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The study concerns the estimption of regression models for Finnish industrial

\'Iorkers' \'Jages fl'om heteroscedasti~ cross-sectional data. A model is c~nstructed

I
_ and estimated for the error variance in wage models. New methods are suggested

for construction and estimation of such models. The mathematical form of the

m?gel for the error variance is carefully chosen. In estimating that model a
, .

very simple aut,oregressive model for wages is utilized. Separate models for·

the error variance are estimated for geographical regions and for branches of

industry.

The models for the'error variance are used for the following estimations:

1) the weights used in estimating the wage models from cross-sectional data

2) the variance of the logarithm of individual workers' wage from aggregate, .'

cross-sectional data

J) the interdependence of workers' wages in geographical regions and

industrial branches of different size~ utilizing the generalized intra-class
/1

correlation coefficient. A method is developed by means of which the "wage

t~ansfer~ effect can be quantitatively measured from cross-sectional data

when the population is finite.'
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1. Introduction

This paper concerns the estimation of wage models from cross-sectional

data where the observations are of different size and they are not

independent. The main point of interest is in the heteroscedasticity

of the wage models and I focus on the problem which weights should be

used in estimating regression models for industrial workers' average

hourly wages with so few theoretical assumptions as possible. This

estimation problem is solved by estimating a separate model for the

error terms variance of the wage models~ which idea is not new in itself.

[Glejser (1969)~ Goldfeld~Quandt (1965)~ Harvey (1974~1976)~ Rutemiller

Bowers (1968)J. In contrast to earl ier studies there is in this paper a

special interest in the principles in which way a model to the error

terms variance should be constructed. The method to estimate the dependent

variable in that model is a new one and bases on some short time series

of wages from geographica 1 regions and industrial branches of different

size.

The data relates to industrial workers in Finland. Main interest is in the

cross-sectional data concerning 170 commuting regions and 22 branches of

industry in 1970. The commuting areas are formed by dividing Finland

into 170 mutually exclusive areas of different size in such a way that

each area forms a geographically connected whole. The branches of industry

are of different size and mutually exclusive too and together they

forms the whole country's industry.

Separate models for the error terms variance is estimated for geographical

regions and for industrial branches. These models turned out to be very

informative and useful. Except their use to estimate weights needed for

cross-sectional wage models they can also be used to some other purposes

proposed in chapter 4.
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2. The explanatory model of wages and the model of the residual

variance

2.1 The explanatory model of the logarithm industrial workers'

wages

Let wiv stand for the hourly wage paid to the industrial worker v

employed in the region i for the time period t (the subscript t will be

omitted because the following considerations relate to the same period t).

let i belong to the whole Finland and industrial worker v to the set Ni

of all industrial workers in the region i. To explain the logarithm

of the wage wiv in the population of all industrial workers in the whole

Finland NF we introduce the model

1n w. = a + L: Bk 1n x. k + £:. ,
lV k lV lV

(2.1) k £: K
i £: F
v £: N.

1

where ln xivk is the value of-thek:th explanatory variable belonging

to the set K, and £:iv is the residual. let a be a constant such that

L: L: p. £:. :: 0 and 1et the Sk: s be those constants which woul d be
• lV lV
1 v
obtained if model (2.1) could be estimated from the whole population by

OlS. The weights Div will be regarded as non-stochastic variables and

L: Piv = Pi. = 1.
v

Let us consider the average hourly wage in region i, which

is -w. = L: p. w.. The logarithm of this wage is
l' lV lV

V

(2.2) ln W. =ln L: p. W. •
l' lV lV

V

In appendix it has been shown that a regression model at the regional

level for the variable (2.2) can be evaluated:



(2.3)

where

-ln w.
1 •

3

(2.4) 1)

and

(2.5)

and

ex l = ex + (1.2 1·3 )[LLP· ~ w. +? W. + •.• ]
. lV L lV 0 lV
lV

LP· 1nx. k
lV lV

V

(2.6) e:: J •
1 •

In the model (2.3) Ee::. J = L p. t!
1 • . 1 • 1 •

1

8~:S manner of construction.
1 •

=L e::! = 0 owing to the ~I:S and
i 1 •

In this paper a model of type (2.3) is estimated from sets of cross

sectional data for geographical areas (commuting regions) and industrial

branches. Since the statistical units associated with the regional and

the industrial -branch divisions differ in size~ in terms of the number

of workers, particular attention in estimating the regression models

of the type (2.3) will be devoted to rendering the observations on the

various regions and branches comparable through weighting. For this purpose

a model is estimated for the residual variance of model (2.3).
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Although the observations are mutually dependent the independenc~

assumption of observations is used as a working hypothesis in estimating'

the modf's (2.3) because estimates for the correlations of observations

were not available. 1) The intention is to estimate model (2.3)

mainly by empirical means. An effort will be made to avoid theoretical,

restricting assumptions the correctness of which could be considered

questionable in the empirical data.

