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SUPERIORITY COMPARISONS OF HETEROGENEOUS

LINEAR ESTIMATORS

by

Timo Terasvirta

Abstract. In this paper conditions for strong and weak superiority

of a heterogeneous linear estimator over another is derived. The

general results are applied to same special cases: in particular,

two restricted least squares estimators are compared using the

superiority conditions obtained. The weak superiority criterion is

used as a basis in forming an optimal sequence of tests (Anderson,

1962) for searching for the correct length of lag and appropriate

degree of polynomial in the estimation of polynomial distributed

lag models.



1. Introduction

During the last few years, a variety of biased estimators have been

proposed alongside the previous ones like the restricted least

squares (RLS) estimator for estimating the parameter vector of the

general linear model. The performance of these estimators has been

compared to that of the ordinary least squares (OLS) estimator mostly

by using superiority criteria based on quadratic risk. Among the first

examples of such comparisons are the superiority condition for the

RLS estimator to be superior to the OLS estimator (Toro-Vizcarrondo

and Wallace, 1968) and the dominance results for James-Stein estimators,

for discussion see e.g. Judge et al. (1980) and Vinod and Ullah (1981).

Fewer results have been available on comparisons between biased linear

estimators. However, such comparisons have also been made in econo­

metric literature: for instance the problem whether to omit unobserv­

ables or substitute proxy variables for them in linear models is

equivalent to comparing two different biased estimators. Hocking et al.

(1976) have compared certain homogeneous linear estimators with each

other. More recently, Trenkler (1980) and Terasvirta (1982) ~ave

compared general homogeneous linear estimators using the generalised

mean square error as the superiority criterion. Terasvirta (1981a) has

in particular discussed the relationship between the mixed and minimax

estimators on that basis, while Guilkey and Price (1981) have carried

out comparisons between RLS estimators. Price (1982) has included certain

types of homogeneous linear estimators in his comparisons but without

a general framework.



2

In this paper, a general framework is set up for comparisons

between heterogeneous linear estimators. The special cases

discussed in the literature can thereafter be treated in a

straightforward fashion by applying the general theorem. A few

examples will be considered here and, as will be seen, not only

for illustration. The plan of the paper is as follows: In Section 2

concepts for comparing heterogeneous 1inear estimators are defined.

In the next section, a general theorem for establishing strong

superiority of a biased linear estimator over another is constructed.

Section 4 contains examples of the theorem: various shrinkage esti­

mators are conside~ as well as the comparisons between two RLS esti­

mators and two principal component estimators. The use of proxy vari­

ables is also discussed assuming fixed proxies. Section 5 discusses

weak superiority of biased linear estimators. The examples include

RLS estimators and, in particular, the polynomial distributed lag

estimator which has been widely applied in empirical work. Proxy

variables are considered in that context, too. The final section con­

tains a· brief summary of results.
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2. Preliminaries

Assume a linear model

(2.1)

where y and E are n x 1 stochastic vectors, X is an n x p fixed matrix

with rank(X) = p, S is a p x 1 vector of regression coefficients, and

02 is the error variance. Define two linear heterogenous estimators

of B as b. = D.y + h., = 1,2, where D. is a fixed n x p matrix and h.
J J J J. J

a fixed p x 1 vector. In this paper, the interest will be focussed upon

the conditions under which one of these estimators is better than the other.

For considering the problem and making comparisons, we have to define

superiority of an estimator over another in quantitative terms. Following

established practice we make use of quadratic risk functions and define the

strong super~ority of b2 over b1 (cf. also Toro-Vizcarrondon and Wall ace,

1968) at a single point (13,02) in the parameter space as follows:

Definition 1.

(2.2)

This definition is equivalent to requiring that the difference of

two MSE matrices
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Less restrictive definitions for superiority have been constructed

by relaxing the restriction that the inequality (2.2) has to be

valid for all non-negative definite loss matrices simultaneously and

choosing a single loss matrix AO instead. Popular and well-founded

choices of A have been I and XIX, see e.g. Wa11ace (1972) and Judge et al.

(1980, pp. 24-26). In this paper we use

Definition 2. ~:Uma;toJt b2 M weakly .6llpeJUoJt.to b1 a.:t (S,<i) -<'6 and

on£y -<'6 E(b 1- S)'X'X(b1 - S) ~ E(b2 - S)'X'X(bZ - 13).

