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ON THE SENSITIVITY OF THE SOLUTION OF A LINEAR ECONOMETRIC MODEL

Heikki Vajanne &Eero Pylkkanen

The Research Institute of the Finnish Economy

1. INTRODUCTION

This paper deals with the sensitivity of the reduced-form coefficients

and especially the solution of a linear econometric model when the

structural-form coefficients of the model are allowed to vary according

to some special rules. The starting point is an eXisting econometric

model the inaccuracy of which is expressed by specifying the values

of its key structural-form coefficients as closed intervals. All the

other coefficients are kept fixed at some initial values and so are all

the predetermined variables as well. A model specified in this manner

generates a set of feasible solutions of its endogenous variables.

The focus of interest lies on the geometric properties of the solution

set, especially on certain plane or line projections of the set,

corresponding to interesting pairs or individuals of endogenous variables,

respectively.

The line of thought adopted here differs considerably from the usual

treatment of uncertainty aspects in econometric modelling. We do not

start from statistical theory in order to construct confidence ellipsoids

to our structural-form parameters but we express our view of the un­

certainty of the model~s coefficients in a rougher, perhaps more



2

subjective way. This is a deliberate choice: we think that in practice,

especially in connection with models designed primarily for forecasting

purposes, it may be well justifi ed to be content with somewhat IIloose ll

uncertainty expressions such as described here. The use of most sophis­

ticated statistical means may not be necessary if the model structure

in question has ingredients which in fact are of subjective quality.

Neither has our approach very much in common with the sensitivity

considerations discussed in the theory of linear equation systems. For

example, in the literarure of numerical analysis much attention has been

paid in connection with ill-conditioned matrices to represent a scalar

measure, or a II condition number ll
, tb describe the propensity of the matrix

inverse to change due to small variations in the matrix to be inverted.

Although our problems are basically not so far from those discussions

our approach is different and we make no straight use of those results.

The benefits of our outcomes can be immediately seen: the approach we

have used, sometimes called IIgeometric approach ll
, gives us an outlook

concerning the properties of the model solution. If the model is used

as a tool in forecasting the picture tells us useful things concerning

the reliability of our forecast. It is equally important that our

calculations improve our understanding of the model in question. The

projection results indicate us indirectly the IIdangerous ll areas in

parameter space, i.e. they warn us of apparent singularity directions

where the model can explode as the matrix of the endogenous variables

becomes singular.



3

In the general case we don~t make any special restrictions to the number

of equations, the coefficients of which are allowed to vary. In this

paper, however, we confine ourselves mainly to the case where only one equation

may have varying coefficients the rest being kept constant. This

restriction helps us to concentrate on some very basic sub-problems of

the general case, the understanding of which is essential when we try

to catch the general problem. Also the fundamental geometric

characteristics of the general case will be clearly outlined already in

the case of one varying equation.

In the following use is made of the so called pivotal operations. Thus

after the formulation of the problem one section is devoted to a concise

introduction of pivotal operations (for a more comprehensive description,

see e.g. Valiaho, 1970 and 1979). That introduction is succeeded by a

section where the case of one varying equation will be gone through

rather circumstancially. In the last section the links between the

caseof only one varying equation and. the general case are discussed and

aconjectural solution strategy is designed for the general case.
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2. FORMULATION OF THE PROBLEM

We write the structural form (SF) of our econometric model as

(1) ry = Bz + d

where r is the (n·n) coefficient matrix of the endogenous variables­

vector y, B is the (n.k) matrix of the predeterminated variables- vector

z and d is the vector of the residual terms of the model. In this study

we are not interested in the dynamic'properties of the model. Thus all

lagged endogenous variables are thought to be placed in the predeterm-

inated variables- vector z and no time subscript is needed in our

notations.

Provided that the matrix r is non-singular the reduced form (RF) of the

model can be written as

( 2) Y = ITz + Cd ,

where we have denoted IT = r- 1B and C = r- 1•

Now the general formulation of the problem proceeds as follows: the

vectors z and d are assumed to be fixed at some initial values, z =zO

and d=dO. The inaccuracy o~ the model coefficients is taken into

account by specifying a set of closed intervals to the parameters in

the following way:
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These sets are called IIparalle10topesll in the parameter space. The upper

and lower bounds to matrices rand B are constructed on the ground of

all economic, statistical and judgemental information which the model

user may have in a particular, say forecasting, situation. In practice

a greatmajority of the model's coefficients may be fixed (their upper

and 1ower bounds coinciding) only a small fr-aetion of the coefficients

being really varying (their lower bounds being smaller than their upper

bounds).

The matrix r is assumed to be regular throughout the area (3). However,

our procedure will reveal immediately if this assumption is violated.

For practical reasons we will also assume that the equations of the model

are normalized, that is the diagonal elements of r are and remain at unity.