2.2. The explanatory model of the residual variance

An effort is made to construct a model for the theoretical (expected)

residual variance of model (2.3). In the explanatory model of the

residual variance, the size of the region, relative to the whole population,

was chosen as the only explanatory variable, even though other variables

descriptive of the characteristics of the regions could also be used

as explanatory variables. The relative size p of the region was dealt

with as a continuous variable (p~[0,1J). A continuous function of p can

then be chosen as the explanatory model of the residual variance. The

size of the e~pected residual variance associated with a geographically

connected area of size p will be denoted by 0~ •

1) I have studied the 'effect of this assumption on regr~sston~mQ6els':.
and statistics utilizing thereby cross-sectional data~concerning

administrative labour-force districts. These districts are much
bigger regions than commuting regions. In 1970 Finland was divided into
11 administrative labour-force districts. These studies sugaested,
i.a., that the variance of regression coefficient can be quite
sensitive to the ~ndependence assumption of observations. I compared
thereby the variances of regression coefficient estimated under the
assumptions that the observations were independent and that the
observations were dependent, in which case I utilized estimated cor
relations between observations, i. e. (11) = 55 estimated correlations.

2
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Certain conditions, considered desirable, may be imposed on the

explanatory model of 0~. The variance 0~ should be non-negative and

finite. As in the case of random sampling, the further desideratum is

imposed here that the expression of 0~ should be capable of being

decomposed into two factors, one of which is a constant, denoted by

06 (which corresponds to value p=O), the other being a function dependent

on the size of the sample. Let e~ stand for this function. The function

e2 is postulated to becontinLious, to possess derivatives of thep

first order and to be monotonically decreasing in the interval [0,1].

One desideratum for the function e~ is obtained from the properties of

the residuals s~ of model (2.3). Let Si be the residual associated with
1 • P

a region of size p and let s~ be the residual associated with a region

of size q (q = 1 - p). From the properties of the mean, and taking into

account that the residual associated with the whole country is s1 = 0,

we have

(2.7) pSi + qsl = Si = 0
P q 1

whence, further,

(2.8) pSi = -qe:: 1

p q

and, by squaring (2.8),

(2.9) p2(s~)2 = q2(e::~)2
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Taking the mathematical expectation, on both sides of {2.9), over all

the areas of size p and q belonging to the population that is formed of

regions that form a connected geographical whole and are mutually

exclusive in the same regional division we get, after re-arranging the

factors,

(2.10)

where

If 8~ = q2f (p,q) and if f(p,q) is a symmetric function, or f(p,q) =

f(q,p), the condition (2.10) will be satisfied.

On the basis of the above, the following desiderata are imposed on

the explanatory model of the residual variance G~

2o ~ Gp < 00 for all pE [0,1].

2) 222being a constant and 0 < 8 < 1; 80 = 1, 81 = o.- p-

3)

4)

The function 82 is continuous, has derivatives of first order and de-
p 2

creases monotonica11y in the interval pE [0, 1J; - 00 < d8 p < 0 .
crp -

8~ = q2 f (p,q), where f(p,q) = f(q,p).

Several functions satisfying the desiderata 1) - 4) can be found.

In the present study,

(2.11) ( \)0)
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was settled on after many trials.

Then,

(2.12)

. 2 2
2 2( 1 )2 Y - cS 1n(1 + )..p q )

a = q + pq e '
p

..r-. ".'" .. ,wher~ -e. - = 0 0,:"
" .

It is easily seen that desideratum 1 is met in ~he case of function
2 2(2.12). For all p,q€[0,1J, 0p ~ 0 and 0p < 00 hold true, provided that

the parameters y, 0 and A are finite.

besid.eratum 2 is 'also met by (2.12). It eould first be recalled
2 2 2 . . 2 ' "'. 2

that 0p = 00 ep' In addltlon, 8p ~ O. Furthermore, ~p'S~' because the

maximum value of q2(1+pq)2 in the interval p£[O~l]' lS 1 (p being then
. . . "..:& In (1,+ A' .2q2)

equal to .0) and because the maXlmum value of :e . _p .
. ,f.-'v.1\ i ~.,..

in the same interval is·.also 1 (0 ~ 0). In the case of the function

(2.11), 8~ = 1 and e~ = 0 hold true, in addition.

Also (2.11) is continuous and has a derivative for an valu~s pE.[0,1J. It can be
de 2

shown (appenriliix 2) that -J-- <:0, when pHO, 1],
up -

if

(2.13) 0 < 0 < 1 and

(2.14) 0 < A< 00 •



and (2.14) are met, desideratum 3 is satisfied by

dl
In addition, d~

conditions (2.13)

8

> - 00 in the interval 0 ~ p ~ if 10AI < 00 • If

function (2.11) in the interval 0 ~ p < 1.

Desideratum 4 is alsd satisfied by function (2.11) since the function
222

8 p is ,of the type ep = q f(p,q), where

f(p,q) = f(q,p) 2 - ,61n (.1 + A p.2q2)= (1 + pq) e

2.3. Estimation of the residual variance

Transformation to logarithms (In) in both sides of (2.12), replacement

of 0~ by its estimate s~, computed from the observational data, and

introduction of the error term ~p into formula (2.12) yiald,the model

..
(2.15) = 2 lnq + 21n (1 +pq) + Y - 81n (1 + Ap2q.2) +~

P

Model (2.15) can be estimated from the observational data if estimates
2of lns p for various values of p are available.

In the present study, the estimates of lns~ are based on the estimation

of the residual variance of the explanatory model of lnw. from time series
1 •

data. R~ga~ding such a model of lnw. it is justified to presuppose
1 •

that the parameters of this model do not depend on p, since the

parameters of model (2.3), except the coefficient,a',of the constant do

not depend on the region. In addition, it can be presupposed that the

residual of the explanatory model of lnwi . approaches zero as the size

of the reqion approaches ,'the ~6pulation. This condition corresponds

to the property EE~ = L: E:~ = 0 of model (2.3).
1 • i 1 •
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The variance s~ involved in (2.15) was estimated in this study as

follows. From the time-series data for the various branches of industry j

and variously sized regions i, the residual variance

(where· is in the
place of index j)

,was computed from the formula

The desiderata imposed on the explanatory model of lnw. are satisfied
1 •

by model (2.16): its coefficients do not depend on the size of the

region (th~ parameters of model (2.16)) can be considered to equal unity in

absolute value) and the residual -e. t of the model approaches zero1 •

as the size of the region i approaches the whole country.

