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Abstract. This is a revised and somewhat abridged version of the first

four sections of an earlier paper called "Superiority comparisons of

heterogeneous linear estimators" (ETLA Discussion Paper No. 127).

The previous results,concerning comparisons between two restricted

least squares estimators have been slightly extended in the present

paper. Some minor errors have been corrected as well.
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1. Introduction

During the last few years, a variety of biased estimators have been

proposed alongside the previous ones like the restricted least squares

(RLS) estimator for estimating the parameter vector of the general linear

model. The performance of these estimators has been compared to that of

the ordinary least squares (OLS) estimator mostly by using superiority

criteria based on quadratic risk. Among the first examples of such

comparisons are the superiority condition for the RLS estimator to be

superior to the OLS estimator (Toro-Vizcarrondo and Wallace, 1968) and

the dominance results for James-Stein estimators, for discussion see e.g.

Judge et al. (1980) and Vinod and Ullah (1981).

Fewer results have been available on comparisons between biased linear

estimators. However, such comparisons have also been made in econometric

literature. For instance the problem whether to omit unobservables or

substitute proxy variables for them in linear models is equivalent to

comparing two different biased estimators. Hocking et al. (1976) have

compared certain homogeneous linear estimators with each other. More

recently, Trenkler (1980), Terasvirta (1982a) and Trenkler and Trenkler

(1983) have compared general homogeneous linear estimators using the gen­

eralised mean square error as the superiority criterion. Terasvirta (1981a)

has in particular discussed the relationship between the mixed and mini­

max estimators on that basis. Guilkey and Price (1981) have carried out

comparisons between RLS estimators. Price (1982) has included various

homogeneous linear estimators in his comparisons but without a general

framework.
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In this paper, a general framework is set up for comparing heterogeneous

linear estimators, see also Terasvirta (1982b). The special cases discussed

in the literature can thereafter be treated in a straightforward fashion

by applying the general theorem. The comparisons are based on the concept

of strong superiority of an estimator over another.

Two applications will be considered here. One of them is a comparison

between two ridge estimators, while the other consists of comparing

restricted least squares estimators. For more discussion and examples

the reader is referred to Terasvirta (1982b).

2. Preliminaries

Consider a linear model

2y = XS + E:, E: "v N(0, 0 I) (2.1)

where y and E: are nx1 stochastic vectors, X is an nxp fixed matrix

with rank.(X) = p, (3 is a p x 1 vector of regression coefficients, and

0
2 is the error variance. Define two linear heterogenous estimators

of (3 as b. = D.y + h., = 1.2, where DJ' is a fixed nxp matrix and h.
J J J J

a fixed p x 1 vector. In this paper, the interest will be focussed upon

the conditions under which one of these estimators is better than the

other. Following established practice we consider this problem using

quadratic risk functions. The strong superiority of b2 over b1 (cf. also

Toro-Vizcarrondo and Wallace, 1968) at a single point (8,02) in the

parameter space is defined as follows:
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Definition. E4timatO~ b2 ~ 4~o~gfy 4UpeniO~ ~o b1 at (S,cr2J ~n and

o~y ~n

(2.2)

This definition is equivalent to requiring that the difference of two

MSE matrices

MSE(b 1) - MSE(b 2) >0 where MSE(b.) =E(b. - S)(b. - S) I,
- J J J

cf. Theobald (1974).

Less restrictive definitions for superiority can be constructed by

relaxing the restriction that the inequality (2.2) has to be valid for

all non-negative definite loss matrices simultaneously. They are not

considered here. For discussion see e.g. Wallace (1972) and Judge et al.

(1980, pp. 24-26).

3. Conditions for strong superiority

For the purposes of this paper, it is convenient to write the MSE matrix

as a decomposition into covariance and bias:

= cr2D.0 1
• + d .d'.

J J J J

1) A>O means A is a non-negative definite matrix while A>O means that
A-is positive definite.
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where

d. = H. S + h. with H. = D. X - I, j = 1,2 .
J J J J J

(3.1)

As pointed out above, b2 is strongly superior to b1 if and only if (3.1)

is non-negative definite. Assume that we have the following decomposition

C = KLK I , d. = Kf., j = 1,2
J J

(3.2)

where K is p x r, r <p, L is r x r, and f. is r x 1, j = 1,2. This decomposition
- J

is useful whenever we want to compare estimators with singular covariance

matrices. The difference (3.1) can now be written as

It is well-known that t.12 ~ 0 if and only if

(3.3)

Let us first exclude the trivial possibil ity that L~ 0 and f 2 = a.f l'