In this definition the loss is related to the performance of the

estimator in predicting XS, the conditional expectation of y given X

and S. We shall employ it because of some rather attractive practical

results that can be derived using it rather than any other Ag. Wa11ace (1972)

has called Deftnition 2 the second weak MSE criterion.

The expectations in Definition 2 are sometimes called predictive MSE's

of b1 and bZ' Both definitions stress the fact that the superiority is

defined at a single point of the parameter space at a time. They can

nevertheless be generalised to larger subsets, for one such genera1isa-

tion with application see Terasvirta (1983). In what follows we shall
Z .

omit the mention Uat (6,0 )U for brevity, but the superiority remains

as defined above throughout the discussion.
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3. Conditions for strong superiority

For the purposes of this paper, it is convenient to write the MSE matrix

as a decomposit;u~ into covariance and bias:

where

d. = H.S + h. with H. = DJ.X - I, j = 1,2 .
J J J J

As pointed out above. b2 is strongly superior to b, if and only

if (3.1) is non-negative definite. Assume that we have the fol-

lowing decomposition

C = KLK ' , d. = Kf., j = 1,2
J J

(3.1)

(3.2)

where K is p x r, r ~ p, L is r x r, and f. = r x 1, j = 1,2. This
J

decomposition is useful whenever we want to compare estimators with

singular covariance matrices. The difference (3.1) can now be written as

It is well-known that 612 ~ 0 if and only if



6

Let us first exclude the trivial possibility that L ~ 0 and f2 = af1,

Ia I < 1. Thi s means that we do not consi der a.ny estimator b2 with

both smaller variance and bias than b1, since this is a very rare

case in practice. However, the assumption L ~ 0 is retained as yet.

For (3.3) to hold it is then necessary that a2L + f 1f; > O. This

last assumption implies that either rank(L) = r-1 and f 1 is linearly

independent of the columns of L or that L > O. In both cases, (3.3)

is equivalent to the following condition, cf. Farebrother (1976),

(3.4)

If we can assert that L > 0 then, using a well-known matrix identity,

(3.4) can be written in the form

(3.5)

where

f .. = f!L- 1f. i,j = 1,2 •
1J 1 J

This is the main result of this section. A corresponding condition

for two homogeneous linear estimators when K= I and L > 0 is to

be found in Terasvirta (1982). From (3.5), a s~fficient but

generally not necessary condition for (3.3) to hold when L > 0 is

-2a f 22 < 1 (3.6)

see also Trenkler (1980). If b1 is unbiased then f 1 = 0 and (3.6) is

necessary as well.
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Assume now that L < O. A lemma in Guilkey and Price (1981) states

that (3.3) can then be valid only if L is a scalars i.e. if r = 1.

Then ~12 ~ 0 if and only if, in obvious notation,

Note that if L > 0, then

is a necessary condition for b1 to be strongly superior to b2•

Reverse now the roles of b1 and b2 in Definition 1!>-. so that

-L > O"and (3.3) becomes

Then it is seen from (3.8) that if r = 1, the necessary condition is

also sufficient while this is not so when r > 1.

The above results can be formulated as

(3.7)

(3.8)

(3.9)

Theorem 1. M.6ume. Une.a..tt mode.£. (2.1) and two he:tvwge.ne.oU6 Une.a..tt

e..6timato~ bj = 0jY + hj , j = 1s 2. Se:t C = 0101- 0202, a.6.6ume. de.eompo­

.6~on (3.2) and 6unthe.nmo~e. that o2L + f 1f 1 > O. Then b2 ~ ~~ongty

.6u.peJUo~to b1 i6 a.nd onty i6 (3.4) hotcL6. 16 U i.6 a.6.6ume.d tha-t

L > 0 then the. .6~ong .6u.pMiowy i.6 e.qu.ivate.nt to (3.5). On the.

oth~ hand, i6 L< 0 the.n b2 i.6 .6~ongty .6u.pMio~ to b1 i6 and onty

i 6 L i.6 a .6 eatalt a.nd (3. 7) i.6 vai.id .
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In practice, L > 0 (or L < 0) seems to be a standard situation while

L > 0 combined with the rank and linear independence conditions remains

a more theoretical possibility.

4. Examples

In this section we shall apply Theorem 1 to some special cases of

both homogeneous and heterogeneous estimators previously discussed

in the statistical and econometric literature.

