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1. INTRODUCTION

The most common form of linear regression models contains the

assumption of no correlation between the disturbances in different

observations. In connection of time series data, however, one often

realizes that the assumption of mutually uncorrelated disturbances

is clearly inconsistent with the data. Especially econometricians quite

commonly take this to indicate a misspecification of the dynamic effects

of the explanatory variables. They often seem to think that if only the

effects of the explanatory variables were specified correctly and no

relevant explanatory variables were missing, the errors of the model

would always behave like white noise. However, in most cases the re­

gressand contains variation that is totally independent of the explana­

tory variables, but still has a dynamic structure of its own. This is

why it seems to be more realistic slightly to reduce the goals of the

model building process and to allow some amount of regularity in the

behavior of the disturbances. At the same time one should take these

regularities into account in the estimation of parameters and especially

in hypothesis testing. This is not merely a question of technical per­

fectionism, but a vital precaution to ensure valid conclusions. The

problem of the so-called spurious correlations (cf. Granger and Newbold,

1974) is well known. Time series with internal dynamic mechanisms simi­

lar enough often look alike and have high cross correlations, even if

the series are actually totally independent of each other.
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Thus, there are two parts to be specified in time series models,

the structural part describing the way that the regressor variables

affect the regressand, and the disturbance part describing the regularity

pattern of the errors. If there are no feedback relations between the

regressand and the regressors, it will be sufficient to build what is

called a single equation transfer function model to desrcibe the re­

lationships between the regressors and the regressand. In this paper

we will only consider the case of linear transfer functions. More often

than not, the structures of the transfer functions are a priori unknown.

Therefore it becomes difficult to identify the form of the disturbance

part of the model, because the behavior of the residuals essentially

depends on the specification of the structural part. On the other hand,

it is difficult to identify the transfer function forms straight away,

because the regularity pattern of the disturbance term greatly affects

the distributions of most test statistics commonly used in model speci­

fication. So far, identification methods have usually started from the

specification of the transfer functions. After estimating the parameters

of some tentatively identified transfer functions, it is possible to com­

pute a set of preliminary residual estimates. At the next stage, one

can correct the test statistics used in the specification of the struc­

tural model in accordance with the autocorrelation pattern of these

residual estimates. Thus, several iteration rounds are always needed in

model identification, and the first tentative choice of the transfer func­

tion forms is crucial for the whole procedure.

Provided all the variables are jointly stationary, spectral analysis

makes it possible directly to estimate the spectral density and the
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autocorrelation pattern of that part of the regressand which is totally

uncorrelated with the regressor series. Moreover, it is possible to

identify and estimate ARMA-models on the basis of spectral estimates

(cf. Rice, 1979, or Nakano, 1982) without using any of the observations

explicitly. Thus, it is possible to start the model bUilding process

with the identification of the disturbance part. One can first estimate

the cross spectral densities between the regressors and the regressand,

then the spectral density and the autocorrelations of the disturbance,

and finally the parameters of some ARMA-model for the disturbance. The

form of the ARMA-model can be identified in the usual manner on the

basis of the estimated autocorrelations. If several models are estimated,

their goodness of fit can be evaluated visually by comparing the differ­

ent ARMA-spectra to the previously estimated spectrum of the disturbance.

When the disturbance model has been identified and its parameters have

been estimated, the observed variables can be filtered or weighted to

make the error process of the transformed model approximately white

noise. Then, finally, specification tests can be used in the usual man­

ner in the identification of the transfer function forms.

In the second chapter we will define the formal concepts needed

hereafter and give a short review of the earlier identification methods

of transfer function models. In Chapter 3, we will propose a new identi­

fication and estimation method for univariate ARMA-models. The method

is based on the maximization of the entropy of the ratio between the

estimated and theoretical spectral densities. A new identification metbod

for linear transfer function models is introduced in Chapter 4. The

proposed method starts from the disturbance part of the model and follows
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the ideas sketched above. The method also yields initial estimates for

the parameters of the identified model. The asymptotic behavior of these

estimates is studied and an example of the use of the method is given.

In Chapter 5, some computational aspects of the proposed method and the

method of maximum likelihood are considered. We will describe a computer

program for the application of these methods and also discuss the dif­

ferences between the weighting and filtration of data.
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2. PRELIMINARIES

Let us denote the regressand (output variable) by y(t) and the

explanatory variables (input variables) by X(t) = [x,(t) ••• xm(t)]'.

Suppose it clear a priori that there is no feedback from y(t) to

X(t) and that X(t) affects y(t) linearly:

(2.1)

where v.(L)
1

for all i =

co

L: v ..Lj,
j=O IJ

', ••• ,m.