What we are now interested in are the geometric properties of the solution

set

wh i ch we ca11 a 11 po1ytope" in accordance with the termi no1ogy of

Ritschard & Rossier (198!1). Especially we try to find the pJt.oje.c:Uol'L6

of the set y on any selected line. corresponding to an interesting

endogenous variable, say Yf' and on any selected plane., say (Yf'Y9)'

corresponding to an interesting pair of endogenous variables.

We will see that the crucial step is then to solve the problems

(5)

{
max (min) Yf
subject to
y 6y
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An important subproblem of (5) is generated in the case when only one

equation is allowed to vary.

Let us now fix the matrices rand Bat some initial values, r =rO and B=BO.

The equations of the model can now be written in the component form1)

(6 ) 000 0r.y=B.z+d. i=1, ••• ,n.,. ,. .'

We call the solution of (6) the b~ic ~olution of the model and denote

it with yO:

Next we allow one of the equations, say the r:th equation, to vary so
•

that

r <r <r-re - r. - r.
(8 )

B <B <8--re - r. - r·

All the other equations remain unaltered. We denote the number of varying

coefficients in the r:th equation with Kr , that is, Kr is the number of

1) For the sake of notational convenience we make use of row and column
partitions of matrices. For example, for r we write

r 1•

r = = er .1 r •n] •

rn•
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those Yrj and ark coefficients, the upper and lower bounds of which do

not coincide.

K
Corresponding to K varying parameters there are obviously 2 r e~eme

r

po~ in parameter space, i.e. points where every varying coefficient

is set at one of its extreme values (either at the upper bound or the lower

bound). It is not difficult to prove that in the case of a regular (non­

singular) polytope any endogenous variable Yf takes its maximum (minimum)

value at an extreme point of the parameter space. Thus it is sufficient
K

to go through the 2 r extreme points in order to find extreme values of

an arbitrary element of the vector y. The applying of such an enumeration

strategy is not necessary, however, but the problem can be solved in an

efficient way.

Consider again the initial situation (6). We now move the coefficients

of the r:th equation into any values chosen arbitrarily from the area (8)

so that

Corresponding to this choice of coefficient values there is a unique

model solution which we denote with y(1). Now it can be shown (see

Appendix 1) that exactly the same solution y(1) could be attained as

well by not moving the coefficients from their initial values but instead

by changing the residual term of the r:th equation in a specific way:

by giving the residual term dr a new value
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where the correction term or is

( 11)

and keeping the rest of the model in its initial state the same model

solution y(1) will be generated.

This shows us that any acceptable (non-singular) choice of coefficient

values of the r:th equation leads to a model solution which differs

from the basic solution by a vector which is constant up to scalar

multiplication. The difference vector is simply the r:th column of the

original inverse matrix CO multiplied by the appropriate scalar or.

Thus in this case the polytope is nothing but a line segment in mn,

For example, on the (Yf,yg)

line which goes through the

0/0 0 d 0 b·cgr cfr ' cgr an cfr elng

(12) A\J =y(1) _ yO = ~ CO
UJ u r . r .

plane the polytype is projected on the

point (y~,y~) and the slope of which is

elements of the vectorC~r.
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Thus in the case of one varying equation our problem of finding the

boundary of a plane projection will be reduced to the problem of

finding the end points of a certain line segment. Those end points are,

of course, associated with the extreme values of the correction term

Or' subject to restrictions (8). Hence we can formulate our problem as

follows: solve the optimization problems

"Maximize, minimize

°r(l\r r. ,l\BrJ

(13) subject to

r - r 0 <l\r <r - r0
-re r. - r. - r. r·

B - Ba <l\B <B - Ba-re r. - r. - r. r·

where or is as defined in (11).

It turns out that the problems (13) can be reformulated as two tinean

6~ctional p~og4amming (LFP) problems with exceptionally simple constraints.
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3. THE PIVOTAL OPERATION

Following the treatment of Valiaho (1979) but using different symbols

we write a linear equation system of n equations in munknowns

(14) u = Av

in the form of a table as follows

v

(15) A: u = ~I

Now we perform in (15) the variable exchange ur <--> vs' i.e., we solve

the~:th equation for Vs and substitute the solution into all the other

equations. This leads to a new table

which is obtained from (15) by interchanging the places of ur and Vs and

replacing the matrix A by the matrix A+ =[a-:. ] , where
lJ

+ =1/arsars
+

ai/ars i ~ais = r

(17)
+a . = -a ./a j ~ srJ rJ rs
+ = a .. - a. a ./a i ~ r , j ~ s •aij lJ 1 S rJ rs ,

We say that the variable exchange u <~ v as well as the correspondingr s

matrix transformation (17) is carried by a ~ingle pivotal op~on and we
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denote it by Prs • The operation is defined provided that the corresponding

p.<.vot ei.eme.n1: ars l' o.