4.1. Shrinkage estimator with fixed shrinkage factor

o < c2 < c1 $ 1 are two fixed constants (Mayer and Willke, 1973).

2 2Then C = (c 1 - c2)U > 0 and H.= (c. -1)1, h. =0, j = 1,2.
J J J

Setting K = I so that L = C we have from (3.5), after some manipula-

tion, that b2 is strongly superior to b1 if and only if

-2a cB'UB $

where

(4.1)

This result is also given in Price (1982). Improving b1 is thus only

possible by lowering the shrinkage factor, i.e. increasing shrinkage.

One obvious consequence is that the new estimator b2 is superior to

the OLS estim~tor in a smaller'subset than b1, for further discussion

see Terasvirta (1981b).
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4.2. Mixed and ridge estimators

Assume that we use stochastic prior information

r = RS + <1>1

where r is an m x 1 stochastic vector, R is an-m x p fixed

matrix with rank m ~ p, and it is also assumed that
2<1>1 ~ N(O,(cr /k1)I), k1 > O. Suppose that in reality this

information is biased so that

Er = RS + s1

(4.2)

(4.3)

where s1 f 0, see Theil and Goldberger (1961), Yancey et al. (1974)

and Terasvirta (1981c). Combining (4.2) with the sample information

(2.1) yields the mixed estimator

Compare this with another mixed estimator bR(k2) where Rand (4.3)

are the same as above but the uncertainty of prior information is

altered in such a way that <1>1 in (4.2) is replaced by <1>2 ~ N(0,(cr2/k
2
)I),

k2 > O. To find out when bR(k2) is strongly superior to b
R

(k
1
), we need

where

\.
J

= (k: 11 + RUR , )-1, j = 1,2
J
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see Terasvirta (1981c). As d. = UR'S k s., we can choose K = UR ' .
J j J

Since for two pd matrices A and B, A - B > 0 implies B- 1 - A- 1 > 0

we conclude that L = Sk - Sk > 0 if and only if k2 > k1• If k1 =
1 2

k2 then L = O. Thus we can improve upon bR(k1) only by choosing

k2 > k1 if m> 1. When k2 + 00, bR(k2) converges towards the

restricted least squares (RLS) estimator bR• Thus, for some combina­

tions of X, Sand 0
2, a mixed estimator can be improved upon by

a RLS estimator.

For two minimax estimators (Kuks and Olman, 1972) b;(k j ) =
(XIX + k.R ' R)-1 Xly, j = 1,2, we have

J

where

\. = (2kj1 I + RUR , )-1, j = 1,2.
J

Matrices Sk1' Sk2' Tk1 and T
k2

have the same eigenvectors, and since

the eigenvalues of SkTk-1Sk are monotonously ~ncreasing functions of k,

it follows that in (4.3), Sk2Tk~Sk2 - Sk1Tk~Sk1 > 0 if and only if k2 > k1"

When R = I, the minimax estimator is simply the ridge estimator.

Thus if p > 1, a ridge estimator bi(k 1) with a fixed ridge parameter k1
can in some parts of the parameter space be improved upon by increasing

the value of the ridge parameter while this is not possible by decreasing

the value.
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4.3. Restricted least squares estimators

In the previous sub-section the set (Er, R) was kept unchanged

throughout. Here we start from two separate sets of linear restrictions

~
~

r.=R·S,
J J

j = 1,2

leading to the RLS estimators

b­R·J
= b + URJ~(R.UR~)-1 ~., j =

J J J
1,2 (4.4)

"-

where s. = r. - R.b. Note that ~. is new deterministic. Our aim
J J J J

is to derive conditions for strong superiority of bR over bR1 at

(S, 0- 2). Following Guilkey and Price (1981) we define

[~j] SJ' = [:j] = [r
j-RR

jf3st1 , j = 1,2
3 3 r 3 - 3 j (4.5)

so that r3 = R3S is a common subset of restrictions for both

sets. Let r. be an m. x 1 vector, and R. an m. x p matrix,
J J J J

1 < m1 + m2 + m3 < p, j = 1,2. Let mj = 0 symbolise the absence of the

jth set of restrictions. We have

and

d. = U RI. (R .UR I. )-1 5., J' = 1 2J JJJ J ,.
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Using (4.5) we can write

where

D.. 3JJ.

and

I
= R.UR.

