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Usefulness of proxy variables in linear models with stochastic

regressors

Abstract. This paper considers a linear model with two stochastic
regressors where one regressor is not observed but may be observed
with error (proxy variable). The interest is focussed upon the estimation
accuracy af the regression coefficient af the observable regressor. Three
situations are compared with each other: the estimation of the parameters
of the original model, the estimation of parameters when a proxy variable
is substituted for the non-observable and the omission of the non­
observable variable. Conditions for one of these three alternatives to
be superior to the two others are given. Omission of the non-observable
variable can generally be superior to the use af a proxy variable only
in small samples.



1. Introduction

The choice between omitting a non-observable stochastic variable and

substituting a proxy variable for it has been a recent topic for

discussion, see Aigner (1974), Kinal and Lahiri (1983) and references

therein. The proxy variable is defined as the non-observable variable

measured with error. The starting-point of discussion has been a linear

model with two stochastic regressors, and the interest has been focussed

upon the estimation of the regression coefficient of the observable

regressor. Both the omission of the non-observable variabJe and the

proxy variable approach generally yield biased estimates for this

coefficient.

These two biased estimators may be compared with each other using

their mean square errors. Aigner (1974) derived a sufficient condition

for the least squares estimator using a proxy variable to have a

smaller MSE than the omitted variable (OV) estimator. He completed

this resultwith a contour cnart, showing the situations where the

condition was satisfied. Kinal and Lahiri (1983), among other things,

derived a necessary and sufficient condition for the proxy variable

estimator to have smaller MSE of the two. They also briefly mentioned

the possibility that the use of a proxy variable yields a lower MSE

than would be the case if the non-observable variable were observed.

The broad conclusion of the aforementioned authors was that the use

of the proxy variable is a better alternative than the omission of the

non-observable variable.

This paper elaborates the issue by including the case where the non­

observable variable can be observed and investigating the situation
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for all possible proxy variables simultaneously. (The necessary and

sufficient condition of Kinal and Lahiri (1983) refers to a single proxy

variable.) The three possibilities: the estimation af the original model

(OLS estimator), the use af a proxy variable and the OV estimator are

compared with each other. Four different cases seem to emerge. It is

possible that the OLS estimator yields the lowest MSE and the MSE of the

proxy estimator increases monotonically with the error variance of the

proxy variable. The OV estimator is the worst alternative with the

largest MSE. This is a common situation in practice. Another possibility

is that the OV estimator is still the worst alternative but there exists

a proxy variable with a smaller MSE than the OLS estimator. The third

alternative is that while there exists a proxy variable with a smaller MSE

than that af the OV or the OLS estimator, the OLS estimator has a larger

MSE than the OV estimator. Finally, it is possible that the OLS estimator

has the largest MSE, and the MSE af the proxy variable is a decreasing

function of the error variance of this variable. The OV estimator has
.

about the smallest MSE af all alternatives. The last two cases are only

likely to appear in small samples.

All four possibilities can be uniquely described by the value of the

first derivative of the MSE of the proxy estimatar with respect to the

measurement errar variance af the proxy variable in the origin. While

the value of the derivative in the origin does depend on the number af

observatians in the madel, its sign does not. The sign distinguishes

the first case from the three others.

In Sectian 2 the model is introduced and a basis for MSE comparisans

established. Section 3 contains the main results and Section 4 final

remarks.
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2. The madel

Cansider the regressian madel

y = xl3 + zy + u ( 2.1)

where y, x, z and u are stachastic n x1 vectars with zera expectatians.

The errar u is independent af x and z. If z is a non-observable

stachastic praxy variable z* = z + e where Ee = 0, cav(e,u) = O. Let

cov(x,z) =0xz and Var(a) = 0aa' a = e, u, x, z. Naw, 13 may be estimated

from

y = xl3 + z*y + u* (2.2)

where u* = u - ye, by ordinary least squares. The MSE af the least

squares estimator SE is (Kinal and Lahtri, 1983)

where et> = 0xx(ozz.x+oee) and 0zz.x = 0zz - o~/oxx = 0z;z (1 - p;z)

with P~z = o~z/oxxozz'

(2.3)

Another way af estimating 13 is by amitting the non-observable z altogether

and estimating 13 fram

y = xl3 + u** (2.4)
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where u** = zy + u, by ordinary least squares. The MSE.of the OV estimator

80V equals (Kinal and Lahiri, 1983)

2 2 2
~ Y ~ Y cr
v v X xz= uu + zz. +

(n-2)crxx (n-2)crxx 2crxx

Let cree + 00 in (2.3). Then

(2.5)

L(SE) = lim MSE(S)
cr +00ee

(2.6)

By substituting n-2 for n-3 in (2.6) we obtain (2.5). Asymptotically,

as n +00, MSE(80V ) = L(SE) and we may regard S, the OLS estimator af S
A A

from (2.1), and SOV as two extreme special cases of estimator SE. In finite

samples, this is not exactly true, as MSE(SOV) - L(SE) >0. However, as

n +00, the difference goes to zero at the same rate as n-2 and is there-

fore often negligible already in moderate size samples.