1a.1 <1. This means that we do not consider any estimator b2 with both

smaller variance and bias than b1; a very rare case in practice. The

assumption L~O is retained as yet. For (3.3) to hold it is then

necessary that cr2L + f 1f1>O. This last assumption impl ies that either

rank(L) = r-1 and f 1 is linearly independent of the columns of L or that

L is non-singular. In the l~tter-case L may be e;the~ indefinite with

exactly one negative eigenvalue or positive definite. In both cases,
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(~.3) is equivalent to the following condition, cf. Farebrother (1976),

(3.4)

If we can assert that L>O then, using a well-known matrix identity,

(3.4) can be written in the form

where

-2 2 2 -1
cr {f22 - f 21 (cr + f 11 ) } $ 1

f .. = f~L-1f. i,j = 1,2.
lJ 1 J

(3.5)

This is the main result of this section. A corresponding condition for

two homogeneous 1inear estimators when K = I and L > 0 is to be found in

Terasvirta (1982a) "and Trenkler and Trenkler (1983}. From-{3.5), a suf­

ficient but generally not necessary condition for (3.3) to hold when L> 0 is

-2
cr f 22 $ 1 (3.6 )

see also Trenkler (1980). If b1 is unbiased then f 1 = 0 and (3.6) is

necessary as well.

Assume now that L <O. A 1emma in GuiTkey and Price (1981) states that

(3.3) can then be val id only if L is a scalar, i.e. if r = 1. Then ~12 ~ 0

if and only if, in obvious notation,

Note that if L>O, then •

(3.7)
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(3.8)

is a necessary condition for b1 to be strongly superior to b2.

Reverse now the rol es of b1 and b2 in the Definition, so that -L >0 and

(3.3) becomes

(3.9)

Then it is seen from (3.8) that if r = 1, the necessary condition is also

sufficient whil e this is not so when r> 1.

The above results can be formulated as

Theorem 1. M.6ume.. -Un.e..CVL model.. (2.1) a.nd two- he:tve..oge..n.e..OL/J.) Un.e..aJL U.t..i.matoM

bj = 0jY + hj , j = 1,2. Set C = 0101 - °202' ~.6ume.. de..eompo.6~on. (3.2) an.d

6WttheJtmoJte.. tha-t iL + f 1f 1> O. Then b2 AA !.dAOn.g.ty .6U-peJUoJt to b1 i6 an.d

onty i6 (3.4) ho.td.6. 16 d AA ~.6u-me..d that L >0 the..n. the.. .6:tJton.g .6U-peJUoJtd!f

AA e..quiva.te..n.:t to (3.5). On. the.. othe..Jt han.d, i6 L<O the..n. b2 AA .6:tJton.g.ty

.6U-peJUoJt to b
1

i6 an.d anty i6 L i.6 a .6ea.taJr. an.d (3.7) i.6 vatid.

In practice, L > U (or L < 0) seems to be a sLdndard situation. In the

following we shall also have an example of the case in which L is

non-singular but indefinite. Assumption L > 0 combined with the rank and

linear independence conditions obviously remains a more theoretical

possib il ity.
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4. Exampl es

4.1. Mixed and ridge estimators

Assume that we use stochastic prior information

r = RS + </>1 (4.2)

where r is an mx 1 stochastic vector, R is an mx p fixed matrix with rank

m~ p, and it is al so assumed that </>1 '" N(0,(cr2/k1)1), k1 > O. Suppose that

in reality this information is biased so that

Er = RS + s (4.3)

where s f 0, see Theil and Goldberger (1961), Yancey et al. (1974) and

Terasvirta (1981b). Combining (4.2) with the sample information (2.1)

yields the mixed estimator

Compare this with another mixed estimator bR(k2) where Rand (4.3) are

the same-as above but the uncertainty of prior information is altered in

such a way that </>1 in (4.2) is replaced by </>2 '" N(0,(cr2/k2)1), k2 >0.

To find out when bR(k2) is strongly superior to bR(k 1), we need

C = UR'(Sk - Sk )RU
2 1

where
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see Terasvirta (1981b). As d. = UR'S k s, we can choose K = UR ' . Since
J .

for two pd matrices A and B, A - B> OJ implies B- 1 - A- 1 > 0 we conclude

that L = Sk - \ >0 if and only if k2 >k1. If k1 = k2 then L = O. Thus
1 2

we can improve upon bR(k 1) only by choosing k2 >k1 if m> 1. When k2 +00, bR(k 2)

converges towards the restricted least squares (RLS) estimator bR. Thus,

for some combinations of X, Sand 0
2, a mixed estimator can be improved

upon by a RLS estimator.