J J
j = 1,2

The first term on the r.h.s. of (4.7) is tRe contribution of the

restrictions r3 = R38 to the covariance matrix of bR., whereas the
J

second term represents the remaining contribution of r. = R.8 after
J J

purging out the effect of r3 = R38. Making use of (4.7) in (4.6) yields

The matrix in parentheses in (4.8) is indefinite. Conforming to

the block division in (4.5) we also have

(4.8)

From (4.8) we see at once that Theorem 1 does not apply as a proper

L cannot be found.
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Assuming m
1

= 0 so that R1 = R3 makes C positive semidefinite, but yet

no decomposition with rank(L) ~ p-1 exists since m2 + m3 < p. Only if

we set s3 = 0, thus supposing that the common restrictions r3 = R38

R' D- 1
are true, do we make progress and can choose K = US 2 22.3 sinee d1 = O.

Applying Theorem 1 we can conjecture that

if and only if

(4.10)

Note that s3 = 0 together with m1 = 0 make b
R1

unbiased. If we compare

two biased RLS estimators, no condition for strong superiority of one

over the other can be established in the general case. If m3 = 0, (4.10)

collapses into the condition of Toro-Vizcarrondo and Wallace (1968)

for the strong superiority of bR over b. We have proved
2

Corollary 1. M-6ume UneaJt model. (2...1) and:two JtM:t.Jr.1.c:ted le.Mt

-6quaJtM M:Wna.tOM bR1 and bR2 de6bLed a.6 bL (4.4). Then bRZ JA

-6tJtongly -6Upvu:.oJt to bR -<-6 and only -<-6
1

(i) - - -
the ItM:t.Jr.1.c:t<..oM r 1 = R18 Me a -6 ub-6 et -<-n r2 = RZ8 a.nd

the~ aJte tJtue, a.nd

( i i) -<-nequ.aLU.y (4. 10) hof..d-6.

On the otheJt hand, bR JA -6.tMngly -6Upvu:.oJt to b-
R

-<-6
1 Z

m1 = 1, m2 = m3 = 0 (bR = b) a.nd (4.10) JA bLva..e.-<.d.
2
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The result says in effect that the only possibility for improving

a RLS estimator using linear restrictions is to incorporate further

restrictions into the model. However~ for any reduction in matrix

risk, the original restrictions have to be unbiased. The above

mentioned paper by Guilkey and Price (1981~ Theorem 3) also contains

results on comparing two RLS estimators, but in Corollary 1 they

appear in the correct form.

Note that (4.10) is a testable hypothesis. Uhde~ (4.10) and con-

ditionally on s3 = 0, the statistic

where ~2 = (n - p)-1 yl(I - XUX')y and S2 = r2 - R2b, follows a non­

central F distribution with m2 and n - p degrees of freedom and

non-centrality parameter 1/2, cf. also Toro-Vizcarrondo and Wallace (1968).

The principal component estimator is a special case of the RLS estimator,

see e.g. Judge et al. (1980, pp. 468-471). In this case the data-specific

linear restrictions imposed on the model can never be exactly valid as

the eigenvalues of XIX have been assumed positive. Every principal

component estimator is thus biased, and we have

Coro 11 ary 2. A6.6 ume. model (2. 1J a.nd :two pJUnupa1. c..ompone.n:t e..6.t.i.ma.tO!T.J.:J.

The.!f Me. b..i.1ue.d a.nd none. 06 -.them lA .6.tJ((mgl!f .6/lPe.JUoJr. .to .the. o.the.Jr.. The.

oLS e..6.t.i.ma.toJr. lA .6.tMngl!f .6/lPeJUoJr. .to .the. pJUnupa1. c..ompone.n.t e..6.t.i.ma.t0Jr.

i6 a.nd on.l!f i6 e.xa.c.:U.!f one. pJUnc..ipa..t c..ompone.n:t lA omitie.d in .the. la..tte.Jr.

a.n.d (4.10) with m3 = 0 doe..6 no.t hold.

The corresponding result in Price (1982), based on Theorem 3 in Guilkey

and Price (1981), is incorrect.
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4.4. Proxy variables

In econometric modelling it somefimes occurs that not all the variables

suggested by economic theory can be observed or collecting the data

may be too costly. In empirical work the unobservables have either been

replaced by proxy variables thought to be related to the unobservable

phenomenon or omitted completely. The proxies have been taken to be either

unobservables measured with stochastic error and thereby observable,

see for instance McCallum (1972), Wickens (1972), Aigner (1974) and

Maddala (1977), or fixed variables as in Frost (1979) and Ohtani (1981).