L is the lag operator, and
co

Iv .. \ < co
IJ

The residual process E(t) is supposed to be stationary with fi-

nite variance and zero expectation, and totally independent of the

X(t)-process. We will further assume that E(t) behaves like an ARMA(p,q)

-process with

where

q,(L)E(t) 8(L)o.(t),
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and a(t) are mutually independent, identically distributed variables

for t = .•. ,-1,0,1, •••

Furthermore, a(t) are supposed to be normally distributed 2N(O,a ).

Some restrictions must be imposed on the v.(L) -functions to make
1

the number of parameters finite. The most common restrictions are

(2.2)

where

v. (L)
1 6.(L)

1

or

r.
w. (L) = w. - w

1
' 1L - ••• - w. L 1

1 10 1r.
1

S.
11 - C. 1L - ••• - c. L

1 1S.
1

i 1, .•• ,m ,

(2.3)

where

v. (L)
1

r.
1

L v •• Lj

j=O 1J

d.
1 k

v .. = L 8. kj
1J k=O 1

j O, ..• ,r
i

, i = 1, ... ,m .

Model (2.1) with restriction (2.3) is usually referred to as the

Almon model (cf. Almon, 1965).

Both forms (2.2) and (2.3) can of course be used to approximate almost

any kinds of v.(L) -functions.
1
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For a while, let us consider model (2.1) with restriction (2.2).

Suppose that we have observed y(l), •.. ,y(n) and X(l), ••• ,X(n).

The model can be reformulated into

where

o*(L)y(t) =)Jo*( 1) +

= 1 - C;*L
1 - ... -

and

*r.
_•.. _ w* L 1

• IIl,r
i

i = 1, ••• ,m

It is quite clear that no useful information can be extracted from the

first observations at time points t = l, •.• ,to ' The likelihood function

based on the rest of the observations is of the form

(2.4)

where

L (0* lIE lIE a 2)y(t
o
+l),X(t

o
+l), ••• ,y(n),X(n) ,)J,w1 ,···,wm,$"cr

n-to
- -2- 1, -1

(det~) exp(- 2 Z ~ Z)
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and

z(t)
m

o*(L)y(t} - ~0*(1} - E w~(L}x.(t}, t
i=l 1. 1.

E = cov(Z}.

It is not possible to optimize (2.4) analytically with respect to

the parameters, because E depends on ~,e and 0* in qujte a com-

plicated manner (see Chapter 5.2). That is why one has to settle for

numerical optimization of (2.4). In Chapter 5.2 we will propose an al­

gorithm for the computation of Z'L- 1Z and detL. The proposed method

resembles closely Dent's algorithm (Dent, 1977). Alternative algorithms

have been presented by Ansley (1979), Harvey and Phillips (1979), Ljung

and Box (1979), and others.

The amount of calculations needed for the optimization of (2.4)

depends primarily on the number of parameters and the number of obser-

vations, but also on the goodness of fit and on the specification of

the model. If the model is overspecified, the likelihood surface becomes

rlat in some directions and the optimization algorithms may easily run

into trouble. That is why one should start with simple and parsimonious

models and enlarge the model only gradually. This fact stresses the im-

portance of the identification stage of model building. The identification

problem of model (2.1) with restriction (2.2) has been dealt with fairly

extensively in the literature. Most of the suggested methods are appli-
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cable only if y(t) and X(t) are jointly stationary. The most import­

ant suggestions are the following:

Box and Jenkins (1970) proposed the following method for the

single input case: The input and output series are filtered with

the filter that prewhitens the input. By studying the cross corre­

lations between these filtered series one might get an idea of a

suitable transfer function form.

This method cannot be generalized to the case of multiple input

series. Further, it only "orthogonalizes the regressors", but does

not remove the problems caused by the autocorrelated errors.

Priestley (1971), Haugh and Box (1977) and Granger and Newbold

(1977) have recommended the prewhitening of all the variables sep­

arately. By studying the cross correlations between these pre­

whitened series, one may identify a transfer function between the

input and the output innovations. This transfer function can then

be translated into a model between the original observed series.

This method will be worthwhile if there is any doubt about the

pre~ence of possible feedback effects, but it often leads to com­

plicated and overstructured models, especially when several input

variables are involved.

The method used in the WMTS program package (cf. Tiao et al.,

1979 or Tiao and Box, 1981) can be used to identify transfer func­

tion models as special cases of multivariate ARMA-models whenever

the input series allow ARMA-representations. The method is based

on fitting consecutive AR-models of increasing orders to the data.

The joint spectral density of the input and output series can

also be used as a basis for model identification. One possibility
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is the use of Hannan's efficient method (Hannan, 1963), where the

structural parameters are estimated with the weighted least squares

method in the frequency domain, using the inverses of square roots

of the estimated residual spectral density as weights.

