If the parameters are stochastic and their variance is relatively
large, there are values of o_, and o_ which lead to better

Q R
estimates than treating the parameters nonstochastic. Finally, for
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large enough true o there 1s a wide range of values of O, and O

Q R

which lead to MSE improvements over the constrained estimates.

We made some experiments with the iterative approach. o was estimated,
but © was fixed at f, the covariance matrix of the constrained share
system. Due to memory size l1imitations in the program used, only 25
replications were made. When o = .1, the mean value of G in the 25
replications was .06. With o = .01 or smaller, the mean of G was
practically zero. Therefore it appears that there is a tendency for o
to be underestimated, which diminishes the usefulness of the iterative

method.
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IV An application

We used the estimators discussed above for estimating the model with

the Berndt-Wood data on cost shares and input prices, conditionally

on 5 and given values of og and og.

In tables 5 and 6 we present Allen cross elasticities of substitution.

These are given by the formula AES1 = (B,, + S,S )/S1S As cost

J LN I B J

shares we used sample mean shares. The values of 0: and 03 used were

107% (k=0,...,8).

2
Q

obtained from unconstrained OLS estimates. On the other hand, for the

highest values of k (and smallest values of Og and 06) shown, the

When k=0 and 02 =0_- =1, the elasticities were the same as those

elasticities were the same as with constraints imposed exactly. For

2 2
R and OQ

approaches lead to the same results. In the intermediate range where

these small and large values of © the mixed and hierarchical
the most dramatic changes in the elasticities take place, the mixed
estimates seem to converge more rapidly toward the constrained
estimates. The main pattern of change is, however, the same.
Variations in the second-stage elasticities are smoother, but some
elasticities sti11 show large changes in the same range of 03

where the first-stage elasticities vary the most.

We can also inspect the different elasticities obtained for a given
value of k. The second-stage estimates can then be used as a
compromise if one needs a point estimate. Also, as shown in section
III, they can lead to MSE improvement if the variance of the

parameters is large. Table 6 clearly shows that in general the
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second-stage elasticities do not 1ie at the midpoint between the
first-stage elasticities. Another interesting result is that in some
cases the elasticities obtained cover both positive and negative
values, i.e. both substitutability and complementarity of the inputs.
The range of values is especially large in the case of capital and
energy. This 1s interesting in the 1ight of the controversy about
energy-capital complementarity (e.g. Berndt and Wood (1979)). A wide
variation in an elasticity when the strictness of the constraints is
tightened should decrease our confidence on any particular estimate
obtained since this reflects weak data information. Hence we should
perhaps not reject right away the possibility of substitutability

between capital and energy, since their complementarity partly results

2
Q

elasticities, too, imply energy-capital substitutability. Another

from the imposition of symmetry. For large ¢, the second-stage
interesting result is the change in the relationship of energy and
materials from complementarity to substitutability when OS is

decreased.

We also calculated own prices elasticities of demand, given by E1 =

2
AES11-S1, where AES11 = (811 + S1

- 5,)/5%. The varia-

tion in these elasticities was much less than in the Allen
elasticities of substitution; therefore we report only the pair of
elasticities corresponding to k=0 and k=8. In the case of EK this
was (-.17, -.39), for EL (-.49, -.45), for EE (-.09, -.55) and for
EM (-.13, -.22). The price elasticity of energy is hence the most

sensitive to the strictness of the constraints. These ranges were the

same for mixed and hierarchical models.



1o

We also estimated the cost share system using the iterative procedure
described in section II. The convergence criterion used was that
changes in the elements of B were at most .0001 from previous
iteration. This led to elasticities equal to those in the last columns
(k=8) in Table 6, which would imply exact constraints. This result has
to be taken with some reservation, since the Monte Carlo experiments
in the previous section showed that the iterative method may be biased

towards giving too low values of o.