We write the formula (17) shortly as A+ = 'p (A) and adopt the conventionrs

PhkPrs(A) = Phk(Prs(A». We say that two pivotal operations Phk and Prs
are de.pe.n.de.n:t if their pivot elements are either on the same row or on the

same column. Otherwise, including the case (h,k) = (r,s), the operations

are said to be -i..n.de.pe.n.de.n1:.

It is easy to see that two independent pivotal operations commute, i.e.

Furthermore we see that the pivotal operation is involutory, i.e.

where I denotes the identity operation.

For two dependent pivotal operations we have a set of simplifying rules

from which we shall need the following (for the proof, see Valiaho, 1970):

(20)

where C~~) denotes a pennutation under which the rows rand h of the

operand matrix (table) are interchanged, all the other rows remaining un­

altered.
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A generalization of the single pivotal operation is the bloCR p~votal

opekation. Here we have the operand matrix A being partitioned as

A = CAij ] • Let now Ars be a non-singular square matrix. The block

pivotal operation p(rs) with Ars as the p~vot m~ takes the form
+ +p( )(A) = A = CA .. ], wherers 1J

A: -1 i ~ r= A. A ,1S 1S rs
(21)

A+. -1
rJ = -ArsArj , s, ~ j

+ -1 i ~ r , s ~ j •A.. = Ai j - Ai sArsArj ,1J

The block pivotal operation can be constructed as a product of appropriate

single pivotal operations. The interpretation of the block pivotal operation

in terms of variable exchanges is straightforward.

Next we want to express the transformation of our basic model from the

structural form (1) to the reduced form (2) by means of pivotal operations.

In order to do that we write the SF into a table as follows

y -z 1

(22) (rBg): d =I~

The last column in the table is an auxiliary column consisting of vector

g which is the value of the lIexogenous part ll of the model.

dep~nding on the relevant value of B. Thus we read the table (22) as

d = ry - Bz.
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We need a way to refer shortly to the rows and columns of the table (22).

In order to do so we define three index sets N = {1 •.•.•n}.

M= {n+1 •••••n+k} and L = {n+k+1}. Obviously. by N we will first refer

to the elements of y and d. by Mto those of (minus) z and by L to the

auxiliary column of the table.

Choose now r as the pivot matrix in (22) and apply the block pivotal

operation PNN • As a result we get a new table (24) which corresponds to

the RF of the model:

d ~z 1

le ~n
. 0

y = ~y

The auxiliary column of the table now consists of the basic solution vector

yO (with reversed sign) which thus proves to be the counterpart of gO on

the reduced form side of the model.

If we now applied the operation PNN once again. C as the pivot matrix.

we would arrive back at the table (22). Moving from (22) to (24). or vice

versa. means a vectoral variable exchange d <--> y. Needless to say.

between the SF(22) and RF(24) there is a ·number of mixed forms. corresponding

to variable exchanges between some but not all elements of d and y. We call

those forms partially reduced. or ~~-~educed 6onm~ (SRF). An arbitrary

SRF can be achieved by means of an appropriately chosen product of single

pivotal operations. the choice depending on the starting point table

(SF. RF or any other SRF).

Now we want to represent a procedure. with which we can update an existing

reduced form table when the corresponding structural form has been changed.
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First we construct an augmented table where we have both the original SF

table (rO B090) and the new SF table (r* B* g*), where gO = BOzO + dO and

g* =B*zO + dO. We concentrate on the tabl eel ements by writing the tabl e simply as

(24)

N~ r* B* 9*

where the index set N* = {n+1, ••• ,2nL Performing now PNN yields

the table
N M L

N cO -rP _yO
(25)

r*cO B*.:.r*rP 9*,;,r*yON*

or, equivalently,

N M L

N cO _nO _yO
(26 )

I+!:IrCO AB-flrrrO -!:IrYO+~BzON*

where !:If = r* - rO and !:IB = B* - BO. As we see, we have the basic RF table

on the first n rows. The last n rows refer to the new model. By performing

now PN*N the table (26) will be transformed to

(27)
N

N

c*

M

-TI*

L

-y*
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where

(28. 1)

or, equivalently,

(28.2)

The result (27) can be immediately seen by applying the block form

generalization of the property (20),

(29)

The formula (28.2) for the vector 0 is a vectoral generalization of the

formula (11) for the scalar correction term or.

In the sequel we will be interested in the relative change of the

determinant of the model, expressed as the ratio IC*I/ICOI which we ~ill

denote with p. Because we have C* = COO + t:.rCO)-1 we can write the expression

for p as

(30) p = \C*I/ICO\ = lO +t:.rcOf1 1

= 1I Ir*cO I .

