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Usefulness of proxy variables in linear models with stochastic

regressors

Abstract. This paper considers a linear model with two stochastic
regressors where one regressor is not observed but may be observed

with error (proxy variable). The interest is focussed upon the estimation
accuracy of the regression coefficient of the observable regressor. Three
situations are compared with each other: the estimation of the parameters
of the original model, the estimation of parameters when a proxy variable
is substituted for the non-observable and the omission of the non-
observable variable. Conditions for one of these three alternatives to

be superior to the two others are given. Omission of the non-observable
variable can generally be superior to the use of a proxy variable only

in small samples.



1. Introduction

The choice between omitting a non-observable stochastic variable and
substituting a proxy variable for it has been a recent topic for
discussion, see Aigner (1974), Kinal and Lahiri (1983) and references
therein. The proxy variable is defined as the non-observable variable
measured with error. The starting-point of discussion has been a linear
model with two stochastic regressors, and the interest has been focussed
upon the estimation of the regression coefficient of the observable
regressor. Both the omission of the non-observable variable and the
proxy variable approach generally yield biased estimates for this

coefficient.

These two biased estimators may be compared with each other using
their mean square errors. Aigner (1974) derived a sufficient condition
for the Teast squares estimator using a proxy variable to have a
smaller MSE than the omitted variable (0V) estimator. He completed
this resultwith a contour chart, showing the situations where‘the
condition was satisfied. Kinal and Lahiri (1983), among other things,
derived a necessary and sufficient condition for the proxy variable
estimator to have smaller MSE of the two. They also briefly mentioned
the possibility that the use of a proxy variable yields a Tower MSE
than would be the case if the non-observable variable were observed.
The broad conclusion of the aforementioned authors was that the use
of the proxy variable is a better alternative than the omission of the

non-observable variable.

This paper elaborates the issue by including the case where the non-

observable variable can be observed and investigating the situation



for all possible proxy variables simultaneously. (The necessary and
sufficient condition of Kinal and Lahiri (1983) refers to a single proxy
variable.) The three possibilities: the estimation of the original model
(OLS estimator), the use of a proxy variable and the OV estimator are
compared with each other. Four different cases seem to emerge. It is
possible that the OLS estimator yields the lowest MSE and the MSE of the
proxy estimator increases monotonically wjth the error variance of the
proxy variable. The OV estimator is the worst alternative with the
largest MSE. This is a common situation in practice. Another possibility
is that the OV estimator is still the worst alternative but there exists
a proxy variable with a smaller MSE than the OLS estimator. The th%rd
alternative is that while there exists a proxy variable with a smaller MSE
than that of the OV or the OLS estimator, the OLS estimator has a larger
MSE than the OV estimator. Finally, it is possible that the OLS estimator
has the largest MSE, and the MSE of the proxy variable is a decreasing
function of the error variance of this variable. The OV estimator has
about the smallest MSE of all a1ternat1vés. The last two cases are only

likely to appear in small samples.

A11 four possibilities can be uniquely described by the value of the
first derivative of the MSE of the proxy estimator with respect to the
measurement error variance of the proxy variable in the origin. While
the value of the derivative in the origin does depend on the number of
observations in the model, its sign does not. The sign distinguishes

the first case from the three others.

In Section 2 the model is introduced and a basis for MSE comparisons

established. Section 3 contains the main results and Section 4 final

remarks.



2. The model

Consider the regression model

Yy =XB +2Zy + U (2.1)

where y, X, z and u are stochastic n x1 vectors with zero expectations.

The error u is independent of x and z. If z is a non-observable

stochastic proxy variable z* = z + e where Ee = 0, cov(e,u) = 0. Let

cov(x,z) = Tyz and Var(a) = Oaa> @ = €5 Us X, Z. Now, B may be estimated
from

y = XB + z*y + u* (2.2)
where u* = u - ye, by ordinary least squares. The MSE of the Tleast

squares estimator @E is (Kinal and Lahiri, 1983)
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Another way of estimating B is by omitting the non-observable z altogether

and estimating B from

y = xB + u** (2.4)



where u** = zy + u, by ordinary least squares. The MSE of the OV estimator

EOV equals (Kinal and Lahiri, 1983)
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By substituting n-2 for n-3 in (2.6) we obtain (2.5). Asymptotically,
as n »o, MSE(@OV) = L(EE) and we may regard 8, the OLS estimator of B
from (2.1), and /éov as two extreme special cases of estimator @E. In finite
samples, this is not exactly true, as MSE(EOV) - L(EE) >0. However, as

2

n+~, the difference goes to zero at the same rate as n ° and is there-

fore often negligible already in moderate size samples.