The use of the residual variance si(e i . t ), as estimated from time series

related to variously sized areas in accordance with formula (2.17), in
2estimating the residual variance Gp is based on the working hypothesis

that the residual variance estimated from time series data for variously

sized regions behaves approximately as the residual variance of model

(2.3) as the size of the region changes. This hypothesis rests on the

view that the time-series variance and cross-section variance associated

with wages are of the same type. The inter-region variation observed

in wages at any given point in time can be considered to be due to a

variety of factors which have changed and been at work in the course

of time. The structure of the labour force of any one region~ for instance,

which can be regarded as one of the central factors capable of explaining
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regional wage levels, can be considered to be a result of such a course

of historical development. Thus, the regional variation present in cross

sectional data on wages can be regarded as a result of the time-series

variation shown by wages.

Although the working hypothesis is introduced that the residual variances

of models (2.16) and (2.3) decrease at approximately equal rates as the

size of the region decreases, the residual variances of model (2.16),

related to time-series data, can be expected to be smaller in absolute

value than the residual variances of model (2.3) associated with cross-

sectional data for regions of the corresponding size. This does not

matter in the estimation of model (2.3), since, for that purpose, it is

necessary to know only the relative weights rather than the absolute

weights of the observations.

Time series of industrial workers' average hourly wages in the years

1960-1971 were formed for 38 variously sized regions, which formed a

geographically connected whole, just as did the commuting regions and

the administrative labour-force districts. The 38 regions were mainly

regions other than the commuting regions and the administrative labour

force districts. From this observational data, the residual variances

of model (2.16) were estimated for the various regions.

2.4. Estimation of the explanatory model (2.15) of the residual
variance

Model (2.15) was estimated by the OLS method, weighting the observations

by unity, in such a way that the parameter \ was given different values.



11

The model of which the multiple correlation coeffi~ient was the largest

was chosen as the final model, from among the models involving the dif

ferent values of A tried out. The estimation results for model (2.15) are

set out in Table (2.1). As appears from Table (2.1) the multiple corre1a-

tion coefficient attained its maximum value when Awas given·the value

A = 3.106 (Model 9).

A scatter diagram of the observations on the regressand 1n s~i and the

regressor Pi of the models given in Table (2.1) is presented in Chart

(2.1). In addition, the graph of the function

(2.18)

corresponding to the Model 9 given in Table (2.1) and the graph of the

function

, ', ",

(2.19) 1n s~ = -4.963 + 1n 359668.P + 1n qJ p)

are represented in Chart (2.1).

Function (2.19) is related to that imagined situation in which the

residuals Ei. of model (2.3) are means computed from a random sample. In

that case, each of the 38 regions used as units of observation is inter-

preted as a random sample drawn without replacement from the population, .



Table 2.1. The estimation results for model (2.15). Data composed of 38 geographically
connected areas. 1)

Number of Regression coefficients and t-va1ues Error terms Coefficient
model standard of multiple

deviation correlation
~

t -8 tA Y

1 1 -6.829 26.73 -62.140 3.88 1.4611 0.5913

2 10 -6.802 26.85 -7.809 4.06 1.4410 0.6062

3 102 -6.696 27.32 -1.935 4.76 1.3636 0.6585
4 103 -6.465 28.16 -0.972 6.19 1.2117 0.7435

5 104 -6.039 29.40 -0.694 8.86 0.9758 0.8426
6 105 -5.509 32.31 -0.555 13.44 0.7096 0.9201
7 106 -5.132 33.14 -0.445 16.86 0.5834 0.9467
8 2.106 -5.029 31.93 -0.421 17.12 0.5757 0.9482
9 3.106 -4.963 30.94 -0.408 17.14 0.5762 0.9483

10 4.106 -4.912 30.12 -0.401 17.11 0.5759 0.9481
11 107 -4.721 27.11 -0.382 16.93 0.5815 0.9471

~

. 108 N

12 -4.046 18.99 -0.365 16.58 0.5922 0.9451. .

1) The dep~ndent variable of model (2.15) was constructed uti1izin9 formula (2.17) and the independent
-wr -wr -wrvariable Pi was ~omputed from the formula Pi = Ni •• /N •.. where Ni .. stands for the average number of

industrial workers in region i in 1960-1971 and N~~. stands for the corresponding variable in the
whole country in 1960-1971 (q. = 1-p.).

1 1 / 38 '1

Error terms standard deviation was computed from the formula s(u ) =~ E u2 where u is the
Pi i=l Pi' P

emp1rica1 residual of model (2.15). The coefficient of multiple correlation was computed from the

formula R =
/ 52 (UPi)

/ 1 - -2::"'-Z:- '
s (1 n 5 p{

where 2 2 1 38 2 --2 --2 38 2
s (l n sp )= "'>'7 l.: (1 n sp - 1n s )and 1n s = -318 E 1n sp.