Another possibility (cf. Pukkila, 1978 and 1982) is to calculate

the Fourier transform of the spectral transfer function estimate

and to assess the significance of different coefficients by com­

paring them with their theoretical asymptotic standard deviations.

The ordinary least squares technique (OLS) will often do quite

well (cf. Harvey, 1981, Ch. 7.5 and Liu and Hanssens, 1982) even

if it will be difficult to assess the significance of different

terms in the model. We will discuss this problem further in Chapter

4.1.

This method can be applied to nonstationary series as well.

The new method presented in Chapter 4 resembles slightly Hannan's

method, but the residual process will be restricted to a parametric fa­

mily of models and the weighted least squares fits will be carried out

in the time domain.

For some reason, the problem of autocorrelated residuals seems to

be mostly ignored in connection with Almon models. The new method can

be combined with any of the usual selection methods of Almon models

(cf. e.g. Terasvirta and Mellin, 1983).
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3. INITIAL ESTIMATION OF PARAMETERS

OF UNIVARIATE ARMA MODELS

3.1 The Maximum Entropy (ME) Procedure

The words "maximum entropy estimation" have previously been used in

at least two contexts.

Firstly, Akaike (1977) introduced the entropy maximization principle

as a general framework for statistical reasoning and model building.

According to the principle, one should strive at maximizing the expected

entropy of the estimated distribution of a future observation within a

chosen family of models. The method of maximum likelihood can be formu-

lated as a special case of the entropy maximization concept.

Secondly, spectral densities have been estimated by maximizing the

entropy of the estimator subject to the condition that m first auto-

correlations will coincide with the corresponding sample autocorrelations.

This method, however, is identical to the autoregressive estimation

method with m as the degree of autoregression. As one of the most

recent references, see Parzen (1982). For later reference, we repeat

some of the tools and concepts used in the article. The Kullback-Leibler

directed information divergence is defined by

I(f,g)
n
f -f(A) log ~ dA

-n f(A)
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where f and g are two spectral density functions. Further, the so-

called cross entropy function is defined by

H(f,g)
1T
f -f(A) log g(A) dA

-1T

I(f,fg)

satisfying the inequality

H(f, f) 2. H(f ,g)

Let G = {fa I a € 0} be a parametric family of spectral densities.

Whenever f € G, the function H(f,fa ) will be minimized with respect

to a at the "true" parameter value corresponding to f. The H(f,fa )

'"-function can be estimated from data by H(f,fa ) = H(f,fe), where f

is some "raw" estimator of the true spectral density.

Let us now return to the question of estimating the parameters of

stationary ARMA-models. With the previous notation, let

0.1) ~(L)E(t) = 8(L)a(t) , t ••• ,-1,0,1, .•• ,

where dt) is supposed to be stationary and 2a(t) ~ NID(O,cr ).

It will be implicitly understood that ¢(L) and a(L) may contain

seasonal factors, although they do not appear in the notation explicitly.

The first task in the model selection is the choice of the degrees p

and q. Several procedures have been suggested, based on the autocor-

relation and partial autocorrelation functions (cf. Box and Jenkins,

1970), the so-called S-arrays (cf. Woodward and Gray, 1981), the inverse
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autocorrelation function (cf. Cleveland, 1972) and the so-called extended

autocorrelation function (cf. Tsay and Tiao, 1982). Beguin et al. (1980)

have suggested what is called the corner method. Hokstad (1983) has pro­

posed a method based on the inspection of cross correlations between the

observed series and the residuals of different tentative models.

Several general model selection criteria are also available, such

as Akaike's AIC and FPE criteria (cf. Priestley, 1981, pp. 372-373) and

Schwarz's SBIC criterion (cf. Judge et. al., 1984, Ch. 21). The calcu­

lation of these criteria requires, however, the estimation of the par­

ameters of all the model candidates. Once all the estimations have been

carried out, it is possible to base the model selection on visual goodness

of fit evaluation and on more profound diagnostics.

As noted in Chapter 2, the use of the ML estimation principle is

often computationally cumbersome. This is why there is a need for com­

putationally easier estimation routines even if they cannot compete with

the ML -procedure in small samples. These estimates can also be used as

starting values for the iteration in the ML -procedure. Box and Jenkins

(1970) suggested a modified method of moments, but the performance of

the method is often poor. If there is a multiplicative MA -part in the

model, the risk of unstable estimates is obvious. By our experience, the

straightforward use of the moment principle does not perform too well

either, and in case of mixed models the computations become rather heavy.

This leads one to consider taking more than p+q moments (autocorre­

lations) into account. No ARMA-model will of course have autocorrelations

that would exactly match the estimated ones, but one could measure the



14

"distance" between the theoretical and estimated autocorrelations by

some measure and minimize it. It seems natural to weight the first auto-

correlations more than the distant ones. This reasoning brings to mind

the possibility of minimizing the distance between some window estimator

of the spectral density and the theoretical spectra provided by the model.

