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Abstract. This is a revised and somewhat abridged version of the first
four sections of an earlier paper called "Superiority comparisons of
heterogeneous linear estimators" (ETLA Discussion Paper No. 127).

The previous results concerning comparisons between two restricted
least squares estimators have been slightly extended in the present

paper. Some minor errors have been corrected as well.
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1. Introduction

During the last few years, a variety of biased estimators have been
proposed alongside the previous ones like the restricted least squares
(RLS) estimator for estimating the parameter vector of the general linear
model. The performance of these estimators has been compared to that of
the ordinary least squares (OLS) estimator mostly by using superiority
criteria based on quadratic risk. Among the first examples of such
comparisons are the superiority condition for the RLS estimator to be
superior to the OLS estimator (Toro-Vizcarrondo and Wallace, 1968) and
the dominance results for James-Stein estimators, for discussion see e.qg.

Judge et al. (1980) and Vinod and Ul11ah (1981).

Fewer results have been available on comparisons between biased linear
estimators. However, such comparisons have also been made in econometric
literature . For instance the problem whether to omit unobservables or
substitute proxy variables for them in linear models is equivalent to
comparing two different biased estimators. Hocking et al. (1976) have
compared certain homogeneous 1inear estimators with each other. More
recently, Trenkler (1980), Terdsvirta (1982a) and Trenkler and Trenkler
(1983) have compared general homogeneous linear estimators using the gen-
eralised mean square error as the superiority criterion. Terdsvirta (1981a)
has in particular discussed the relationship between the mixed and mini-
max estimators on that basis. Guilkey and Price (1981) have carried out
comparisons between RLS estimators. Price (1982) has included various
homogeneous 1linear estimators in his comparisons but without a general

framework.



In this paper, a general framework is set up for comparing heterogeneous
lTinear estimators, see also Terdsvirta (1982b). The special cases discussed
in the literature can thereafter be treated in a straightforward fashion

by applying the general theorem. The comparisons are based on the concept

of strong superiority of an estimator over another.

Two applications will be considered here. One of them is a comparison
between two ridge estimators, while the other consists of comparing
restricted least squares estimators. For more discussion and examples

the reader is referred to Terdsvirta (1982b).

2. Preliminaries

Consider a linear model

y = X8 + e, enN(0, o°1) (2.1)
where y and € are nx 1 stochastic vectors, X is an nxp fixed matrix
with rank(X) = p, B is a px 1 vector of regression coefficients, and
02 is the error variance. Define two 1inear heterogenous estimators
of B as bJ = Djy + hj’ = 1,2, where Dj is a fixed nxp matrix and hj
a fixed px1 vector. In this paper, the interest will be focussed upon
the conditions under which one of these estimators is better than the
other. Following established practice we consider this problem using
quadratic risk functions. The strong superiority of b2 over b1 (cf. also

Toro-Vizcarrondo and Wallace, 1968) at a single point (8,02) in the

parameter space is defined as follows:



Definition. Estinator b, is strongly superion to by at (8,0%) if and
only A4

E(b, - 8)'A(b, - 8) 2E(b, -8)'A(b, - 8) (2.2)

for akl Loss matrices A0,

This definition is equivalent to requiring that the difference of two

MSE matrices

MSE(b1) -MSE(bz) >0 where MSE(bj) =E(bj-B)(bj -R)',

cf. Theobald (1974).

Less restrictive definitions for superiority can be constructed by
relaxing the restriction that the inequality (2.2) has to be valid for
all non-negative definite loss matrices simultaneously. They are not
considered here. For discussion see e.g. Wallace (1972) and Judge et al.

(1980, pp. 24-26).

3. Conditions for strong superiority

For the purposes of this paper, it is convenient to write the MSE matrix

as a decomposition into covariance and bias:

_ - ~aVE = <2n ,
MSE(bj) = E(bj s)(bj B) o Dij ¥ djdj

1) A>0 means A is a non-negative definite matrix while A> 0 means that
A is positive definite.



where
dj = Hif + hy with Hy = DX - I, § =1.2.
Set C = D1Di - DzDé so that
By, = MSE(by) = MSE(b,) = 0°C + d,d} - d,dj. (3.1)

As pointed out above, b2 is strongly superior to b1 if and only if (3.1)
is non-negative definite. Assume that we have the following decomposition

C = KLK', dj = Kfj, Jj=1,2 (3.2)

-

where K is pxr, r<p, L is rxr, and fjis rx1, j =1,2. This decomposition
is useful whenever we want to compare estimators with singular covariance
matrices. The difference (3.1) can now be written as

Ay = K(o°L + f,f!