Maddala (1977) discusses the principal differences between these two

approaches.

In the spirit of our general result, only fixed proxy variables will be

considered here. Write (2.1) as

where Xj is a Pj x 1 matrix and rank (X j ) = Pj' and 8j is a Pj x 1 vector

of regression coefficients, respectively, Let Z2 be the matrix of the

fixed proxy variables replacing the unobservable X2, Furthermore, let
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om; tted, whil e

;s the corresponding estimator based on the OLS estimation of

Conforming to the above block division we can write

(4.11)

andD DI = I_ U

o
1

1 1 I

where

~ ]

Thus

i
-U XI Z -

-C = 1 1 2 F-1 (_Z I X U I) > O.
I 2 1 1

(4.12)

In the errors-in-variables case with two regressors and one proxy,

McCallum (1972) and Wickens (1972) have recommended the use of the

proxy variable because it always lowers the bias of the estimator of

the scalar (31'
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Here it can be noticed, see (4.12), that when the proxy variables are

assumed fixed the variance of any of the components of b2 is never smaller

than the variance of the corresponding component of b1. Emphasizing the

importance of variance and neglecting bias would therefore lead us

to recommend the omission of X2 and never the use of proxy variables,

a conclusion diametrically opposite to that of McCallum and Wickens.

For a more balanced analysis, it can be found from (4.12) that the only

strong ~ondition we can hope to derive in the general case is for

the superiority of the "omission alternative" b1 over the "proxy alter­

native ll b2·

But then,

=rU1X~X2-
d1 6

- I 2
(4.13 )

Combining (4.12) and (4.13) it is obvious that Theorem 1 is not

applicable and no strong superiority condition can be established.

This is in accordance with the conclusion of Frost (1979) arrived

at by different considerations.

The outcome is not altered if we only consider loss matrices

A = diag(A11 ,O), A11 ~ 0 is P1 x P1' i.e., restrict ourselves to

the estimation of 61 like e.g. McCa1lum (1972), Wickens (1972) and

Aigner (1974). However, assume that X1 and X2 are in fact

orthogonal. Then cov(b 11 ) - cov(b21 ) < 0 as before while b11 is
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unbiased. Thus, substituting proxy variables for Xz both increases

variance and introduces bias so that in that particular situation the

omission of Xz is always a better alternative that the proxy variables

Zz when strong superiority is concerned.

5. Conditions for weak superiority

If a weak superiority condition is used, the main difference as compared

to previous sections is that the condition will be a scalar condition.

Whem, the necessary and sufficient condition for weak superiority of

bZ over b1 at (S,crZ) does not hold, this indicates weak superiority of b1
over bZ. This was generally not true for strong superiority.

Definition Z for weak superiority of bZ over b1 yields, using (3.1),

In what follows we shall study some interesting special cases of (5.1).
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5.'. Shrinkage estimator with fixed shrinkage factor

The two estimators to be compared are b, = c,b and b2 = c2b with

o<c2 <c, ~ ,. Then (5.') becomes

or

(5.2)

where

-1c = 2(c, + c2) -,.

As in the case of strong superiority, c, > c2 is a necessary condition

for the superiority of b2 over b,. Thus b, can sometimes be improved

upon by shrinking further towards the origin. Note that (5.2) is

a testable hypothesis. Under (5.2), F = ~-2p-lb'X'Xb with ~2 =

(n - p)-'(y - Xb)'(y - Xb) follows a non-central F distribution with

p and n - p degrees of freedom and non-centrality parameter p/2c.

Rejecting (5.2) happens at large values of F and means preferring

b, to bZ. Choosing b, = b (c, = ') we have a simple pre-test estimator

which is a weighted combination of band b2. When cl = " and c2 is

very close to unity, (5.2) is rather likely to hold at a given point
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(8,02) even if there are always points in the parameter space where

(5.2) is not valid. This conclusion is obvious from Terasvirta (1981b),

but here it is reached from a different viewpoint.