In the case of one varying equation, say the r:th, the formulae

above will be simplified considerably. Instead of the table (.24) we

construct a SF table with only one new row,
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(31)
(n+1 ) r*. r·

B* g*.r. r

,

where g~ = B~. zO + d~. Performi ng PNN leads now to the RF tabl e

N M L

N Ca -rP _yO
(32)

I ° rP -.6.r yO+.6.B zO(n+1 ) l. r +.6.r r .c .6.B -.6.r
r. 'r. r. .r.

t being a n-vector with 1 as the r:th element and zeros elsewhere.
r

In order to update the RF table we perform now Pn+1,r which gives us the

table (33) with new RF matrices on the first n rows,

N M t

(33)
N C* - JIA' -y*

(n+1) r O c* Ba _rO TI* or
r~ r· r.

The correction term is

(34) o = gO _ rOy*
r r r.

cf. formula (11). The first term in the product formula of or is in fact

the value of p in the case of one varying equation,

(35) p = (1 +.6.rrear) -1 •r • .
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4. SOLUTION TO THE PROBLEM OF ONE VARYING EQUATION

We will consider the set

and point out that in this particular case the set y is a line segment

in the space mn• In order to simpl ify the presentation we assume fi rst

that matrix B is fixed, B = BD. The algorithm described here solves the

endpoints of this line segment.

We start by solving the following LFP-problems (see (13)),

(37.1)

and

6r = max 8 (rr I[r ~rr Srr )r . . • .

after which we are able to update the basic model. We denote the end-

points of y with

and
y = yO + C~r5r

Y = yO + CO ~
•r~r '

respectively.
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We assume a given SF-choice rO,gO and its RF-side counterparts cO and yD.

Without any loss of generality we assume that the paralleHotope is of the

form

rO <r <r .r· - r· - r.

The maximizing problem is then in a standard LFP format,

-llr yO
~ r.max u r =

°(38-) 1+llrr •C•r

subject to
llr <vr.- r

'- llrr.~O

where we have written

V = r -rO (the'!width" of the parallellotope).r r. r.

In order to control potential singularities we must check that the demoninator

in (38"), i.e. the change of the determinant

does not change its sign. Therefore we add to the constraints a requirement

Pr> °and we have the probl em



(39)

-flr yO
1: r.max u r =---....or =

1 + flr r. C•r
subject to

flr <9r.-
Pr>O

flrr.~O
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We transform the program to an equivalent linear one by defining a new

variable, namely

Now we can write the original maximizing problem (39) as a minimizing

problem1)

I

max -0 = (p w to)r r r

subject to

(41) -+

(Pr w~ ) Co "r ) ~ (I 0)

~I
·r

Pr> 0, w~ ~O •

The LP problem (41) is formulated in terms of row vectors and their post­

multiplications. The ordinary Simplex procedure, described in e.g. Vali­

aho (1976), which makes use of pivotal operations defined above, assumes

a column vector and premultiplication matrix layout. In order to avoid

transposing of the system (41) we define a slightly modified pivotal

* * *operation Prs as follows: P (A) =A , wherers .

1) In fact, by definition Pr + w; C~ r =1, so that the first restriction shoul d
b~ a strict equality. However, our procedure will lead to identical results.
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*ars = liars

*ais = -ai/a rs i Fr
(42)

*arj = a ./a , j FsrJ rs

*a .. = a .. - a. a ./a , i Fr, j Fs .1J 1J 1S rJ rs

*By using Prs instead of Prs we may express a solving procedure for a

problem like (41) in a table context without first transforming the

problem to its transpose. The procedure is summarized in Appendix 2.

Now we set the problem (41) into a tabl e as foll ows:

-0 So SNr

0+-

1 0 -1 0 (-1)

(43) Pr 0 1 'iJ r (0)

w yO CO -I (N)r .r

( -1) (0) (N)

Note that the row and column indexation (in brackets) starts from -1 in

the table above. Besides that we have in (43) another set of symbols for

the rows and columns of the table; from them So and SN =' {51 , ••• ,Sn} refer,

naturally, to the restrictions of the LP problem.

Solving the problem (41), table (43) as a starting point, means in practice

performing an appropriate series of pivotal operations until the operand

table has been transformed to one which is feasible, i.e. the very first

row being non-negative, and dual feasible, i.e. the very first column

being non-negative. The general criteria for choosing the next operation

in each stage can be found from Appendix 2.
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However, it turns out that in solving (41) we manage with considerably

less effort than in the general LP problem case. This follows from the

facts that the feasibility of the table can be immediately achieved by

one single pivotal operation and that once the feasibility has been

reached then in searching for dual feasibility only diagonal pivotal

operations are needed.