1.J'i=1 i p. p. i=1 1
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formed by the industrial workers in the whole country.1)

Chart (2.1) shows that the variance formula pertaining to the case of

random sampling without replacement is badly suitable for the explanation

of the residual variances related to the 38 regions constituting the

observational data. As the relative size p of the region increases,

the residual variance associated with the regions obtained by dividing

up the population will decrease definitely more slowly than the residual

variance connected with random sampling.

1) Consider a random sample of N~rworkers drawn (without replacement) from
the finite population formed ~y industrial workers. As is well known,
the variance of the mean of a variable associated with this kind
of ?aJ!1ple i~ l : L..._

N~r _
(1 _ -'-

Nwr _ ) ,

2where 00 is the variance of the variable concerned in the total popula-
tion. Denoting

N~r

io = 0.00699 (= e-4•963 ), p = -'- andNwr = 359608 we get
Nwr •

2 0.00699
(2.20) ° ~ j~n-p q,

where q = 1 - p. Transforming to logarithms on both sides in (2.20),
an approximation corresponding to the function (2.19) is obtained.
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Chart 2.1. Funct~ons (2.18) and (2.19) and the scatter diagram of the
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2.5. Remarks on the model of the residual variance and its

estimation compared to earlier studies

The suggested method concerning the construction of the model of the

residual variance and its estimation seems to be very attractive both

empirically and theoretically. To find out sensible weights for estimating

a model of type (2.3) from cross-sectional data only quite short time
-series data from the dependent variable ln w. and a very simple auto-

1 •

regressive model of type (2.16) are needed. The error variance of this

model can be estimated from formula (2.17) by weighting observations

with unity weights because the size of the regions is approximately

constant over relatively short time periods.

In contrast to many earlier studies, the only explanatory variable of the

variance model (2.12) is the size (p) of the region. This kind of model

turned out to work quite satisfactory.

Methods proposed earlier for estimating a model for the error variance are

based on the residuals e! of the original explanatory model of type
1 •

(2.3). These residuals are estimated by OLS with unity weights and an

explanatory model is estimated for the squares or absolute values of

these residuals (Park (1966), Glejser (1969), Goldfeld-Quandt (1972),

.Hildreth-Houch (1968), Anemiya (1977)). One of the shortcomings of these
I, •

methods is that, in estimating the original explanatory model of type

(2.3) (in order to determine the residuals e! ), the observations are
1 •

from the outset weighted with wrong weights in cases where the'homosce-

dasticity assumption concerning the theoretical residuals of the

explanatory model of type (2.3) does not hold true and the correct

. ,
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weights of the observations are not known. Harvey (1976) suggests the

application of the maximum likelihood method, by means of which it is

possible to estimate simultaneously the original explanatory model (type

(2.3)) and the unknown parameter involved in the multiplicative formula

of the residual variance. However, when this method is used, it is

necessary to assume that the theoretical residual terms of the original

model of type (2.3) are normally distributed and stochastically in-

dependent of one another.

These assumption are very strong in many studi'es. In this study, where

the population of industrial workers is finite and the observations have

been formed by dividing whole Finland into mutually exclusive areas, the

assumption of independent observations is obviously not correct.

2.6. Some empirical results

-If for a model o'f type'-(2.,3LH is true that

(2.21)

where wi stands for a non-stochastic weight variable, then for a model

(2.22) w.1 n - w.a l (w. TriX. k)w. = + L: Sk + W.E!
1 1 • 1 k 1 1 • 1 1·

it is true that

(2.23) i(W.E! ) 2 2 2= w. ° (Ei.) = °01 1· 1
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Some estimation results concerning models of type (2.3) are given in

Table 2.2. 1) The models in ·this table were estimated by OLS after

mUltiplyin~ the.original observations with weights

(2.24)

wr
Ni · 70

where Pi = 403393 and qi ~ 1-Pi (N~~70 standing for the number

of industrial workers in the commuting region i in 1970). Weights (2.24)

are equal to ;fe-4• 963
= 00 divided -by the standard. deviation Gp based on

model (9) in Table 2.1. The transformed residual of models of type (2.3)

ought to be now homoscedastic.

The homoscedasticity assumption relating to models of type (2.3) was

tested, with respect to the size of regions, by different methods which

utilized the empirical residuals of models in Table 2.2. The results

suggested that the homoscedasticity assumption of the residuals of model

(2.3) can be accepted.

One method, which I applied, bases on the idea of calculating estimates of

the residual variance of model (2.3) both from small regions and from

large regions. If these estimates are approximately the same, the homo

scedasticity assumption of the original model of type (2.3) can be

accepted.

1) The dependent va.riable of the models in Table.2.2 was 100 lnw.· , where
wo. is industrial workers' average hourly wage in the region i~·The
i~dependent variables were designed to measure industrial workers'
characteristics, the type of their work performance and certain
characteristics of the industrial establishments and regions.