5.2. Mixed and ridge estimators

When strong superiority of mixed estimators was considered it was noticed

that to improve estimation as compared to the estimator bR(k 1) with fixed

k1 it was necessary choose a constant k2 7k1. A similar result was seen

to apply to ridge estimators. This ceases to be true when weak superiority

is used as a criterion. Nordberg (1982) has demonstrated that as a

function of k, the mean square error of the ridge estimator may have

more than one minimum in (0,00), and the same is obviously true for the

predictive MSE as well. While (5.1) gives the necessary and sufficient

superiority condition, it does not allow us to draw any straightforward

analytical conclusions about the relationship between k1 and k2•

5.3. Restricted least squares estimators

In Section 4.3 conditions for strong superiority of a RLS estimator

over another were found to be rather strict. In the following

we shall see how much more relaxed the conditions for weak superiority

will be.
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For the weak superiority of b- over b- we have from (5.1), assuming
R2 R1

m3 = 0 for simplicity, that

(5.3)

whe.Jte Rj AA mj x p, m1 <m2 <p, j = 1,2, wilh

Then

Inequality (5.3) implies that a necessary condition for superiority

is that the number of linear restrictions in bR is at least as great
2

as in bR • If m1 = 0, (5.3) is simply the second weak MSE condition
1 .

of Wallace (1972).

By restricting the above assumptions somewhat, useful results can be

obtained~ Suppose that the second set of linear restrictions is nested

in the first, i.e., RZS = rZ implies R1B = r 1, and m1 <m2• Thus we

have R1 = GR2 and rr = GrZ where G is a m1 x mZ matrix with rank m1,

and the following theorem can be shown to be valid:

Theorem 2. AMwne ;the fue.aJr.. model. (2.1) and .:two .6eU 06 line.aJl

Jte..6:OUilio Yl.6 R. f3 = r.,
J J

R1 = GRZ and r 1 = Gr2.

whe.Jte

Md
"
51 = GsZ' s2 = RZb - r2

(5.4)
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nolio~ a non-c~ F ~~bution with m2 - m1 and n - p deg~e~ 06

n~eedom and non-c.e.ntJr.aLUtj p~e.t~ (2a2)-1{s2(R2URz(1s2- S,(R1UR1)-1 s1}.

The proof is in the appendix.

From Theorem 2 it follows that (5.3) is a testable hypothesis and when

it is assumed valid, (5.4) has a non-central F(m2 - m1, n - p, (m2 - m1)/2)

distribution. Next we shall discuss an application of this result.

5.4. Polynomial distributed lag estimation

Assume a finite distributed lag model (2.1) where now the columns of X

are consecutive lags of the first column. In small sample situations

a popular estimation scheme has been the polynomial distributed lag es­

timation in which itis assumed that the regression coefficients

SO,S1 , ... ,Sp. lie on a polynomial of order q (Almon, 1965). This assumption

can be expressed as a set of linear constraints RS = 0 where the jth

row of the (p - q)x(p + 1) matrix R is

(0 , ••• ,0, 1, - (q 71)0' ••• , (-1 ) j (q j 1) , •.• , ( -1 )q+1 ,0, ... ,0)

cf. Shiller (1973) and Terasvirta (1976). Note that the number of columns

in X is now p + 1. The number of zeros at the beginning of the row

is j - 1 and at the end p - q - j. A practical problem is that both

the lag length p and the proper order of the lag polynomial q

(the polynomial assumption is usually at most approximately cor-

rect for any low value of q) are unknown parameters. Various ap­

proaches to determining p and q, or q given p, from data have been sug­

gested in the literature, for an overview see Hendry et al. (1982).
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The above theory can be used for testing hypotheses about the lag

length and the order of polynomial. Let R denote the constraint matrixq

when the order of polynomial is q. Then R = G R 1 where G isq q q- q

( ) ( 1) t · h .th . (0 0 1 1 0 0)a p - q x p - q + ma rl x w 0 se J row 1s , ... , , ,- , , ... , .

The number of zeros at the beginning is j - 1 and at the end p - q - j - 1.

More generally

(5.5)

where G = Gq1Gq1-1 G
q2

+1, and using (5.4) we can test (5.3)

that lowering the order of polynomial from q1 = P - m1 - 1 to

q2 = P - m2 -~, q1 > q2' reduces the predictive MSE.

The pairwise comparisons made possible by the above theory do not

seem very expedient in choosing the best combination of p and q.

However, based upon (5.3) and (5.5), a sequential testing procedure

with certain optimal properties can be constructed for determining

those two parameters. This procedure amounts to testing a sequence

of nested hypotheses, cf. e.g. Anderson (1962; 1971, pp. 270-276) and

Mizon (1977). We shall now take a closer look at this proposal.