*For two minimax estimators (Kuks and Olman, 1972) bI(kj )

j = 1,2, we have

= (XIX + k.R ' R)-1 Xly,
J

Sk Tk-
1Sk )RU+UR'Sk RBB'R'S k RU-UR'S k RBI3 I R'S RU

1 1 1 1 1 2 k2
(4.3)

where

Tk. = (2kj1 I + RUR ' f1, j=1,2.
J

and Tk have the same eigenvectors, and since the
2

are monotonously increasing functions of k, it follows

Matrices Sk ' Sk ' Tk
1 2 -1 1

eigenvalues of SkTk Sk
-1that in (4.3), Sk Tk Sk

222
the minimax estimator is

-1- Sk Tk Sk >0 if and only if k2 >k 1. When R = I,
111

simply the ridge estimator. Thus if p> 1, a ridge

*estimator bI (k 1) with a fixed ridge parameter k1 can in some parts of the

parameter space be improved upon by increasing the value of the ridge

parameter. The same is not possible by decreasing its value.

4.2. Restricted least squares estimators

In the previous sub-section the set (Er, R) was kept unchanged throughout.

Here we start from two separate sets of linear restrictions
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r. = R·l3t j = L2
J J

where f. is now deterministic. The corresponding RLS estimators are
J

b~ = b + UR~(R.UR~)-1
R. J J J
J

A-Sj' j=1,2 (4.4)

- R.b. We shaTl deri ve conditions for strong superi ority
J

at (8tcr~1~. Assume the block division

~ ­s. = r.
J J

over bR1

where

j = 1,2

(4.5)

so that r3 = R313 is a subset of restrictions common for both sets. The

rows of R1 are not linearly dependent of the rows of R2. Let r j be an

mj x 1 vector, and Rj an mj x p matrix, 1 <m1 + m2 + m3 ~ p, j = 1t2, and assume

rank (R1,R2,R3) = m1 + m2 + m3. Let mj = 0 symbolise the absence of the jth

set of restrictions. We have

(4.6)

and

d. = U R~(R.UR~)-1
J J J J

~

Sj' j=1,2. (4.7)

Using (4.5) we can write

URj(i~jURjfl Rj U=UR3 (R3UR3f
1

R3U+UB Rj Djj.3 Rj BIU t j = 1,2

(4.8)

where



= R.S after
J

in (4.6) yields
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and

The first term on the r.h.s. of (4.8) is the contribution of the

restrictions r3 = R3S to the covariance matrix of,bR., whereas the
J

second term represents the remaining contribution of r j

purging out the effect of r3 = R3S. Making use of (4.8)

(4.10)

The matrix in parentheses in (4.10) is generally indefinite. Conforming to the

block division in (4.5) we also have

dj = U{BRjDj}.3Sj + (I - BRjDj}.3RjU)R3(R3UR3f1s3}, j = 1,2.

(4.11)

From (4.10) and (4.11) it is obvious that Theorem 1 does not apply unless

s3 = O. We make that assumption and define ~~= (R1R2). Now ChOOS~ ]

K = UBR'. L = diagl-DiL. D;;Ll. f 1 = [
D1d"3J '1 and f 2 = [D2~.3 '2·

Matrix L is non-singular but indefinite, and the number of negative

eigenvalues equals m1. Write

(4.12)

and choose m1 = 1~ The necessary and sufficient condition for (4.12) to

be positive definite is then

(4.13)
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It is a condition for the unbiased estimator bR to be strongly superior
3

to b'R. If m1 > 1, (4.13) is only a necessary but not sufficient con­
1

dition. If (4.13) holds and m1 = 1 then Theorem 1 applies, and the neces-

sary and sufficient condition for bR to be strongly superior to b'R is
2 1

(4.14)

Inequality (4.14) is a condition for b-R to be strongly superior to bR •
2 3

If m1 = 0, we can choose K = UBR~, L = D~J.3 and f 2 - D~~.3s2. Applyi~g

Theorem 1 then yields (4.14) because L > 0. We have

Corollary 1. AMwne. Une.aJt mode..€. (2.1) a.nd .two 1te.-6Wc.:te.d .te.Mt

-6qu.a.Jte.-6 e.-6.uma..tOM bR and bR w.uh m3 c.ommon Ite.-6Wc..UOM r3 = R38.
1 2

A-6-6wne. that rank(R, R2R3) = m1 + m2 + m3 ~ p a.nd that s3 = 0, i.e..,tha..t

the. c.ommon 1te.-6tJU..c.:tioM Me. .tJtue.. I6 m1 = 1, bR i-6 -6.tJtong.tfj -6Upe./tiOIt
2

to bR ).6 and oYlJ..fj).6 (i) the. unbJ..Me.d e.-6Uma..tOIt bR J..-6 -6.tJtong.tfj
1 3

-6Upe.Jt,[Oltto b'R a.nd (ii) b'R i-6 .6.tJtongi.fj-6upe.Jtioltto bR · In m1 = 0,
- 1 2 3

R3 = R1 and the. .6upe.Jtioltitfj c.ondUion i-6 (4.14). I6 m1 > 1, no -6tJtong

.6UpWOWfj c.oncU,t,[on e.wu.