We recall that the first restriction of the problem should be realized

as a strict equality, p +W' cOr = 1. Thus we must in any case "switch on"r r .
*this identity. We start by performjng the corresponding operation POD

and we obtain a new tabl e

-0 Pr 5Nr

0 'iJ r ( -1)

(4~.) So 0 1 'iJ r (0)

wr
yO -CO -(I+CO 'iJ ) (N).r .r r

( -1) (0) (N)

We see immediately that the tabl e (44) is feasible (a 1 . >0 for every j).
- ,J-

Next we show, by induction, that only diagonal pivotations are involved

in searching for dual feasibility for table (44). Assume first a feasible

table (44). The first step in selecting the pivotal element a now leads
Vll

to the choice of v such that a 1 = min" {a. 11 i6NU{0}}. Assuming thatv,- 1,-

av ,-1 <0, i.e. that at least one element of y is negative, leads then

to the comparison of the ratios

'iJr,v (forl..l=v)
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and

Ci i)
1

-0
cvr

(for all jJ Fv) ,

the former of which is greater when ca >O. If ca <0 no comparisonsvr vr -

are needed because in that case the off-diagonal candidates are directly

disqualified. Thus in the first step a diagonal choice is made.

Secondly, assume that k pivotal operations have been performed, all of

them diagonal. We show that the next pivotal operation will be diagonal

as well. We denote the initial table (43) with A(O) and the current

table with A(H). We denote with the index set H =' {h
1

, ••• ,h k}, He N,

those diagonal pivotal operations which already have taken place:

A(H) = (IT P~.)p* A(O).
iSH" 00

Note that He: N, i.e. we assume that our first restriction has not been

II sw itched off ll thus far.

We make a partition of N into two mutually exclusive subsets H and H.
The initial table, corresponding to this partition, can be written

-0 So SH S-r H

-+ -+
0 -1 OH O-H

Pr 0 'ilrH 'ilrH
(45) A(0) :

y~ 0wrH CHr -I 0H

y~
0 0 -1-w'rR cRr H

when first an appropriate series of row and column permutations has

taken place. The sub-indexation of the elements in thetable above should

be self-explaining.
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*·Using the commutativity of P -operations,

* * * *(TIP .. )POO=POO ( TIP .. )
i6H " i6H "

it is easy to verify that the current table takes the form

-0 Pr wrH S-r H

oH H HIJ H
r Pr Pr rH PrIJrH

So oH H H H
Pr PrlJrH PrIJrRr

(46) A(H) :
0 oH cO HCO H 0 H 0

SH -YH + r Hr Pr Hr -I H+ PrCHrlJrH PrCHrlJrR

yQ H 0 H 0 H 0 H 0
wrR - °rCRr -prCRr - PrCRrIJ rH -I--~ C- IJ-H H r Hr rH

where

and

If the column (-1) is non-negative we have reached dual feasibility.

If not, we choose v such that av,-1 = min {ai,_1Ii6NU{0}} and face the

following comparisons:

1) The case v=O. We see that max {a-1,i/aO,i I aO,i <a} is not defined.

This means that the objective function is not bounded from below.

The explanation for this is that matrix r is not regular everywhere

in the feasible ,region r $ r $ F. Thus our procedure has revealed the

singularity of r and we terminate our search here.
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2) The case v6H: compare the ratios

H

(i)
Pr'ilrv (for all ll=V)
H 0

-1 +PrCvr'ilrv

and

(i i) 1 (for all llFV) t0-cvr

the former of which is greater when c~r <O. If c~r ~ 0 the off-diiigonal

candidates are immediately disqualified and no comparisons are needed1).

3) The case v6H: compare the ratios

(i)

and

(i i)

(forll=v)

(for II Fv) t

the former of which is greater if ca >O. If cO <0 the off-diagonalvr vr-
candidates will again be ruled out from the game.

We see that in both cases (2-3) a diagonal choice ll=V will be made t

provided that Pr is bounded everywhere in the feasible region of f.

This completes the proof.

We can now summarize our procedure for solving the problem (41) as follows:

1) Note also that P~ in fact bears the current value of Pr and is thus
necessarily non-negative. .



25

*A. Starting from table (43), perform Paa in order to achieve a feasible

table (44).

B. Determine v from a 1 = min {a. 11 i€N U{ a}}v,- 1,-

c. If av,-1 ~ 0 go to End 1

If a 1 <0 and v = 0 go to End 2v,-

If av,-1 <0 and v€N go to D

*D. Perform Pvv and go to B .

End 1: The solution has been found.

End 2: The objective function is not bounded from below.

We note that each performance of D has a very clear interpretation:

*When P takes place it means switching the value of y from the lowervv rv

bound to the upper bound or vice versa. Thus our procedure also verifies

the result that in the case of a regular polytope any endogenous variable

takes its maximum (minimum) value at some extreme point of the parameter

space (cf. page 7).