Suppose that the maximum lag is at most p and degree of polynomial not

higher than q. Furthermore, set
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where

Rp_j =(0 Ij ), Ij is the j x j identity matrix

and

We start by testing the linear hypothesis that excluding the longest

lag reduces the PMSE, or,

No other restrictions are considered as yet. Define

(5.6)

where

(n - p - 1)-1yl (I - XUX1)y

A A ~

and set Fp_1 = Qp-1' Fp_j = Qp_j - Qp-j+1 j > 1.

Under (5.6), Fp_1 'V F(1,n - p - 1, 1/2), cf. also Wallace (1972).

If Hp_1 is accepted, we proceed by testing the weak superiority of b
Rp-2over bR,

p-1
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(5.7)

-
When (5.7) holds conditionally, Fp_2 has the same non-central

distribution as F 1 under H 1. In general, after a sequence ofp- p-

accepted hypotheses Hp_1,fHp_2IHp_r}, ••• ,{Hp_(j_1)IHp_(j_2), ..• ,Hp_1}

the next conditional hypothesis will be
- -

Hp_j!Hp_(j_1), •.• ,Hp_1: Qp_j - Qp-j+1 ~ 1.

-
Under (5.8), Fp_j has again an F(1,n - p - 1, 1/2) distribution.

(5.8)

-Assume now that the null hypothesis Q - Q <_ 1 is rejected.p-J-1 p-J
Then we move one step backward and compare the restricted least squares

estimator with maximum lag p-J with the estimator with the same maximum

lag and the polynomial restriction of order q <P- J. We have

(5.9)

where p - q > 1, and

with

Taking account of (5.9) and the fact that (5.8) for j = J was

accepted, we can test (5.9) conditionally on the earlier conditional
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- A-2( )-1 ~ A
hypotheses. Under (5.9), in obvious notation, Fq = cr - p-q (Qq - Qp-J)

follows an F(p - q,n - p - 1,(p - q)/2) distribution because

the sequence of linear hypotheses is nested. If (5.9) is accepted, the

degree of polynomial is tentatively lowered by one, and the corresponding

hypothes is; s

(5.10)

A A- -Set Fq_j = Qq_j - Qq-j+l' j ~ 1. When (5.10) is valid, Fq_1 has a non-

central F(l,n - p - 1, 1/2) distribution. In general, after having ac­

cepted the previous hypotheses, we can test the weak superiority of

bR over bR ' i. e. ,
q-j q-j+1

(5.11)

-
Under (5.11), Fq . 'V F(1,n - p -1,1/2). When the first re--J .

jection occurs at degree q - K - 1, say, then the combina-

tion (p - J, q - K) is chosen to represent the lag length and the

proper order of the polynomial.

Another sequential procedure appears in Pagano and Hartley (1981),

but there are dissimilarities between their method and the

technique proposed here. Pagano and Hartley want to test whether the

regression coefficients of longest lags are indeed zero and, there-

after, following Godfrey and Poskitt (1975) whether the polynomial

restrictions are exactly true. In our approach less categorical
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hypotheses are formulated and tested, but this is not crucial. The

above hypotheses can be easily modified if desired. For instance,

testing for the true lag length sounds reasonable since we have

a finite lag model. But then, subsequent testing for the degree

~f the polynomial may well be carried out with the risk reduction

in mind because any non-trivial polynomial restriction can hardly be

expected to hold exactly in practice.

A more important difference is that our procedure is a direct generalisa­

tion of the optimal sequential testing procedure of Anderson (1962)

to the PMSE reduction case while that is not true for the Pagano-Hartley

procedure. The testing is carried out against the immediately preceding

less restricted model and the test statistics are uncorrelated. If the

null hypotheses (5.6), (5.7), (5.8), (5.9), (5.10) and (5.11) are

altered by equating their left-hand sides to zero so that the cor­

responding test statistics follow central F distributions under the

null hypotheses, the classical Anderson procedure is obtained, except

for one dissimilarity. All our test statistics contain the same estimator

;2, whereas Anderson (1962) uses the residual variance estimated from

the immediately preceding less restricted model to which the model

to be tested is compared. There is, however, a natural explanation to

this difference. If an hypothesis that a linear restriction is valid

is accepted, then a conditional unbiased estimate for the error

variance 0
2 is obtained from that restricted model and it can be used

at the next stage. Since our procedure does not consider the truth of

the restrictions but only their usefulness in reducing PMSE, the only

unbiased estimator available is ~2.
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On the other hand, when Pagano and Hartley (1981) search for the cor­

rect lag length they test the following sequence of hypotheses till

the first rejection:

(5.12)

where vp_j = (O, .•• ,O,Vp_j+2,p_j+2,Vp_j+2,p_j+3, .•. ,vp_j+2,P+1)'. The

number of zeros at the beginning is p - j + 1.