The distance could be measured by any standard measure of distance be-

tween distributions. This kind of criteria will be relatively easy to

optimize, because the theoretical spectral densities depend on the par-

ameters in a very simple way:

f ().)
E:

2
o

211

Possible choices for the distance measures are for instance the Hellinger

distance (cf. Beran, 1977), ~ny of the criteria suggested by Rice (1979),

or the estimated cross entropy H of Parzen (1982). Only the first

one is strictly speaking a measure of distance, but the latter ones could

be used in the same spirit.

Another way of looking at the model is to put it into the form

1
-- f ().)
02 Ct

1
- 21T

for every ). E: [-n,nJ, where

h(A,cP,6)
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Let us denote a window estimator of f (A) by
E

M
n

L
j=-Mn

r(j)w.cosjA ,
J

where r( j) is the .th
J sample autocorrelation of the dt) -series

(t = 1, ••. ,n) and M is the truncation point or width of the lag
n

window. Weights

w.=k(t)
J n

j -M , ••• ,0, ••• ,Mn . n

are said to constitute the lag window. The function k: [-1,1] .... ~+ is

supposed to be even and twice continuously differentiable with k'(O) = o.

One way of evaluating the flatness of the normalized estimated residual

spectrum

1 fe:(A)
f (A) =2
a a h(A,~.e)

is to calculate the entropy

0.2)
n

- J fa(A)logfa(A) dA
-n

subject to the condition

Even if (3.2) is not strictly speaking a measure of distance, it can of

course be interpreted as the complement of the Kullback-Leibler measure



I(f ,f)a
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of directed divergence between f and the flat spectruma

f(A) 1
- 27T for all A E [-n,7T] •

Note that the maximization of (3.2) with respect to ~, e and a
2 is

equivalent to the minimization of

(3.2' )

7T _

! fa(A)logfa(A) dA
e (~, e) =_-"-7T _7T _

! f (A) dAa-1f

~ -log21f

1f _
loa! f (A) dA.- a-1f

with respect to ~ and 6. The restriction in (j.2) can be written in

the form

7T f (A)
ri =! E dA •

-7T h(A.,4>,e)

Now, we suggest the estimation of the parameters ~ and e through

the maximization of (3.2) or, equivalently, through the minimization of

(3.2'). The optimization of (3.2) will mean the maximization of the white

noise properties of the residual process a(t). This procedure comes

quite close to the method suggested by Nakano (1982) and earlier by Rice

(1979), though the motivations of their pro0edures were totally differ-

ent. Both of these methods are asymptotically efficient when applied to

normal processes. Furthermore, it is easy to visualize the performance

of the fitted model by drawing a graph of f (A).
E

In principle, optimizing
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(3.2) resembles slightly the so-called MDI estimation method (cf. Kull-

back, 1959) and is coherent with Akaike's general entropy maximization

principle. However, as far as we can see, the theory of neither of these

concepts can be utilized here straight away because of the structure of

f (A).
€

Let

and

As an estimator of (3.2') we will use

6')' ,

- Qn(~)
e (1jJ) :: --- logS (0,n

Sn(~)
n

where

M
n n

Qn(~) = if"" L gn(Aj,~)log(gn(Aj'~»'
n j=-M +1n

Mn 1 -
S l ~) n

L 9 (A.,O:: M _. S (1Ji)
n n J 2 n .

n j=-M +1 (Jn

and
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J

• 11
J"M

n
j
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-M , ••• ,a, ... ,M •
n n

This means that we will use the trapezoidal rule in the integration of

(3.2) with as dense a partition as possible without making the estimates

f (A.) functionally dependent of each other.
£ J

Because (3.2) involves logf (A)
£

and negative estimates f (A)
e:

would cause additional problems, we assume that the form of the lag win-

dow is defined either by

k(x)
when

when

x < 2
- 2

~ < Ixl < 1

(the Parzen window) or by

k(x) 0.54 + a.46cos1lx, -1 < x <

(the Tukey-Hamming window).