-
Now we have constructed a scheme for the search of or. The corresponding

minimiZing problem can be solved analogously. Once we know 0 and 0 we
r -r

can update the model and get y and y, respectively.

In defining the set y in (36) it was assumed that the 8-coefficients were

fixed, B =Ba. The assumption was made for the sake of convenience only.

The procedure above can be quite easily modified to include the case

where also the r:th row of B is allowed to vary. Anyhow, because that

generalization is nothing but a mechanical exercise we do not consider

it here.
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5. ON THE SOLUTION OF THE GENERAL CASE

In this chapter we turn to the case where several equations are allowed

to vary simultaneously. We concentrate again on the consequences of

variations in r and fix the matrix B at B = BO. Our polytope is thus

(47) ° -I:f ={ylry=g , r<r<r}- - -

Before we can proceed in searching any plane projections of I:f we must be

able to solve the line projection problems

(48 ) max (min) yf

subject to

y € I:f

The problem (48) is not trivial. In order to solve it we proPQse a

heuristic procedure which seems to work in all convex cases and in

some non-convex ones as well.

Let us again start from some initial setting r =rO. We still assume

that r is regular throughout its feasible region. Under this assumption

we know that the maximum and minimum values of Yf will be found at some

extreme points of the parameter space. Therefore we will probably save

work by not choosing rO quite freely from the feasible area but by setting

it equal to some extreme point of the parameter space, rO =[, for example.
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We have denoted the number of varying coefficients in the i:th equation

with K.• Many equations of the model may have fixed coefficients and they
1

are not very interesting from our point of view. In order to separate varying

equations from fixed equations we define an index set N cN ,v -

Nv = { i IKi >0, i € N } .

We denote the number of elements in Nv with nv.

Starting from the chosen (rO,gO) pair and its RF-counterpart (CO,yO) we

now consider the equations i €Nv' one at a time. For every equation i in

question we set the problems

(49) max (min) Yf

subject to
o -

y € {y Iry = g , ri. $ r i. $ r i . , r. = r9 , j Fi }J. J.

Now we can make use of the LFP-scheme described in the preceding chapter.

As a result we get a set of maximum and minimum values of 0., i.e. 8. and, ,
0,., i € N • We denote the set wi th t::. •- v v

If we are dealing with the maximizing problem we next select the element

of t::.v which corresponds to the fastest increase in the value of Yf. The

comparison is based on the fact that the selection of 0i would give Yf
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a new value

We are thus dealing with a simple maximizing problem

(50) °max cf.o.
1 1

subject to

°i €I::.v

help us here. It is well known that the partial
omodel ry = 9 takes the form

"Let the solution of (50) be 0j. If it now turns out that the choice of

8j would hot increase Yf the maximum has already been found (y~).

If, however, the value of Yf can be increased we update the j:th equation

of the model (i.e. the row r. ) corresponding to the coefficient valuesJ.

associated with 6j . We now get a new SF (r1,gO) and calculate the

corresponding new RF(C1,y1), cf. page 16. Next we rename the current model

(superscript 1) to the;nitial stage (superscript 0) and go back to resolve

the problem (49). The process is repeated until the value of Yf can no

longer be increased~ Then we have attained a local optimum which in

the convex case is the global optimum as well.

If we are lucky enough to choose a good extreme point as our initial

stage rO we will save much effort. A very simple "switching" procedure may
ay.

derivative~ in a linear
Yrs

(51)
ay.

1
-'1\- = -cirYs •oYrs
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We can make use of this simply by going through all the varying cofficients

of the model and switching everyone of them either on its upper or its

aYf ° °lower bound, depending on the sign of -3-- = -cfrYs . Of course, we must
Yrs

already have ~ome initial RF (CO,yO) available, corresponding e.g. for

fO =[. Every single "switching away" from rO will change both C and y and

there is no guarantee that the signs of the elements in C and y would at

that time stay unchanged. Nevertheless, it is likely that this extremely

simple procedure will give us a reasonably good starting point. In fact,

if the partial derivatives happen to be sign-constant for every feasible

r (as may very well be the case in some practical applications) the simple

switching procedure will lead us straight to the optimum.

Once we have reached the maximum value of Yf we update matrix r corres­

pondingly. We denote the solution with y and the corresponding r-matrix

with f. Clearly, we are now located not only on the edge of the (Yf,yg)­

projection of y but also in some extreme point (corner) of the boundary.
t

If we now studied the nv varying equations one by one, solving the max(min)oi­

problems for every i €Nv' f as reference point, we would see that in every

case either max O. ormin O. is equal to zero. We denote the non-zero, ,..
maxlmin o. with 0 .•, ,

Corresponding to each varying equation i €Nv there is on the (Yf'Y9) plane

a directed line segment from (Yf,yg) to (y}i) ,y~i)), where

-(i) ... ...'"
Y

J
' = Y

J
' + c .. IS. , j = f,g

J' ,

Clearly, every model solution subject to a choice of f. from the feasible,.
-area f. <f. <r. , f

J
. = f

J
. , j.,. i, would be projected on the line segment-,.- ,.-,.

in question.