The corollary tells us under which circumstances a RLS can be improved

upon by another estimator of the same type. Removing one linear restriction

must then increase the estimation accuracy and the resulting estimator

must be unbiased. The unbiased estimator bR may then be improved upon
3

by adding new, not necessarily true restrictions r2 = R28. Guilkey and

Price (1981, Theorem 3) consider the same problem, but here the results

appear in the correct form.
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Assume next that the two RLS estimators do not contain common restric­

tions so that m3 = O. Then condition (4.13) becomes

(4.15)

It follows from Theorem 1 that (4~15) is a necessary and sufficient

condition for the OLS estimator b to be strongly superior to bR when
1

m - 1. Similarly, (4.14) has the form1 -

(4.16)

Inequality (4.16) is of course the necessary and sufficient condition

for bR to be strongly superior to b, cf. Toro-Vizcarrondo and
2

Wallace (1968). ~e have obtained

Co tOO 11 ary 2. AM wne. line.M mo del. (2. 1) and two JtutJUc;te.d ie.ct6.t

I.>qULVtU Uti¥na..toM bR and bR • The. coiwnYl.!.> 06 RI = (R1R2) Me.
1 2

ct6l.>wne.d line.aJt.ty ).nde.pe.nde.rr.t. 16 m1 = 1, bR ).J.> .6.tJtongiy .6u.pe.Jt).oJt .to
2

b
R

).6 and oniy ).6 (i) .the. 0LS ut1.matoJt b ).J.> .6.tJtongiy .6 U.pe.Jt).OIL .to bR1 1
and (ii) bR ).J.> .6.tJtongiy .6U.pe.Jt).OIL .to b. 16 m1 > 1, no .6u.pe.Jt).owy

2
conciUi.on e.x1A.tI.>.

Guilkey and Price (1981) have a similar result (Theorem 4). However,

they have imposed rather ~trict additi~nal restrictions on R
t
_ancLR2

which are not needed here.

Note that (4.13) and (4.14) are testable hypotheses under the condition

s3 = O. If we want to test the strong superiority of bR over bR when
2 1



13

m1 = 1, the hypotheses are ordered. This is because (4.13) is neces­

sary for applying Theorem 1. Define

~-2 -1 4 1 -1 A

F
J
.= 03 m. s.D". 3s., j = 1,2

J J JJ. J (4.17)

where a~ = (n - p + m3)-1(y - tb
R3

)1_(y - Xb
R3

) and Sj = r j - R}.

It is obvious from (4.9) that under (4.13) statistic F1 follows a

non-central F distribution with one and n - p + m3 degrees of freedom

and non-centrality parameter 1/2, cf. also Toro-Vizcarrondo and

Wallace (1968). Similarly under (4.14), F2 has a non-central

F(m2,n - p + m3, 1/2) distribution. When testing (4.13), low values of

F1 cause a rejection of the hypothesis while in the case of (4.14)

high values of F2 should indicate the superiority of b- over bR2
(and bR if (4.13) was tested and accepted).

1

The principal component (PC) estimator is a special case of the RLS

estimator, see e.g. Judge et al. (1980, pp. 468-471). In this paper

the eigenvalues of XIX have been assumed positive. Then none of the data-

specific linear independent restrictions inherent in the PC estimator

can be exactly valid. From Corollary 2 we obtain

Corollary 3. A.6.6wne. Un.eaJL mode..t (2.1) and two PC U.:tUna.toM- b
R

and
1

bR • M.6wne. .:thM. 1n. .:the. 6oJr.meA on.e. e.xa.c.:tey on.e. pJr.1n.c.1pa..t c.ompon.e.n..:t
2

i.6 omUte.d whe.Jr.e.a..6 1n. .:the. R..a..:t:te.Jr. .:the. .6 a.me. ha.ppe.n..6 .:to m
2

o.:the.Jr. pJr.,[n.upa..t

c.ompon.e.n..:t.6. The.n. bR i.6 .6~on.gly .6Upe.!t1oJr. .:to bR 16 a.n.d on.ly 16 (i) b
2 1

i.6 .6~on.gly .6Upe.Jr.1oJr. .:to bR a.n.d (i i) bR i.6 .6.:tJwn.gly .6Upe.M.oJr. .:to b.
1 2
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If some of the omitted principal components are common to the both

PC estimators under comparison then no strong superiority condition

can be established. This is because, in earlier notation, s3 f O.

Thus the superiority condition for two PC estimators in Price (1982) is

incorrect.
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