Table 2.2. Models for industrial workers' Average Hourly Wage ~ate (!). Data composed of 170 commuting regions in 1970.
Models have been estim~ted by using weights (2.24)1

Explanatory
variable and its
t-value

Number of
model

2 3 4 5 6 8 9 10 11

Constant
t-va lue

Calculated Hourly Wage Rate (t)
t-value -

Regional Index of Female
Industrial Workers

t-value

Re~ional Index of Salaried
Industrial Employees (t)

t-value -

Indicator of Additional
Education (t)

t-va lue -

Share of Leftists
t-value

Regional Index of
Productivity (%)

t-value -

Regional Index of the Average
Size of Establishments (t)

t-value -

Regional Consumer Price Index (t)
t-value -

Industrial Concentration in Three
Biggest Branches ~)

t-va lue
Unemployment Rate (t)

t-value -

Degrees of freedom
Error terms standard deviation
Coefficient of mu1Unle
correlation

1611.402
154.\7

169
32.587

o

-129.765
7.40

1.758
16.7B

168

19.'177

0.790

-138.821
10.23
1.473

17 .31

5.726
10.71

167

15.426

0.881

-124.066
9.78
1.405

17.83

18.123
5.77

3.679
6.09

166
14.122

0.901

-112.077
8.71
1.330

16.39

16.894
5.45

3.289
5.43

14.729
2.96

165

13.802

0.906

-111.077
8.60

1.336
16.56

-4.597
1.81

17.928
5.73

3.26B
5.43 .

17.102
3.35

164

13.709

0.912

-103.148
8.06
1.318

16.76

-5.880
2.34

15.056
4.74

3.251
5.56

16.050
3.22

0.059
3.21

163

13.336

0.914

-98.727
7.65

1.325
16.96

-6.535
2.60

13.173
3.99

3.196
5.50

10.274
I. 78

0.056
3.00

0.026
1.92

162

13.228

0.918

-84.340
6.23

1.366
17 .59

-7.396
2.99

10.319
3.06

1.471
I. 79

11.151
1.97

0.054
2.99

0.035
2.5B

0.649
2.91

161

12.932

0.920

-86.721
6.47

1.338
17.27

-6.981
2.05

11. 220
3.35

2.239
2.57

13.898
2.44

0.051
2.89

0.033
2.48

0.677
3.08

0.05B
2.37

160
12.752

0.921

-86.607
6.50

I. 343
17 .41

-7.452
3.04

9.665
2.79

2.535
2.86

15.377
2.68

0.055
3.06

0.029
2.16

0.687
3.14

0.077
2.85

-0.020
1.64

159
12.686

ex>

I) L09-percentages are defined by the operator 100 ln ( ) and denoted by the symbol (t).

The model k (k=I, •.• ,I1) was estimated by minimizing >; (hl ie ik )2, where "'i is computed-from the formula (2.24).

Error terms standard deviation was computed front the lormula

2I w'Y I_ 1 1

Y":-r-'
I: w.
. 1
1

and

R "k

! 1 n-~2
s(ek)= \ -_- I: (w1eik )

n mt=1

where n stands for the number of regions and m for the number of explanatory variables.

Coefficient of multiple correlation was computed from the formula

~k)
11--r-:-,

s (y)

where



19

The regions for which the weight w. was in the interval w.€(1.1.0027J
1 1

were classified as "small 11 , and those for which wi was in the interval

wic[4.096, 7.765J were classifi~d as large. Each of the two groups came to

contain 10 regions. The observations for the Helsinki commuting region

was excluded because in most models the variance of the residual e.
1 •

related to this region considerably differed from the variances of the

residuals e. related to other commuting regions. 1) The variances were
1 •

computed with respect to both "Oil (the theoretical mean of the residual

E:~ ) and the mean of the residuals themselves. The results are set out in
1·

Table 2.3.

The variance ratios for small and large regions of models 1-11 of Table

2.2 were, in the case of most models, comparatively close to unity.

The fact whether the variance of a variable was calculated with respect

to its own mean (the formula for the variance s~) or with respect to

zero (the formula for the variance s~) did not greatly affect the

variance ratios.

If the variance ratios given in Table 2.3 were F-distributed. none

of the values of the ratios would be statistically significant at the
2 21 %level and only one (s2s/521 = 3.23 for model 11) would be significant

at the 5 %level. Despite the fact that the variance ratios cannot be

considered F distributed the residuals of most theoretical models cor-

responding to the models in Table 2.2 can be regarded as homoscedastic.

This applies at least to the models in which the variance ratios

2 / 2 d 2 / 2 1 to· 'ts1s s11 an s2s s21 are c ose unl y.

1. It is .well.known th~t t~e theoretical variances of empirical residuals can
be qUlte.dlfferent ln d:fferen! observations also in the case of independent
observatlOns (Draper-Smlth (196;) pp. 93-94). The theoretical variances of
empirical residuals depend in general on the theoretical variance of
theoretical residuals, on independent variables and on correlations between
the observations. The general formulas for the theoretical variances of
empirical residuals are derived by the author in the forthcoming doctoral
thesis.



Table 2.3: The estimated variances from small (1 < w. < 1.0027) and large (4.096 < w. < 7.765) regions computed, - - ,-
from the residuals of models 1-11 in Table 2.2, the number of observations and the ratio between

variances computed from small and large regions 1).

The number Small regions Large regions
or-model in 2 2 Number .of 2 2 Number of 2 2 2 2Table 2.2 S1s s25 observations 51! 52! observations 5 15/S'1! s2/sU.

1 595.42' 482.23 10 1150.98 1080.37 10 0.52 0.45

2 483.21 465:61 10 463.16 350.86 10 1.04 1.33

3 335.99 368.96 10 346.76 381.33 10 0.97 0.97

4 290.06 316.94 10 268.06 291.03 10 1.08 1. 09

5 298.70 320.21 10 257.02 243.04 10 1. 16 1.32

6 299.21 321. 56 10 282.61 268.75 10 1.06 1.20 N
Cl

7 347.32 364.75 10 263.10 256.09 10 1.32 1.42

8 362.98 346.29 10 . 265.33 219.32 10 1.37 1.58

9 374.29 368.99 10 195.59 157.16 10 ' 1.91 2.35

10 339.62 352~02 10 151.72 128.23 10 2.24 2.75

11 374.07 384.09 10 132.68 118.85 10 2.82 3.23

1) The variances s~ and s~ have been computed from the formulas 2 1 251 = -te.n. 1
1

2 1 ( -)2 where e=1Le. (;=1, •• ~,n)52 = n:r ~ e; - e , n. 11 1

The index s refers to small regions and the index l to large regions.