30

We want to move along the border of the projection without visiting any

interior points. Let us choose the counter-clockwise direction. We need

a reference direction in order to be able to select right the next varying

equation. A good choice for the first reference direction is the direction

of the Yg-axis. We measure the angle between the reference direction and

the directed line segment corresponding to the i:th varying equation and

denote the result with 8i , i € Nv• Because we start from CYf'Yg)' where

Yf = max Yf' Y€y, we know that 0 <8 i <;, i €Nv· Let 8s =.min 8i • This
1 € Nvtells us that the next varying equation will be the s:th equat1on.

In order to jump to the next corner of the projection we need the solution

of the LFP problem of the preceding chapter, having [s.~ rs.~ r s • and the

rest of the coefficients fixed at r. We tune the s:th equation corresponding

to the non-zero solution (os) of the max(min) os-problems and obtain the

new SF and RF coordinates, r, C= (~)-1 and ;, say.

The next phase is again to solve LFP problems

ma x(min) O. (r. Ir. <r. <r . , r. = r 1'. ' i, j) , j € Nv........{s}J J. -J. - J. - J. 1·

Solving the problems for j =s is not required because we already know

the answer.

If for every j either max O. or min O. is zero we are still in an extreme
J J

point of the boundary. We assume that this is the case. We denote the

non-zero solutions of maxlmin 0j with 8j , j €N~{s}. We choose now the

direction from (Yf'Y9) tn(;f'~g) as the reference direction and consider

the nv -1 directed line segments from (~f'~9) to (~ii) ,;~i», where
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As before, we denote the angle between the reference direction and the

directed line segment corresponding to the i:th varying equation with 8 .•
1

Because our projection can generally be non-convex, some 8i may be negative

and we can only say that - ~ <8i <~. What we are interested in is to find

min 8i and to select the next varying equation corresponding to it.
i €N

v
......{ s}

Once we have chosen the next varying equation, the u:th equation for

example, we proceed in the same way as described above, i.e. tuning the
-

equation according to 0u and thus obtaining the new SF and RF coordinates

(~, Cand ;), then solving the relevant max(min) 0j-problems (jENv'{u}),

checking if either max O. or min o. is zero for all j and so on. We always
J J

take as the reference direction the edge which we have just travelled

along and base the selection of the next varying equation on the angles 8 i •

Proceeding this way will carry us - we suggest - along the boundary of

the projection, jumping over unnecessary boundary points and never getting

lost inside the projection, finally arriving at the departure point (Yf'Y
9

).

Figure 1 illustrates the first phases of the procedure.
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Figure 1: Illustration of the corner-hunting procedure. The case of
three varying equations.

Our heuristic procedure could be further simplified if we knew in advance

that the projection in question will be convex. In that case the selection

of the next varying equation can be based on comparing the slopes of the

line projections, without need to solve explicitly the other endpoints

of the line projections. On the other hand, the check that either max o.
J

or min 0j is still zero in every corner would be lost.
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Finally, let us have one more look at the basic problem (48). An

interesting special case arises when the set y is convex in the following

manner.

Let us start from some rO, this time arbitrarily chosen from the feasible

area of r. Now we solve the LFP-problems

max (min) 0i

(52) subject to

r. <r. <r.
-l·- l·- l·

or. = r. j -1 iJ. J.

maximizesfor all i € Nv' We denote the r. row vector which
1 •

IS. with r~ (r~), i € N • For the rows i € N-:N we
1 l· l· V V

-0 -0We collect the rows r. into the matrix r and the1 •

Consider now the convex set

-0
have r.1 •

·0rows r.
l·

(minimizes)
·0 0=r. =r ..1 • 1 •

'0into r .

(53)

It is rather easy to show that

where y stands for the original polytope (47). The relation (54) holds

true regardless of the choice rOe
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On the other hand, consider the model

-0 0r. y = g.,. ,
(55)

We write (55) in matrix form as ri ,Oy = gO and we denote its solution

with yi . We have, of course

r~ yi = g~ + 8.,. ., ,
(56 )

r~ yi = g~ j F i
J. J

-where 0i now refers to the maximal value of 0i in (52). Naturally, 6i ~ o.