3. Main results

Since B and §0V may approximately be regarded as two extremes of §E, it
seems useful to chart the behaviour of MSE(@E) at different values of

Ope In order to do that we need
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and that dE(oee)-+0 as 0 o > . By setting (3.1) equal to zero and

solving for Oge WE obtain
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Thus, as a function of Opg? MSE(@E) has at most one extreme value in the

interval [0,») cf. also Kinal and Lahiri (1983, footnote 12). A sufficient

condition for no extreme value in that interval is cee.<0. That it is

necessary as well can be seen from the second derivative of the MSE which.

has at most one zero in [0,»). For n >4, this condition is equivalent to
2("-4)Y20§Z

dE(O) >0 or dE(O) < - 5— = - 2a (3.4)
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where
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If n =4, (3.3) is always negative.

Let us first consider (3.4a). If MSE(EE) begins to increase when o,
turns positive, then MSE(B) <MSE(§E) <MSE(@0V) for any positive value
of Tger Omitting z altogether instead of using a proxy variable z* is

thus the worst possible alternative, and not observing z always implies

a loss in the estimation accuracy of B.

o . 2 4 ov?
Following Kinal and Lahiri (1983), set tY = (n-3)y Ozz-x/ouu‘ Then (3.4a)
is equivalent to

2 2

tY >(n-3)pxz . (3.5)

It is seen that (3.5) is always satisfied when oy, = 0 and is less Tikely
to be valid if x and z are heavily correlated. If y is important, i.e.,
the "signal-to-noise ratio" Yz/ouu is large, (3.5) is more likely to

hold than if the ratio is small. Furthermore, (3.5) is independent of

the number of observations in the model.

Now, suppose (3.4b) holds. Then MSE(R) >MSE(§E) >L(§E) for any o, >0.
In this case, any z* is a better alternative than z. Condition (3.4b)

can also be written as

2
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For (3.6) to be valid, the sample cannot be large, the signal-to-noise

2

= not close to zero.

ratio yz/cuu must be low and p



There are two intermediate situations between (3.4a) and (3.4b). First,
it is possible that although (3.3) is positive, B may still be a worse
alternative than any §E. This happens when L(EE) <MSE(B). A necessary

and sufficient condition for this inequality to hold is

E(O) <{-a (3.7)

or

2 2 2 =1
ty,<(n-3)pXZE1 + (n-4)ple ; (3.8)

The r.h.s. of (3.8) is always less than one but approaches unity as
2
Y
MSE(%OV) <MSE(B), see Kinal and Lahiri (1983). The authors (footnote 12)

n -+« , Note that t_ <1 is a necessary and sufficient condition for

also give the inverse of inequality (3.6) as a necessary condition for

MSE(@E) <MSE(B) but (3.8) shows that not to be a necessary condition.
If (3.3) is positive and (3.7) holds then
-2a < d.(0) < -a

and there exists an optimal proxy variable ngt with 0 <°ee < such that

MSE(BRPT) < MSE(BL).
The second intermediate case is

-a < dg(0) < 0. (3.9)



When (3.9) holds, égpt again exists but at least some z* lead to a larger
MSE than B. In fact, dE(O) > -a is a sufficient condition for éOV to be

a worse alternative than the inclusion of any z*.

From (3.5) and (3.6) we may conclude that the necessary and sufficient
condition for the existence of égpt is

1
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Suppose dE(O) <0. It is seen from (3.10) that there always exists ng such

that for n 2"0’ ggpt also exists. Thus for all models such that d-(0) <0

£l
it is always possible to improve on the OLS estimator by introducing

measurement error into z.

4, Final remarks

Qur conclusion is that the use of a proxy variable in multiple regression
is generally advisable in large samples if the alternative is the omission
of the non-observable variable. There are even situations where introducing
some measurement error may be a superior strategy to the use of correctly
measured variables. However, dE(O)-+0 as n->«, Thus in large samples the
possible gain from introducing measurement error (when dE(O) <0) may

remain minor at best, and often only a very small measurement error can
improve the estimation accuracy at all. Strong correlation between the
predictors together with a small sample remains the case where it may be
profitable to delete the non-observable variable altogether and not try

to substitute a proxy variable for it.
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