21

3. Models of the residual variance for all branches of Finnish
industry

A model of the residual variance for Finnish industrial branches was

also estimated. This was used to estimate models of industrial workers'

average hourly wage rate from the cross-sectional data concerning all

branches of Finnish industry in 1970. The industry branch division

represents another type of division of Finnish industry workers' popula-

tion into mutually exclusive sets than does the division into commuting re

giQns. Because the 22 branches of industry were of unequal size in terms

of the number of workers, the same econometric problem arose as in the

case of geographical areas: which weights should be used in estimating

wage models from data concerning all branches of Finnish industry in 1970?

This problem was solved in the same way as in the case of geographical

regions. First a model of type (2.15) was estimated for all branches of

Finnish industry. The dependent variable of this model was constructed

utilizing the model

(3 \ 1) In -
In W. j (t-1) + (1 n - - -

W 't = W - 1n W ( t-1) ) + e.J t ,~ .
" 'J ..

(j=1, ••• ,22)

(t=1, •.. ,12)

and its error terms variance

(3.2)

In formulas (3.1) - (3.2) the index j indicates the 22 industry branches and

the index t indicates the years 1960-1971.
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The model for the residual variance (2.15) was estimated by OlS, weighting

the observations by unity, in such a way that the parameter A was given

different values. Model 7 in Table 3.t, which is

(3.3) ln s~ ~ 2 lnq + 2 In(1+pq) - 7.93 - 0.917 In(1+400 p2q2)

.was finally chosen because for this model the coefficient of multiple

correlation was highest (Chart 3. U. On the basis of ·this model the

weights

,
'\

( 3.4 )

were constructed 1). These weights were used in the same way as in the

case of geographical regions to estimate models for the average hourly

wage rate by industrial workers from data concerning all branches (22)

of Finnish industry in 1970.

4. Some further applications of the residual variance models for
geographical regions and branches of industry

With the residual variance models it is possible to calculate the weights

of geographical regions and industrial branches in estimating models

1)

(3.5)
wr

N.j70
Pj = 403393

wrand q. = 1 - p., N '70 being the number of industrial workersJ J. J
in branch j in 1970.



Table 3.1. The estimation results for model (2.15). Data composed of 22 branches of industry (two-digit

ISIC subdivision)1)

1 22 2 2 2 1 22 2
where' s2(ln s2 )= '>54 r On s - ln s ) and In s~ ='2Z l: In sp;,

Pj LI j=1' Pj. P. . p. j=1 J

Error terms Coefficient of
standard multi pl e
deviation correlation

t

3.24 .6923 . '
.6289

3.24 .6921 .6292

3.25 .6913 .6303

3.26 .6905 .6314

3.27 .6896 .6326

3.28 .68924 .6331

3.28 .68919 .6332

3.28 .6893 .6330

3.27 . .6899 .6322 N
w

3.26 .6910 .6307

formula (3.2) and the independent

Number Regression coefficients and t-values
of model

A y t -6
1 1 -8.022 40.00 -165.775

2 10 -8.018 . 39.85 -17.146

3 50 -8.003 39.26 -3.911

4 100 -7.988 38.65 -2.235
5 200 -7.964 37.68 -1.375

6 300 -7.945 36.90 -1.074
7* 400 -7.930 36.25 -0.917
8 500 -7.917 35.70 -0.819-
9 700 -7.896 34.78 -0.699

10 1000 -7.871 33.71 -0.602

1) The dependent variable of model (2.15) was constructed utilizing
variable Pj was computed from formula (3.5) (Qj=1-Pj).
The error terms standard deviation was computed from the formula

~ 22 2
s(u ) = I ~ r u

Pj LU'j=1 Pj

where u is the empirical residual of model (2.15). The coefficient of multiple correlation was computed from thep.
for-mu 1a .]

/? \
R =~ s- (uP,j )

s2(ln s2 )
p.

J
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Chart 3.1. Function (3.3) and the scatter 'diagram of thedep.el'ldel'l~:variable lns~' and the independent' variable p.
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for wages from this cross-sectional data. Making use of the residual

variance models it is possible further to

1) estimate the variance of the logarithm of individual workers' average

hourly wage rate

2) estimate numerically the interdependence of individual workers' wages

in geographical regions and industrial branches of different size.

This can be done utilizing the generalized intra-class correlation

coefficient and the residual variance models.

4.1 The standard deviation of the logarithm of individual workers'

wage

The models of the average hourly wage rate were estimated from cross-

sectional data for geographical regions and industrial branches in form

(2.22). That is, the original observations were first multiplied with

weights (2.24) in the case of geographical regions and with weights

(3.4) in the case of industrial branches and models of type (2.22) were

then estimated by OLS with unity we~ghts for the transformed observations.