Let us now orientate back to yO = (rO)-1 g0 from yi by means of the 0. term.,
-*We denote the appropriate correction term with 0i and we can write

-0 ° 0 -*r· y = g. + 0.,. , ,
(57)

000r· y = g. , j F ; •J. J

It can be shown that

(58)

where c~; is the ;:th column of CO = (rO)-1. Now, one of our basic

assupt;ons ;s that (see page 18)
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-*and thus we have O. <O.
1 -

Because we have

(59)

where ci ,0=(ri ,O)-1 ,weobtain, by premultiplying (59) by r~:O = r~.

(60)
-r; ,OC-; ,0;*+. . u·

1 • • 1 1

° -* °= g. + O.<g.
11- 1

Analogously it can be shown that

(61)

By repeating the argument for every equation i e Nv and gathering the

results we obviously have

(62)

. Consider now the special case where solving the problems (52) would lead

to the same matrices rO and fa irrespective of the choice rOe In that

fortunate case we woul d have ray 5 gO and rOy:?gO for every ye IJ. that means

IJ ~ 6(YO). and because of (54)
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The problems (48) could then be solved as (sign-unconstrained) LP-problems

max (min) Yf

(63) ray ~ gO

ray> gO

Thus, in some special cases the line projection problems (48) can be

solved as single linear programming problems although the convex set

6(YO) defined in (53) generally depends on the starting pointrO and

6(YO) does not cover the whole set y. It is even possible that the idea

behind (63) can be applied in developing our procedure so that the search

of max Yf (or min Yf) is arranged as a sequence of LP and LFP problems.
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Appendix 1: Derivation of Formula (11)

Let the initial model be

with the solution.

We now change the coefficients of the row r yielding new coefficient

matrices r1 and B1 ,

(A1.3) r' = rO + 'l borr r.

B' = Ba + 'l ,boBr r.

where with l r we denote a (column) vector the r:th element of which is one

the rest being zeros.

We· denote the solution of the new model

(A1.4) r 1y = B1zO + dO

with y' ,
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Now we show that the same solution y1 can be attained from the model

with the initial coefficients as well if the residuals of the model

are manipulated in a proper way. In other words, we want to find an

additive residual correction vector 0 such that the model

has the same solution y1 as model (A1.4)

The solution of (A1.6) is

which we set equal to y1. On the other hand,

where

1" =

We obtain

o = fD(y1 _yD) = -nyAfr.yD + fD o -1"(fOf11yAfr)(fDf11yABr.ZO,

= -1"l r6f r yO + 1 6B zD - 1"1 (1"-1 - 1)6B zD. r r. r r.



or, in component form,

o. = 0 , j ~ r
J

A1-3
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Appendix 2: SolVing a LP-problem in atable context

Valiaho (1976) gives an algorith for solving a LP problem

(A2.1) min q = clx

subject to

Ex + f >0

x> 0

in a table context, using the pivotal operation Prs • In (A2.1), x and c
are n-vectors, f is a m-vector and E is a (mxn)-matrix.

Here we reproduce the algorithm, this time having the problem in a
transposed form,

(A2.2) min q = x'c

subject to

v = XI El + fl >0

Xl> 0

*and using the pivotal operation Prs .

The algorithm will be started from the table

1~;1(A2.3) B:
x c El

where the rows are numbered O, •.. ,n and the columns O, .•• ,m. We denote

N =" {1 , ••• ,n} and M= {1, .•• ,m}.

Now a set of matrices (tables) Bis constructed by a sequence of pivotal

*operations Prs ' r €N, s €M, starting from (A2.3). At a given stage, the

variables attached to the rows i €N (the nonbasic variables) are given
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a value of zero whereas the values of the variables attached to the

columns j €M (the basic variables) are obtained from row zero. The

element bOO yields the current value of the objective function.

A table is.6ea..6-ibl~if bOj ~O for all j€M

A table is dua.t 6ea.o'<'bte if bi 0 ~ 0 for all i €N

A table is ~pt.<.mal if it is both feasible and dual feasible.

The a1gori thm goes as fo11 ows:

(A) Start from the table B in (A2.3)

(B) Determine A from bOA = min {bOjlj EM}.

If bOA ~ 0 go to D.

If bOA < 0 go to C.

(C) Determi ne v from bVA = max' {b iA liE N }.

If bVA $ 0 go to End 2 .

If bVA > 0 determine ~ from

*bO~/bv~ = max {bOj/bvj Ij € M} and perform PV~ •

If ~ = A go to B •

If ~ 1 A go to C .

(D) Determine v from bvO = min' {b i 0Ii € N} •

If bvO ~ 0 go to End 1 •

If bvO < 0 determine ~ from
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If the maximum is not defined go to End 3 •

*Otherwise perform P and go to D .
Vll

End 1: The solution has been found.

End 2: The restrictions are inconsistent.

End 3: The objective function in not bounded from below in the feasible

region.