The values of ~ and e that minimize en(~) will be called the

maximum entropy (ME) estimates and denoted by ~ = [¢'

ameter 0
2 will be estimated by

e']'. Par-

-2 1 - -
(J = - S (~)

211 n
with s (~)

n
2o S (0n
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The value of E; that minimizes Qn(O without constraints will be de-

noted by E; [ \jJ'
-2

J
,

Note that Iii coincides with the previous no-° .
tation, but

-2
and -2 will differ from each other.° a

3.2 Asymptotic Properties of ME-Estimators

In studying the asymptotic properties of the ME-estimators we will

make use of a theorem proved by P. Saikkonen. Because his research report

(Saikkonen, 1981) has not been published, we repeat the result here, al-

beit in a less general form than the original:

Theorem (Saikkonen): Suppose z(t) is a normal linear process

00

where

z(t) = a.o.(t-j)
J

00

Ia.\ < 00

J
and 2

CI.(t) '\, NID(O,o ) t ••• , -1,0,1, •••

Let y(k) = Ez(t)z(t-k) be its covariance function and let f be either
z

the Parzen or the Tukey-Hamming estimator of the spectral density of z(t).

Suppose

00

L IkICl.!y(k)! < 00

k=_oo
for some 1

0.>­_. 2

and suppose H:[-lT,lT]"" F
m

is symmetric and admits the representation
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00

H(A) =-L L L(k)eik\
2n k=_oo

where

00

L
k=-oo

for some

Let

~ > 1 and all J' -- 1 mu _ 2 , ••• , •

Then

M
lim ~
n+oo In ° and lim 'Vn =

n-+ooM
n

o ,

j -M , .•. ,Mn n

will be asymptotically normal N (O,L) with a covariance matrix
m

1T

L 4n ~~ H(A)H(A)'fz(A)2 dA ,

[I

Suppose now that we have observations

process (3.1). With increasing n,

slower than ;no
Now, for a fixed ~

let Mn

g(1), ••• ,£(n) from a normal

grow faster than ~ but



plim 0 (s)
n

n+co
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IT ih(A,lji )
J 0 0

2
-IT 0 h(A,W)

0(0 t

• log dA

where 0
2 and Wo 0

2denote the "true" values of a and W.

This is obvious, because the variance of gn(A,S) tends to zero uni­

formly in A when s is restricted to any closed neighborhood of So

inside the stability and invertibility region.

The limiting function Q(s) is clearly continuous. Because no two

stationary and invertible ARMA-processes can have exactly the same spec-

trum, 0(0 will have a unique minimum at s .o
Now, following the lines

of Rice (1979) it is easy to see that the following result holds:

Lemma 3.2.1 W -2
and a are consistent estimators of wand 0

2.

-2As an immediate consequence of the lemma, we can see that a is also

consistent for 2a .

Next, we shall discuss the asymptotic distribution of W.

Theorem 3.2.2 ;n(~ - wo) is asymptotically normal Np+q(O,l(Wo)-'),

where

IT

l(W) = 4~ J Dlogh(A,W)'Dlogh(A,W) dA
-IT
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and Dlogh(A,~) is the vector of derivatives of 10gh(A,w) with respect

to ~.

- -2 - -2
Proof Let 9 (A,~) = 9 (A,~,a) and Qn(~) = Qn(~,a) for brevity.
-- n n

All derivatives in this proof will be taken with respect to ~. The

first and second derivatives of Qn(~) will be

and

M
n

= .!!.... E
Mn j=-M +1

n

M
n

= 7T E
Mn j=-M +1

n

- -
[log(g (A. ,~» + l]Og (A. ,Iji)

n J n J

Now, obviously

plimg (L ,IV ) ­
n-+<x> n J 0

uniformly in Aj (j = -Mnl •. ~Mn)'

bounded away from 0 and 00.

Consequently,

because f (A) and h(AI~)
E:

are

M
7T n

plim M E
n-+<x> n j=-M +1n

2-
[log(g (L,~ » + l]D 9 (L,~ )n Jon J 0
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n-+oo n
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M
n

L: 9 (A.,1\I )
j=-M +1 n J 0

n

TI

0
2 ! 1 dA = 0,

-TI

On the other hand,

M
TI n 1 ~ ~

plim M L -----'--- Og (A" 1jJ )' Og (A., 1jJ )
n-+oo n J'=-"l +1 g~ (' ,10) n Jon J 0I' 1\ , , 'I'

n n J 0

Mn
plim ~ L

n-+OO n j=-M +1n

~ ~ ~

9 (A.,1jJ )Olog(g (A.,1jJ »'010g(g (A.,1jJ»
n Jon Jon J 0

2 2
TI a a

= J Dlog(20 h(A,1jJ »'010g(20 h(A,1jJ » dA
TI 0 TI 0

-TI

4nI(1jJ ) •
o

I(1jJ) is the asymptotic average amount of Fisher information per obser­
o

vation (cf. Parzen, 1971).