1Fy - oK.

It is well-known that A,, >0 if and only if

12 =

2 T i
oL + f11’1 f2f220 . (3.3)

Let us first exclude the trivial possibility that L>0 and f, = of

2 1°

|a| <1. This means that we do not consider any estimator b2 with both
smaller variance and bias than b1; a very rare case in practice. The
assumption L >0 is retained as yet. For (3.3) to hold it is then
necessary that 02L + f1fi >0. This last assumption implies that either
rank(L) = r-1 and f1 is linearly independent of the columns of L or that

L is non-singutar. In the latter case L may be either indefinite with

exactly one negative eigenvalue or positive definite. In both cases,



(3.3) is equivalent to the following condition, cf. Farebrother (1976),

Fy(olL + £,£1)7'F

¥ <1. (3.4)

2
If we can assert that L >0 then, using a well-known matrix identity,

(3.4) can be written in the form

2

-2 2 -1
o {f22- f21(c +-f11) } <A1 (3.5)

where

This is the main result of this section. A corresponding condition for
two homogeneous linear estimators when K = I and L>0 is to be found in
Terdsvirta (1982a),.and Trenkler and Trenkler (1983). From (3.5), a suf-

ficient but generally not necessary condition for (3.3) to hold when L>0 is

0 fop <1 (3.6)

see also Trenkler (1980). If b1 is unbiased then f1 = 0 and (3.6) is

necessary as well.

Assume now that L<0. A Temma in Guilkey and Price (1981) states that

(3.3) can then be valid only if L is a scalar, i.e. if r = 1. Then A,,>0

if and only if, in obvious notation,

2 2
0111+f1-f220. (3.7)

Note that if L >0, then *



2 e
oL + 1 - £,5<0 (3.8)

is a necessary condition for b1 to be strongly superior to b2.

Reverse now the roles of b1 and b2 in the Definition, so that -L >0 and
(3.3) becomes

“?L + F fL - £ f

2 2 = 1 20- (3-9)

1
Then it is seen from (3.8) that if r = 1, the necessary condition is also

sufficient while this is not so when r>1.

The above results can be formulated as

Theorem 1. Assume Linear model (2.1) and two heterogeneous Linear estimatons
by = Dy + hy, § = 1,2. Set C = DD} - DDy, assune decomposition (3.2) and
furthenmone that 02L + f1fi >0. Then b2 45 sthongly superiorn to b1 if and
only L§ (3.4) holds. 14 it 48 assumed that L >0 then the strong superionity
45 equivalent to (3.5). On the othen hand, 4if L <0 then b, 45 strnongly

superion to b, i and only if L s a scalan and (3.7) 48 valid.

In practice, L > 0 (or L < 0) seems to be a slandard situation. In the
following we shall also have an example of the case in which L is
non-singular but indefinite. Assumption L » 0 combined with the rank and

linear independence conditions obviously remains a more theoretical

possibility.



4, Examples

4.1. Mixed and ridge estimators

Assume that we use stochastic prior information

r = RR + ¢1 (4.2)

where r is an mx 1 stochastic vector, R is an mxp fixed matrix with rank
m<p, and it is also assumed that ¢q N(O,(cz/k1)1), k1 >0. Suppose that

in reality this information is biased so that
Er =RB + s (4.3)

where s # 0, see Theil and Goldberger (1961), Yancey et al. (1974) and
Terdsvirta (1981b). Combining (4.2) with the sample information (2.1)

yields the mixed estimator

bg(ky) = (X'X + k1R'R)'1(X'y + kR'F)

Compare this with another mixed estimator bR(kZ) where R and (4.3) are
the same as above but the uncertainty of prior information is altered in
such a way that ¢4 in (4.2) is replaced by ¢y v N(O,(oz/kz)l), ko > 0.

To find out when bR(kZ) is strongly superior to bR(k1), we need

C=UR'(S, ~-S

2

JRU

k 1

k
where

1 1

Skj B (kj I +RUR'") ', J=1,2



see Terdsvirta (1981b). As dj = UR'Sk s, we can choose K = UR'. Since

1 1

J - -
for two pd matrices A and B, A - B>0 implies B~ - A " >0 we conclude

that L = Sk - Sk >0 if and only if k22>k1. If k1 = k2 then L = 0. Thus

1 2
we can improve upon bR(k1) only by choosing Ky >k1 if m>1. When ko >eo, bR(kZ)
converges towards the restricted least squares (RLS) estimator bR. Thus,

for some combinations of X, B and 02, a mixed estimator can be improved

upon by a RLS estimator.