The residual variance of those wage models of type (2.22) where the only

explanatory variable was the weight w. can be interpreted as the estimate
1

of the variance of the logarithm of individual workers' hourly wage rate

according to (2.23). The estimates from different sets of observations

are given in Table 4.1.
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Table 4.1: Estimates of the standard deviation 0 0 of the logarithm of
individual workers' hourly wage rate calculated from dif
ferent sets of observations (%)1)

Set of observations

Confederation of Finnish Employers
(218 000 observations) 2)

Commuting regions
(170 regions)

Industrial branches
(22 industrial branches)

23.12

32.59

23.02

As can be seen from Table 4.1 the estimate 0 0 calculated from data for

industrial branches is very near to the estimate obtained from data of

the Confederation of Finnish Employers. This result suggests that by

suitable methods very accurate information can be obtained also from

secondary data which is originally produced for administrative purposes

and which is not at all optimal from the point of view of the study.

1) If the standard deviation of the variable ln wiv is 00' then the
standard deviation of variable ln wiv in log-percentages is 100 . 0 0.

2. From the statistics collected by the Confederation of Finnish
Employers the estimate &0 was calculated from the observations of the
3rd quarter of 1976. The material included totally 218 000 workers in
all, which is about a half of the total industrial workers in Finland.
The estimates aO calculated from the data collected by the Confederation of
Finnish Employers have been very stable from 1970 to 19/0, so that it
is possible to assume as a working hypothesis, that in 1970 the
standard deviation of the logarithm of individual workers' hourly wage
rate was in the whole population about 23.12 (!).
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4.2 The estimation of interdependence between wages in different

types of areas of different size using the generalized intra
class correlation coefficient

Let us consider the following decomposition

(4.1) -2 1 2= E = ~ (L El' + L L E. E.)
n~ ifj , J

where E. is the residual of a regression model and n is the sample size.,
Let E be the operator of expectation and let's write, as a matter of

notation,

2
= a

E

2
= a

E.,

and

L LP,' h
i~h

Taking expectations on both sides of (4.1), utilizing notations (4.2 a-d)

we get

(4.3) -
p = 1

n

Formula (4.3) defines the average intra-class correlation coefficient p.

Prof. Leo Tornqvist has suggested the generalization of (4.3) to cases

where the sizes of research units are continuous variables. Instead of

(4.3) he. suggests the formula
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(4.4)

sections.

I '

where the sample size is denoted by P2 and the size of the measure region

(inter region) by P1. The variance o~ corresponds to o~ and the variance
2 2 2 1)

0p corresponds to 0 in formula (4.3).
1 E: i

From empirical data it is possible to compute an estimate of the intra
2class correlation coefficient defined by (4.4). The parameters 0P2 and

2
o can then be replaced by estimates which can be computed from the

P1
formulas (2.18) and (3.3) constructed in the preceding

Formulas (2~18) and (3.3) are based on time series data. If the residual

variance of the explanatory models of the average hourly wage rate associated

with cross-sectional data diminishes as fast as the residual variance of

the time-series models of the same variable when the size of the region

increases - which assumption was made in constructing, by means of

explanatory models of the residual variance based on time series data,

weights of observations to be used in estimating the explanatory model of

the average hourly wage rate from cross-sectional data - then the model

of the intra-class correlation coefficient constructed in the above-

described manner can also be considered to describe the intra-class cor-

relation coefficient of the residual terms of the explanatory models of

the average hourly wage rate related to cross-sectional data.

1) 02 may be considered the expected variance of the residuals E:

o~~r all geographical regions of size P2 that form a connected geographical
whole and are mutually excluded. In the case of industry branches 0~2 may be

considered the expected variance of the residuals E: over all "industry
branches" of size P2 which can be formed from the population. These
branches can be reaT or hypotethical. Similar interpretations can be
given to 02 •

P1



29

It may be of particular interest to examine the estimate

P (P1 = 0, P2) = P (0, P2)' which can be considered to approximately

describe the intra-class correlation coefficient of the residual terms

related to individual workers in regions of size P2. In Chart 4.1, the intra

class correlation coefficient PI(0,P2) and PJ(0,P2) related to connected

geographical regions and branches of industry respectively are represented

as functions of P2.

From Chart 4.1 it appears that when P2 increases, the intra-class correla

tion coefficient PJ (0, P2) for the branches of industry approaches zero

much more slowly than does the intra-class correlation coefficient

PI (0, P2) for connected geographical areas. This result suggests that,

in any two areas of the same size which may be either connected geographical

areas or "industrial branch" areas, which also form geographical wholes -

the residual terms of explanatory models or industrial workers' individual'level

average ,hourly wage rates are more similar to each other in the case of the

branches of industry than in the case of geographically connected areas.

If the residuals in models (2.16) and (3.1) are interpreted to represent

approximately wage drift, the results in Chart 4.1 suggest that, in the

case of Finnish industrial workers, the interdependence of wage drift is

stronger within branches of industry than within a connected geographical

area of the same size. The interpretation of the residuals of models

(2.16) and (3.1) as approximately describing wage drift is quite realistic

because the percentual wage increases in 1960-1971 were in fact very

similar in Finnish industry. If this were the case the residuals in models

(2.16) and (3.1) would measure the difference in wage drift between region

i and the whole country (model (~.16)) and the difference in wage drift

between branch of industry j and the whole, country (model (3.1)).