Now, according to Saikkonen's theorem,

M
TI n

Zn = In M L
n j=-M +1n

2n "
(0 2 )'f (A.)

a h(A.,IjJ) £ J
o J 0

is asymptotically normal with expectation
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iT
- In f Dlog(h(X,~ »' dXo-iT

iT
=: - In (D f log(h(X,~O» dX)'

-iT

o

and the covariance matrix

iT
4iT f (D 1 )'(D 1 )h(X,~)2 dX

-iT h(X,~o) h(X,~o) 0

The conditions in Saikkonen's theorem will be fulfilled, because the

fourth order cumulants vanish altogether and because the Fourier trans-

forms of the components of

will be linear combinations of autocorrelations of some ARMA-processes.

This becomes obvious if we write

j =: 1, ••• ,q .
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and

j 1, ••• ,p .

Because plim log(g (A,W »
n 0

n ....o:>

it follows that

° uniformly in
-2

A and plim a
n+oo

plim (Z - In DQ (W )') 0.
n+oo n n 0

Thus, Z and In DQ (W )'
n n 0

have the same asymptotic distribution.

Consider now the expansion

the components of WO lying between the components of ~ and ~. Now
o

will be asymptotically normal

-1= N (O,I(W) ),
p+q 0

because plim WO = W .
n+o:> 0 CI
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Note that the above reasoning can be extended to other forms of
n

1 ik:\models as well, provided the sequences corresponding to f D e d:\
-n h(:\,1Vo )

k = ••• ,-1,0,1, ••• satisfy the conditions of Saikkonen's

theorem and if the correspondence between 1V and h(>..,1V) is one to one

and regular enough to preserve consistency. For instance, the unknown

component ARIMA (UCARIMA)-models (cf. Nerlove et al., 1979) will usually

satisfy these requirements. Thus, the ME -technique can also be used for

estimating the parameters of UCARIMA-models.

3.3 Large Sample Tests Based on the ME-Estimators

Theorem 3.2.2 also implies that tests, analogous to the Wald test,

the LR-test and Rao's test (LM-test), can be used to test hypotheses

concerning 1V E: 'I' C :ffi p+
q .

At first, let us suppose that the hypothesis to be tested is of

the form

Y E: r, dim(r) g ,

where G is slJpposerl to have a continuous inverse G- 1 and to be con-

tinuollsly differentiable at all points of the open set r.

Suppose h(>",G(y» will meet the requirements in Chapter 3.2. Let Yo

denote the "true" value of y and 1Vo = G(yo)' Denote the restricted

ME -estimator of ~ by 1V
R G(y). Let
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and A = I - B (B'B )-l B,
Y Y Y Y y'

according to Chapter 3.2, Zn

N (O,I).
p+q

Further,

r 1/2where By = [OI/lQn(1/1)] OG(y).

will be asymptotically normal

Now,

(3.4)

(3.5)

and

(3.6)

By noting that

- 2- ~ -In (y - y ) = - In [0 Q (G(y »r DG(y )'O,I,Q (1/1 )' + Ii) o(y - y ) ,
o y n 0 0 0/ n 0 0

plim [02Q(G(y » - OG(y )'O~Q (1/1 )OG(y )] = 0
f)+OO yn 0 0 ",n 0 0

and by combining (3.4), (3.5) and (3.6) we get
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Furthermore, D~Qn(~) 0 implies

~

~) + o[(WR - w)'(WR 1/J) ]

and

L
In (W - 2- Inn

[Qn(WR) Qn(~)J I/J)2n
-+ 1/J)'DI/JQn (I/Jo) (l{JRfuR v'4TI

L
-+ Z'A Z

n Yo n

Because A is a projection on a p+q-g dimensional subspace, the
Yo

asymptotic distribution of

0.7)

will be 2
X p+q_g

-
Note that we have made no distinction between Qn(l/J) and

because under the null hypothesis

For the same reason,
2 -2a can be substituted for o. The statistic

(3.7) can be used as a test statistic corresponding to the usual LR -

test.
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In a similar way, one can show that

will be asymptotically distributed as 2
X p+q_g'

If the null hypothesis is of the form

H(I\!) = 0 , dim(H(~)) = p+q-g ,

where H: ~ ... :F
p+q-

g is continuously differentiable, then

will be asymptotically 2
X p+q_g distributed

The result (3.7) also implies that model selection criteria corre­

sponding to Akaike's AIC criterion and Schwarz's SBIC criterion can

be defined on the basis of the ME -estimates, The definitions will be

AICME

and
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Although we strongly recommend the visual comparison of the spectral

densities as the primary means of model selection, these criteria may

sometimes be of interest.

3.4 Some Practical Experiences of the ME-Estimation Method

One of the first choices to be made when applying the ME -procedure

is the form and width of the lag window. As we already mentioned in

Chapter 3.1, we prefer the Parzen or Tukey-Hamming forms, because they

never give negative estimates for the spectral densities. With regard

to the error variances they compete well with other estimators (cf.

Hannan, 1970, Table 1, p.282).