3. Ma i n results

Since Sand 80V may approximately be regarded as two extremes of SE' it

seems useful to chart the behaviour of MSE(SE) at different values of

cree . In order to do that we need
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In particular, note that

(3.2)

and that dE(aee ) +0 as aee +00. By setting (3.1) equal to zero and

solving for aee we obtain

aee =

2 2- a (y a a a - a a )zz.x zz·x xx zz uu xz

(3.3)

Thus,'as a function of aee , MSE(SE) has at most one extreme value in the

interval [0,00) cf. also Kinal and Lahiri (1983, footnote 12). A sufficient

condition for no extreme value in that interval is aee.<O. That it is

necessary as well can be seen from the second derivative of the MSE which,

has at most one zero in [0,00). For n >4, this condition is equivalent to

2 2
2(n-4)y Pxz

2(n-3)axx (1-pxz )
= - 2a (3.4)
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where
2 2(n-4)y Pxza = -----"?I2~ .

(n-3)oxx(1-pxz )

If n = 4, (3.3) isa1ways negative.

Let us first consider (3.4a). If MSE(SE) begins to increase when 0ee

turns positive, then MSE(S) <MSE(SE) <MSE(SOV) for any positive va1ue

of ° . Omitting z a1together instead of using a proxy variab1e z* isee
thus the worst possib1e a1ternative, and not observing z a1ways imp1ies

a 10ss in the estimation accuracy of s.

Fo11owing Kina1 and Lahiri (1983), set t~ = (n-3)y20zz.x/ouu. Then (3.4a)

is equiva1ent to

2 2
t y >(n-3 )pxz • (3.5)

It is seen that (3.5) is a1ways satisfied when Pxz = 0 and is 1ess 1ike1y

to be va1id if x and z are heavi1y corre1ated. If y is impartant, i.e.,

the "signal-to-naise ratio" y2/o is large, (3.5) is more 1ike1y touu
ha1d than if the ratia is smal1. Furthermare, (3.5) is independent af

the number of observations in the mode1.

Now, suppase (3.4b) halds. Then MSE(S) >MSE(~E) >L(SE) far any 0ee >0.

In this case, any z* is a better alternative than z. Candition (3.4b)

can a1so be written as

(3.6)

For (3.6) to be va1id, the sample cannot be large, the signal-to-noise

t · 2/ t b 1 d 2 1ra 10 y 0uu mus e aw an Pxz nat c ase ta zero.
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There are two intermediate situations between (3.4a) and (3.4b). First,

it is possible that although (3.3) is positive, S may still be a worse

alternative than any SE' This happens when L(SE) <MSE(S). A necessary

and sufficient condition for this in~quality ta hold is

(3.7)

or

(3.8)

The r.h.s. af (3.8) is always less than one but approaches unity as

n ~oo • Note that t~ <1 is a necessary and sufficient condition for

MSE(SOV) <MSE(S), see Kinal and Lahiri (1983). The authors (footnote 12)

also give the inverse of inequality (3.6) as a necessary condition for

MSE(SE) <MSE(S) but (3.8) shows that not ta be a necessary condition.

If (3.3) is positive and (3.7) holds then

and there exists an optimal proxy variable ~~Pt with 0 <oee <00 such that

MSE(S~Pt) 5 MSE(~E)'

The second intermediate case is

(3.9)
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When (3.9) holds, s~Pt again exists but at least some z* lead to a larger

MSE than S. In fact, dE(O) > -a is a sufficient condition for SOV to be

a worse alternative than the inclusion of any z*.

From (3.5) and (3.6) we may conclude that the necessary and sufficient
"optcondition for the existence of SE is

(3.10)

Suppose dE(O) <0. It is seen from (3.10) that there always exists nO such

that for n >n sopt also exists. Thus for all models such that dE(O) <0- 0' E

it is always possible to improve on the OLS estimator by introducing

measurement error into z.

4. Final remarks

Our conclusion is that the use of a proxy variable in multiple regression

is generally advisable in large samples if the alternative is the omission

of the non-observable variable. There are even situations where introducing

some measurement error may be a superior strategy to the use of correctly

measured variables. However, dE(O) +0 as n +00. Thus in large samples the

possible gain from introducing measurement error (when dE(O) <0) may

remain minor at best, and often only a very small measurement error can

improve the estimation accuracy at all. Strong correlation between ~he

predictors together with a small sample remains the case where it may be

profitable to delete the non-observable variable altogether and not try

to substitute a proxy variable for it.
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