For two minimax estimators (Kuks and Olman, 1972) b;(kj) = (X'X + kJ.R'R)'1 X'y

Jj =1,2, we have

2 -1 -1 :
bp =0 UR'(SszkZSkZ = Sk1Tk1Sk1)RU+UR'Sk1RBB'R'Sk1 RU-UR'SkZ RBB'R sszu
(4.3)

where

1 1

I = (2kj I +RUR') ', j=1,2.

J

Matrices S T, and Tk have the same eigenvectors, and since the

- ] S 3
ke? Tky? Ky 2

eigenvalues of SkT;1Sk are monotonously increasing functions of k, it follows

that in (4.3), S, Tr's, =S, T'S, >0 if and only if k,>k,. When R = I

2 Ko Tky Ty kyTky el ’
the minimax estimator is simply the ridge estimator. Thus if p>1, a ridge
estimator b;(k1) with a fixed ridge parameter k1 can in some parts of the
parameter space be improved upon by increasing the value of the ridge

parameter. The same is not possible by decreasing its value.

4.2. Restricted least squares estimators

In the previous sub-section the set (Er, R) was kept unchanged throughout.

Here we start from two separate sets of Tinear restrictions



where ;j is now deterministic. The corresponding RLS estimators are

~ ~ =1 2
s = R (R.UR!
ij b + URY(R;URY)™ S

., = 4.4
g J 142 (4.4)

where Ej = Fj - ﬁjb. We shaTT derive conditions for strong superiority

af b”é over bﬁ at (3,0?1,4 Assume the block division
. 1

- . 4 (4.5)

so that ry = Ry is a subset of restrictions common for both sets. The

rows of R1 are not linearly dependent of the rows of RZ‘ Let rj be an

mj x1 vector, and Rj an mj Xp matrix, 1 <nH-+m2-+m3'§p, j =1,2, and assume
rank (Ri,Ré,Ré) =My + M, + M. Let my = 0 symbolise the absence of the jth
set of restrictions. We have

~ ~ 1~ ° ~ ~ ~

2UR R,U - UR; (R1UR'

1y~ =15
2) 5 1 1) R,U (4.6)

1

and

_~|~~|‘1"‘ s 2
dj = U Rj(RjURj) Sj, J=1,2. (4.7)

Using (4.5) we can write

ein umey=1 B 1= [oe iy~ — 1 i
URj(RjURj) RjU-UR3 (R3UR3) R3U-+UB Rj Djj-3 Rj B'U, j = 1,2

(4.8)

where
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- RLURY - R.URL(R,URS)™! RLURY = o 2R.cov(by IR, j=1,2

Dsj.3 = RjUR5 - RjUR3(R3UR3) * RgUR; GEaviby 1R}

and

B=1-R (R,URL) T R.U.

3 "33 3

The first term on the r.h.s. of (4.8) is the contribution of the
restrictions ry = R B to the covariance matrix of bR , Whereas the
second term represents the remaining contribution of rJ = RjB after

purging out the effect of r; = RyB. Making use of (4.8) in (4.6) yields

1 1 1 ]
= UB(R! 022 3 Ry - R} D11 3 1) B'U. (4.10)

The matrix in parentheses in (4.10) isgenerally indefinite. Conforming to the

block division in (4.5) we also have

=1l

=1
= U {BR D e

J 3D35.3 j + (I - BR! DJ

-1 .
R. U)R3(R3UR3) S3 }s =142,

(4.11)

From (4.10) and (4.11) it is obvious that Theorem 1 does not apply unless

sy = 0. We make that assumption and define R'= (Ri Ré)- Now choose

-1 0
- 1 = "1 - D . -
K= UBR', L = diag{- D11 3 22.3}, f1 = [ 1J 3] S and f2 = Dzl 3]52.
Matrix L is non-singular but indefinite, and the number of negative

eigenvalues equals m, . Write

2 Y _ 2] -1 -1 2 -1
oL+ f,f, = diag{-0"D,y 5 + D11 35151011 32 9Dy 3} (4.12)
and choose m1 = 1. The necessary and sufficient condition for (4.12) to

be positive definite is then

-2_,n-1
g sl s B e (4.13)



"