Chart 4.1.
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The intra-class correlation coefficients related to connected
geographical regions (pr(0'P2)) and branches of industry. V 0

(PJ(0,P2))·

0.9

0.8

0.5 0.60.3 0.40.20.1
L~~c:===::x=====:t:==:::==:::i:====::c:===-::o::±=:±==-_o' == J _ 4 _

0.7 0.8 0.9 1.0 P2

0.6

0.7

0.5

.0.1

0.3

0.2

0.4

~The intra-~lass correlation coefficients have been computed from the formula (4.4)
utilizing thereby formulas (2.18) and (3.3) in the case of geographical regions
and branches of industry respectively.

• 0"
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With the method outlined in this section it is possible to estimate

quantitatively the dependence of wages in different type and of dif

ferent size of sets~ which can be geographical areas or industrial

branches or some other sets utilizing generalized intra-class cor

relation coefficient and the models for the residual variance.
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Appendix 1

Let us consider the model for the logarithm of the wage w. of worker v
1Vin region i

(2. 1) ln w. = a + L Sk ln x. k + E.
lV k lV lV

k E K

i E. F

v € N.
1

(2.2)

and the logarithm of the average hourly wage in the region i

-
ln wi . = ln L Pivwiv .

v

In (2.2) E p. = P = 1. Applying T~rnqvistls (1936) formulas we get 1)
v 1V i·

1) Y. Vartia (1976) has derived T~rnqvist's formulas as follows.
Ler us consider weighted moment means (~WO)a and geometric means
OWO of wage ratios defined by

(1)

(2 )

where Pv ~ 0 and L p = 1.v
Di vi di ng every term of (1) by (oW6)a we get

- .
~

1 0 1a 1n (w Iw ( OWO))

( W1/ W1)a = E
\) v

'(3 ) p_e
a 0 0 0 \)

where

aW
'i= t p ~,,v

: .. 1 0 1
: ~" =In (w~/w\) - .In (aWo)'

get for all values of W:s
v

By expanding (3) to a power

. (4) ( 1 1)a a 2 .2 a3 .3
" q,WO/OWO = 1 + 2T E Pv w\! + jf E P'if\) + •••

• •• ' _.) -'" ~.r " ;..'

Taking logarithms, dividing both sides of' (4) by a'a"nd r'earrangin"g" the
terms we qet

(5)

Specifying a = 1 and w~ = 1 we get the formula (6).
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(6) P' 1n + ~
.2 1 .3

ln w. = L: w. L: Pivw. + 0" L: P' w. +
1 • 1'J lV lV 1'J 1'J

V V V

where W. = ln w. L: Piv In'wivlV lV
V

Subs't i tut i ng ln w. from (2.1) to (6 ) we get
lV

(7) low i . = ~ + L 8k lnx. k + L p. E. + ! i: ,#2 1 r .3
w"w P' ., + 6 P;"wiv + ... ,

. k 1· V lV lV
V "

\lihere

l'nx. k = LP· 1nx. k'
1. \) 1"i' N'

Let us 'define al. as ~he sum of a and the average of the residual

of the model (7)

(2.4)
1 ·2 1 ;3 )

~'=~+(LEp.E. +-2 Erp . w. +-6 EEP , W1'
• V lV lV • 1111 1v' • 1V V'.
1 . 1 V 1 V

1·2 1·3
= ~ + n:Ep. (-2 w, + -6w, + ••• )]

i ~ W·· 1\T 'V

and let us define E! as the diff~rence of the residual of model (7) and,.
its average

E~
1 •

1 .2' 1 ·3= (E p. E· + 2- Lp. "Vi. + 6- L: P·w. + ••. )
V 1V' 1'.> v lV'V V'V 'V

(1.2 1·3 )
[r E p .. -2 wi V + -6 w.\)..+ ••• ]i v1V' ,.

= (L P,·v.E,' . + ~ LP . .;j~ +. J L; p.' ~~ -w~ .+ .".) - (a I - a).
". v l... lV TV 0 , v ,v
.. V V

. Then at the regional level we obtain a model for ln W.,.

where EE ~
1 •

= r p. E!
i 1. 1.

= r E~1 1.
= 0 because of the a':s and E! :s manner

1 •

of construction •.
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Appendix 2 The Proof of monotonicity of the function (2.11)
de2

Let us consider the function dp P , We get

Cis 2 2' -2p(1'+3q) 2oApq(2p-l)
(1) _P- = e ( +' )

dp P q (1 + pq) 1 + AP2q
2

The term

-2p(1 +'3q)

q (1 + pq)

20Apq(2p - 1)
< 0, when p E [ 0 , 1 ] and 2 "

1 + ).p q
< 0

when
de 2

o < p < -l .Therefore _P < 0 , when
- - Co dp

In the interval

=(2 ) 6 <

de 2

~ < p < 1, -p
dp

p(l + 3q)(1 + Ap2q2)

q(l" + pq)Apq{2p - 1)

if~ 0 ,

2.q (1 + pq)(2p - 1)

Since, in the interval ~ < p<1

(3)
2 122(1 +3q)p . ,(1 +3q)(I+P q )

- ~ 2 - ,
(1 + pq)(2p - 1) q (1 + pq)(2p - 1)

(o<r..<ao)
J

then the in~quality (2) holds true in the same interval if

(4)

The smallest value of the right-hand side of (4) in the~nterval 1/2 ~ P ~

.,cl6 pis 1, and thus, in the interval 1/2 < P < 1 GP ~ 0 if

(2. 13) 0 < 0 < 1 and

(2.14) 0<;\<00.
, dS2

I n add it ion , - 0" <. d~ inthe i nt erva1 0 ~ P ~ 1 if lOA I< 00 .