For the sake of comparison, we tested the constraints with a

traditional 1ikelihood ratio test. The test statistic, -2logr, where X
is the ratio of 1ikelihood functions with and without constraints, is
11.68. This 1s above the critical value, 10.6, of the x2

distribution with 6 degrees of freedom at the 10 percent significance
level but below the critical value at the 5 percent level, 12.6. Hence
the constraints are only marginally accepted.7) Studying the sensitivity
of the estimates to the imposition of the constraints seems therefore

worthwhile.
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IV Conclusions

The purpose of this paper has been to compare different approaches to
imposing parameter constraints stochastically in a cost function
model. Monte Carlo evidence suggests that if the parameter constraints
are indeed stochastic with a large enough variance, mean squared error
can be decreased by adopting a mixed or a hierarchical approach to
estimating the model. In an application with the Berndt-Wood (1975)
data 1t appears that capital-energy substitutability is clearly a
possibility if the parameters and hence the constraints are treated as
stochastic. In contrast, when the constraints are fixed,

energy-capital complementarity is found.

Given different prior strictness of the parameter constraints we
obtain a range of elasticities. It seems useful to report the whole
range so that the reader can judge whether the point estimates are too
sensitive to the imposition of the constraints to be useful e.g. in
making forecasts of industrial demand for energy or of substitution

between inputs following changes in relative input prices.
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Table 1: MSE comparison, 0 =0

AV

CIGLS{ (<)

Note:

(<)
l

\

N

Mixed

1st
2nd
oLs

CJGLS

>>

>

(>)

AV

Mixed,
0R = .001

(<)

gst stage,
= .001
Q

>

<

2nd stage,

o = .00
Q 1

stage

stage

= ordinary least squares

= all parameter estimates have larger MSE

<<

<<

<<
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Mixed,
OR = .01

<

1st stage,

o = .01

Q
>
<

2nd stage,

o, = .01
Q

<<

<<

<<

mixed regression estimates

Mixed,

Op = 1

<

1st stage,
O w3

Q

>

<

2nd stage,
o = .1
Q

hierarchical model, 1st stage estimates

hierarchical model, 2nd stage estimates

<<

<<\

AV

constrained joint generalized least squares

J

OLS >> CJGLS

= all parameter estimates have larger or equal MSE

= for at most 4 parameter estimates MSE is smaller
and for at least 8 parameter estimates MSE is larger

= inconclusive
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Table 2: MSE comparison, 0 = ,001

| 2 Q1de,001 (<) y1x€d,0] << gixed,] << |
\ R ™ ° R ™~ R ™ °
| z << (<)
CJGLS i 2 1st stage, <<  1st stage, << 1st stage, << & 0LS >> CJGLS
. Tg = .00 % = -0 % = -1 |
2 2 2 |
Z 2nd stage, << 2nd stage, << 2nd stage, 2
e Ob = .001 éﬂ = .01 Ob = .1

Note: see Table 1
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Table 3: MSE comparison, o = .01

(; Mixed, (>) §1xed, (<) g1xed, <
o = = =
{ R " .001 R .01 0 a1
| >> Z < f
CJGLS< (>) 1st stage, (>) 1st stage, (%) 1st stage, < 5 0LS Z CJGLS
‘ o = .001 ° = .01 C . ‘
: Q Q Q
| 2 (>) (>)
>> 2nd stage, >> 2nd stage, (<) 2nd stage, (<)
GQ = .001 GQ = .01 OQ = .1

-~

Note: see Table 1



Table 4: MSE comparison, o =

>>

a

/
CJGLS? >>

|

Note:

§1xed, (>)
R = .001
(>)
1st stage, (>)
o = .001
Q
>
<

%gd stage, >>

= .001
Q

see Table 1
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51

gixsd,O]
R =
(>)
T1st stage,
OO = .01
(>)
2nd stage,

. = .01
Q

AV

AV

>>

Q 1

>
2nd stage,
o = .1

Q

(<)