As we saw in Chapter 3.2, the width of the lag window M
n

should

be increased slower than In but faster than ~ with increasing n

to guarantee the asymptotic efficiency of the ME -method. This, however,

does not give any directions for the choice of Mn in real estimation

situations with for example n less than 100. By experience, we

recommend fairly wide windows, for instance up to M
n

45 with n = 80.

But we want to emphasize that graphs of the time series and its period-

ogram should be inspected before deciding upon the value of M •
n

If

there is seasonal variation in the series, the lag window should be

wide enough to include sufficiently many seasonal periods.

If a great proportion of the spectral mass is concentrated at low

frequencies, one should avoid excessive smoothing. On the other hand,
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if the periodogram looks very "edgy", sufficient smoothing is recommended.

The number of frequency points where the spectral density is esti­

mated can be chosen to equal M. If M is small, one might wish ton n

use more frequency points, because otherwise the graphs of the spectra

will look clumsy. This can be done, since an increase in the number of

frequency points seems to affect the ME -estimates relatively little.

Experience has shown that the ME -method has a tendency to under­

estimate the absolute values of multiplicative seasonal parameters,

especially MA -parameters. We tried to improve the method by taking the

smoothing into account in the calculation of the theoretical spectra,

but managed to sharpen the estimates disappointingly little. It was

hardly worth the extra computational effort that was needed to smooth

h(A,W). Thus, we simply suggest that the user should keep this small

sample bias in mind when the model contains multiplicative seasonal

MA -parameters.

To illustrate the use of the ME -estimation and identification

method, we will consider the following example:

Example 1: For later reference we wanted to build a univariate ARIMA

-model for the quarterly series of the volume of Finnish exports to

western countries in 1971-1983. The graph of the series is shown in

Figure 1. We calculated the annual logarithmic differences of the ex­

port volumes denoted by D4LEXP to make the series stationary. In

the estimation of the spectral density of D4LEXP we used the Parzen
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window estimator. Because the number of observations was small, n = 48,

we chose ~1
n 25. We estimated the spectral density at 50 equispaced

frequencies in the interval [O,n].

By means of the autocorrelation and partial autocorrelation coef-

ficients we tentatively identified four models presented in Table 1.

In the representation of the orders of the models we have used the no-

tation of Box and Jenkins (1970, Ch. 9). Having estimated the parameters

of the four models with the ME -technique, we recorded the following

values for the AICME- and SBICME -criteria:

TABLE 1

Model ~~odel form AICME SBrCME

1 (l,2)x(1,0)4 -79.28 -71. 71

2 (l ,2)x(0,1)4 -80.25 -72.68

3 (1,0)x(0,2)2 -80.61 -74.93

4 (1,0)x(0,3)2 -80.90 -73.34

According to these criteria, models 3 and 4 seem to fit the data best.

In Figures 2 and 3 we have illustrated the goodness of fit of models

4 and 3. Model 4 seems to be superior to model 3 at low frequencies.

Finally, we estimated the parameters of model 4 with the ML -method

and used the ME -estimates as starti8g values in the numerical optimi-

zation of the likelihood function.
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TABLE 2

Parameter ~lE-estimate (std. dev.) ML-estimate (std. dev.)

<1>1 0.717 (0.091) 0.669 (0.120)

e -0.238 (0.190) -0.462 (0.130)
1

e 0.497 (0.108) 0.696 (0.135)
2

e 0.230 (0.188) 0.746 (0.141 )
3

cr 0.086 0.066

Thus, the ME -estimates seemed to provide reasonable starting values for

the ML -iteration. The Box-Ljung test statistic (cf. Ljung and Box, 1978)

for the eight first autocorrelations of the ML -residual was

B-L 4.27 ,

so the model seemed to fit the data well.
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4. IDENTIFICATION OF MULTIPLE INPUT

TRANSFER FUNCTION MODELS

4.1 Some Comments on Earlier Identification Methods

Short descriptions of the most important identification techniques

were already given in Chapter 2. We want to emphasize that the parallel

use of several identification techniques is often recommendable.

If there is any doubt about possible feedback effects between the

input and output variables, one should take the trouble of calculating

cross correlations between the prewhitened series. The prewhitening is

necessary, because the distributions of sample cross correlations depend

on the autocorrelation structures of the variables. For instance, the

Box-Ljung test (cf. Ljung and Box, 1978) can only be applied to white

noise series. Because the transformations induced by ARIl1A-models are

"one-sided", the temporal relations between the variables can be in­

spected on the basis of the ARIMA-residuals as well.

There are, however, many types of variables that do not allow an

ARIMA-representation. For instance seasonal dummies and variables measur­

ing real tariffs of some services are slightly problematic in this re­

spect. All variables cannot be made stationary by differencing.