The test statistics corresponding to the sequence (5.12) are uncor­

related due to an orthogonal transformation of (2.1), but the problem

is that this sequence of hypotheses does not correspond to that of

the optimal procedure in the original parameter space because the

hypotheses in (5.12) are not nested there. The same applies to

the hypotheses concerning the degree of the polynomial. Incidentally,

this leads the authors to employ ~2 as the estimator of 0
2 in all

their test statistics. In short, the procedure of Pagano and Hartley

(1981) is not optimal in the sense of Anderson (1962). Results upon

the performance of the method suggested here will be reported in a

forthcoming paper.

5.5. Proxy variables

In order to allow for proxy variables, we have to modify the definition of

the predictive mean square error E(b -S)'X'X(b - S) slightly.
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Define the PMSE of the least squares estimator b2 when proxy variables

are employed as

-Since

we have

so that a necessary and sufficient condition for b1 to be weakly

superior to b2 is

(5.13)

(5.14)

By choosing P1 = P2 = 1, (5.14) reduces to the superiority condition

given by Ohtani (1981).



30

If X1 is orthogonal to X2 but not to Z2' then (5.14) has the form

Note that the corresponding condition for b1 to be superior to the

OLS estimator b is

From (5.13) it is seen that

Thus, if (5.15) holds so does (5.14), and we can conjecture

Theorem 3. Let b1 be the e6timato~ 06 S obtained by omitting P2

vevUa.ble.6 X2 . 16 tlUA e.6-Umato~ if., wea.k-e.y ~u.peJUo~ to the 0LS

e.6tima.to~ b then li if., wea.ki.y ~u.pvUo~ to a.rty e.6.t<.mato~ b2 ,[n WMc.h

a. ~et 06 p~oxy vaJUa.ble.6 Z2 ha.ve be.en ~u.b.6titu.te.d 60~ X2•

(5.15)

The theorem simply says that if the unobservable variables do not

have prediction power then it is not worthwhile to substitute proxies

for them.



31

6. Summary

In this paper we have derived conditions for strong and weak superiority

of a heterogeneous linear estimator over another. In particular, it is

demonstrated that in the case of RLS estimators the strong superiority

is indeed a very strong requirement while the use of weak superiority

opens possibilities for testing for the superiority of a RLS estimator

over another in a relatively general case. These tests can be fruitfully

applied to the polynomial distributed lag estimation.

For various shrinkage estimators the general result is that they can

only be improved upon by increasing shrinkage. As to the use of proxy

variables in linear models, no condition for strong superiority in either

direction exists while a necessary and sufficient condition is readily

available for weak superiority. It also turns out that if an omission

of variables yields a smaller PMSE than possessed by the OLS estimator

of the full model, then this "omission" estimator is weakly superior

to any least squares estimator with proxy variables.
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Appendix

Pnoofi o~ Theonem Z: Consider first the numerator of F and define

where

I ( ) -1 IA. = XUR. R.UR~ R.UX •
J J J J J

Then~ because R1 = GR2~ we have A1A2 = A2A1 = A1 so that A2 - A,

is idempotent~ and rank (A2 - A,) = tr(A
2

- A
1
) =m

2
- m

1
.

Then a-2 (Q2 - Q1) ~ x2(m2 - m1)~ cf. Rao (1965~ p. 150). From this it
-2 A -1 A

A -1A
follows (Rao~ 1965, p. 150) that Q = a {SZ(R2URZ) s2 - s1(R1UR1) s1}

has a non-central x2 distribution with m2 - m1 degrees of freedom and

non-centrality parameter (1/2)EQ =(2a2)-1{sz(R2URz)-1s2 - s1(R1UR1)-1 S1 }.

Note that (I - XUX')A j = O~ j = 1~2. Since normality was assumed this

implies that ~2 is independent of the numerator and the result of the

theorem follows.

Footnote (on page 3)

1) A > 0 means that the square matrix A is non-negative definite. If A
is-positive definite~ notation A > 0 will be used.