It is a condition for the unbiased estimator bR to be strongly superior
3

to by . If my > 1, (4.13) is only a necessary but not sufficient con-
1

dition. If (4.13) holds and m, = 1 then Theorem 1 applies, and the neces-

1

sary and sufficient condition for bﬁ to be strongly superior to bﬁ is
2 1

-2_1n-1
o séD22_3s < e (4.14)
Inequality (4.14) is a condition for bﬁz to be strongly superior to bRa.
- — 1 - n-1 i -1 ‘o
If m, = 0, we can choose K = UBRZ, L = 022_3 and f2 = 022.352. Applying
Theorem 1 then yields (4.14) because L > 0. We have

Corollary 1. Assume Linear model (2.1) and two restricted Least

squares estimators by and by with my common nestrictions rs = RyB.
1 2
Assume that rank(Ri Ré

the common hestrictions are trhue. 1§ my = 1s b§ L5 Athongly superior
2

R3) =my +m, +my < pand that sy = 0, L.e., that

to by Af and onky if (1) the unbiased estimaton bp 44 strongly
1 3

superion to by and (i) bﬁ 48 strongly superion to by .

~ 1 2 3

Ry = R, and the superionity condition 45 (4.14). 14 my > 1, no strong

superionity condition exists.

14 m,I = 0,

The corollary tells us under which circumstances a RLS can be improved
upon by another estimator of the same type. Removing one Tinear restriction
must then increase the estimation accuracy and the resulting estimator
must be unbiased. The unbiased estimator bR3 may then be improved upon
by adding new, not necessarily true restrictions ro = RZB. Guilkey and

Price (1981, Theorem 3) consider the same problem, but here the results

appear in the correct form.
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Assume next that the two RLS estimators do not contain common restric-

tions so that my = 0. Then condition (4.13) becomes

-2, -1
o 51(R1URi) S > 1. (4.15)

It follows from Theorem 1 that (4.15) is a necessary and sufficient

condition for the OLS estimator b to be strongly superior to bR when
1
m, = 1. Similarly, (4.14) has the form

"2| |-1
0 s (RURS) s, < 1. (4.16)

Inequality (4.16) is of course the necessary and sufficient condition

for bR to be strongly superior to b, cf. Toro-Vizcarrondo and

2
Wallace (1968). We have obtained

Corollary 2. Assume Linear model (2.1) and two restricted Least

squares estimatons by and by . The columns of R' = (Ri Ré) are
1 2
assumed Linearly independent. 14 my = 1, bR L5 strnongly superion to
2

b, 44 and only 4§ (i) the OLS estimatorn b is stnongly superiorn o bp

R
1 1
and (ii) bp 48 strongly superion to b. I m, > 1, no superionity
2

condition exists.

Guilkey and Price (1981) have a similar result (Theorem 4). However,
they have imposed rather strict additional restrictions on RT.and»P2

which are not needed here.

Note that (4.13) and (4.14) are testable hypotheses under the condition

~

0. If we want to test the strong superiority of bR over bﬁ when

S =
8 2 1
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m, = 1, the hypotheses are ordered. This is because (4.13) is neces-
sary for applying Theorem 1. Define
e

_1 - .
Fj‘ 03 mJ' Sijj'3sj b J = 1,2 (4.17)

where 83 =(n-p+ m3)'1(y - XbR3)1(y - XbR3) and §j = Py ij.

It is obvious from (4.9) that under (4.13) statistic F, follows a
non-central F distribution with one and n - p + my degrees of freedom
and non-centrality parameter 1/2, cf. also Toro-Vizcarrondo and
Wallace (1968). Similarly under (4.14), F, has a non-central

F(mz,n - p + My, 1/2) distribution. When testing (4.13), low values of
F1 cause a rejection of the hypothesis while in the case of (4.14)
high values of F2 should indicate the superiority of bﬁ over b

2
(and by if (4.13) was tested and accepted).

By
The principal component (PC) estimator is a special case of the RLS
estimator, see e.g. Judge et al. (1980, pp. 468-471). In this paper
the eigenvalues of X'X have been assumed positive. Then none of the data-
specific linear independent restrictions inherent in the PC estimator

can be exactly valid. From Corollary 2 we obtain

Corollary 3. Assume Zinear model (2.1) and two PC estimatons. by and
‘ 1
sz. Assume that in the formern one exactly one prinedpal component

Ls omitted whereas in the Latter the same happens to My other principal
components. Then sz 48 sthongly superion to bp 4f and only if (i) b
1

A5 strongly superion to bR1 and (ii) bR s strongly superion to b.
2
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If some of the omitted principal components are common to the both
PC estimators under comparison then no strong superiority condition
can be established. This is because, in earlier notation, S3 £ 0.

Thus the superiority condition for two PC estimators in Price (1982) is

incorrect.
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