1st stage, (<) SOLS (<) CIGLS



Table 5: Allen Elasticities of Substitution: The Mixed Approach

22

k=0
AESKL -.69 -.67 -.47 «29 .80 .93 -97 <97 97
AESLK 2.34 2.32 2.11 1.63 1.117 .98 7 .97 .97
AESKE 17.40 17.23 15.77 9.14 35 -2.717 -3.117 -3.14 -3.14
AESEK -1.44 -1.47 -1.68 -2.52 -3.23 -3.23 -3.15 -3.14 -3.14
AESKM <51 .56 .48 <9 .34 .44 .43 .43 .43
AESHK -.62 -.60 -.49 -.08 .30 .43 .43 .43 .43
AESLE 6.46 6.39 5.76 3.31 1.34 .19 .66 .65 .64
AESEL « 22 .23 .35 1 »95 09 .66 .65 .64
AESLM .28 .21 .26 .29 .48 9 .58 .58 .58
AESML .81 .81 .16 .60 .56 <Al .58 .58 .58
AESEM .57 .56 5 .38 20 =4 .84 .85 .85
AES"E -4.03 -3.98 -3.53 -1.66 .23 .18 .85 .85 .85

Note: k = 1ogw(1/o§)
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Table 6: Allen Elasticities of Substitution: The Hierarchical Approach

k=0 1 2 3 4 5 6 1

First stage

AESKL -.69 -.68 -.58 .01 . 12 .90 .96 97
AESLK 2.34 2.33 2.24 1.74 1.17 .95 .96 .97
AESKE 17.40 17.30 16.36 10.94 2.39 -1.99 -2.99 -3.12
AESEK -1.44 -1.46 -1.60 -2.38 -3.33 -3.45 -3.21 -3.15
AESKM «57 « 9l .53 .37 .31 .44 .44 .43
AESMK -.62 -.61 -.54 -.11 29 45 44 43
AESLE 6.47 6.42 6.01 3.81 1.52 1.04 13 65
AESEL 22 "l «29 .65 1.03 .92 .70 .65
AESLM .28 .28 .29 .36 .49 .55 .58 .58
AESML .82 .81 .79 .67 .56 .56 .58 .58
AESEM «D .56 .54 .44 -4 .63 .81 .85
AESME -4.04 -4.00 -3.717 -2.08 -.06 62 82 85

Second stage

AESKL 97 5% 0 .98 1.00 .98 .92 95 .97
AESKE .35 .35 .33 .16 -1.10 -2.66 -3.08 -3.13
AESKM .20 .20 .19 A7 .26 .43 .44 .43
AESLE 2.99 2.98 2.84 211 1.33 1.02 o .bS
AESLM .31 .31 .38 .42 .50 .55 .58 .58
AESMK -.29 -.29 -.25 -.0 .36 .66 .82 .85

Note: k = 10910(1435)

-3.

-3.

97

.97

.43
.43
.65
.65
.58
.58
.85

.85

.97

.43
.65
.58

.85
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Footnotes

1)

2)

3)

4)

5)

6)

7

Pekka ITmakunnas, Research Institute of the Finnish Economy,
Lonnrotinkatu 4 B, SF-00120 Helsinki, Finland.

See discussion in Kiefer (1977) and the references cited there. One
should also note that testing the constraints implied by optimizing
behavior means testing the behavioral assumption. However, an
alternative theory that includes absence of the constraints may not
exist; see Phlips (1976).

Leamer and Leonard (1983) recommend analyzing the fragility of
estimates, but use a different framework.

See the series of papers by Laitinen (1978), Meisner (1979), Bera,
Byron and Jarque (1981), Fiebig and Theil (1983) and Theil and
Rosalsky (1984).

The divisor in (17) depends on whether one considers the joint or
marginal modes of the parameters (see 0'Hagan (1976)). We have used
the marginal modes and hence the divisor T, since this corresponds
more closely to maximum 1ikelihood estimation.

The errors were generated using the random number generator in
TSP, version 4.0. The error terms for the share equations were

obtained as follows. Let €y 1=1,2.3, be the generated N(0,1)
error terms and € = &1,62,83] so that E(c'e) = I. We decomposed

the covariance matrix to & = P'P where P is an upper triangular
matrix. Postmultiply € by P to obtain new errors n = eP. It 1s easy
to see that E(n'n) = £ and vec(n) v N(0,281).

The references cited in footnote 4 may imply that since there is a
tendency for the constraints to be rejected, the marginal
acceptance of the constraints in our case might actually give
fairly strong evidence for the constraints. However, in our case
the equation system is small and hence the bias towards rejection
should not bee too serious.
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