Spectral identification methods naturally require stationarity, too,

but these methods do not immediately break down when the variables are
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slightly nonstationary. If there are clear trends in the variables,

almost all of the spectral mass will concentrate at low frequencies and

the smoothing can badly distort the picture. But if the trends do not

dominate the variations of the series, it is often worth one's while to

calculate cross spectral densities and to have a look at temporal differ­

ences (or differences between phase angles) and coherencies between the

variables. Although graphs of temporal differences are often tricky to

interpret, they are sometimes useful in the model selection.

If one tries to use the ordinary least squares method in the identi­

fication and ignores at first the autocorrelation of the residuals, one

should start with fairly a large model including all potentially rel­

evant lags. The total number of parameters should of course be kept

within reasonable limits with regard to the number of observations. The

OLS -estimates will be unbiased and consistent, but it will be difficult

to assess their significance.

If the impulse responses of some explanatory variable seem to die

out only gradually, a suitable rational structure for them can be found

for example by the corner method (cf. Liu and Hanssens, 1982).

One should be very careful in reducing the model at this stage, be­

cause the distribution of the estimates depends heavily on the behavior

of the residuals. After fitting an ARMA-model for the OLS residuals one

cpn, however, roughly assess the significance of different test statistics

calculated in connection with the OLS estimation. This is possible by

means of the following theorem:
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Theorem 4.1.1 Let y(t) = 8'X(t) + €(t), t = 1, .•• ,n be a linear

regression model with a stationary normal ARMA(p,q)-residual €(t)

obeying the model

~(L)€(t) 8(L)a(t), 2a(t) ~ NID(O,a ), t = ••• ,-1,0,1, •...

Let RB = Y be a testable linear hypothesis, where R is an rxm -matrix.

characteristic equations

Let F be

Let ~~<I»,
1

the usual (unweighted) F-test statistic for this hypothesis.
. (8) .

i = 1, ••• ,p, and ~j , J = 1, ••. ,q be the roots of the

<I>(~~1) = ° and 8(~-1) = 0, respectively.

Then, asymptotically

and

c2
P {F < -- t} < 1 - cc

1
c

irrespective of the behavior of the X(t) -process, where

,"

c
1

=
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and to is the 1000 per cent critical value of an F-distribution

with rand n-m degrees of freedom.

The proof of the theorem is left to the appendix.

Theorem 4.1.1 motivates the following rule of thumb for inference

from the OLS -calculations:

If the unweighted F-statistic exceeds the usual critical value

multiplied by c" the null hypothesis can be rejected at the

chosen level of significance.

If F does not exceed the usual critical value multiplied by

be rejected under any circum­
c

because the true critical value exceeds ~ t s •c, u

the usual critical values of the corresponding t-test stat-

cz--, the null hypothesis could notc,
stances,

r = "If

istic should be multiplied by ~ and ~. The values of c,

and Cz can be estimated by fitting an ARMA(p,q)-model to the OlS­

residuals.

The rule of thumb suggested above is a modification of earlier re-

suIts of Watson (cf. Watson, 1955 and Watson and Hannan, 1956) and Vinod

(cf. Vinod, 1976 and also Sathe and Vinod, 1974 or Kiviet, 1980). We have

tried to find a formulation that would be as easy to use as possible

when p and q are small. If p and q are large, the discrepancy

2 Zbetween a c, and a Cz and the largest and smallest eigenvalues of

COV([E(') ••. E(n)]') can become substantial. In that case, the rule

of thumb is not of much value.
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4.2 The Maximum Entropy - Generalized least Squares (~lE-GlS) Technique

In the previous chapter we saw that residual autocorrelation can

badly distort tests of significance based on OlS estimates. That is why

we have to get some idea of the form of the residual autocorrelation be-

fore we can reliably assess the roles of different terms in the structural

model. But before we can calculate any residuals, we must be able to

estimate the transfer functions. This vicious circle can be broken by

observing that spectral methods make it possible to estimate the spec-

tral density of that part of yet) that is totally uncorrelated with

the explanatory series x,(t), ••• ,xm(t). If the observations obey model

(2.1), this uncorrelated part will be exactly e(t) irrespective of the

form of the linear transfer function. The ME -estimation technique, pre-

sented in Chapter 3, gives us an opportunity to fit ARMA-models for the

residuals without actually computing any of them. When a suitable ARMA-

model has been found, we can calculate a weighted covariance matrix of

all the potentially relevant lags of the input and output variables using

the estimated ~-, (see Chapter 5.2) as weight matrix. With this weighted
n

covariance matrix we can easily compute the generalized least squares

(GlS) estimates for the parameters of different transfer functions.

The suggested estimation procedure resembles in many ways the so-

called Hannan's efficient method (cf. Hannan, 1963). In our method, the

number of (latent) parameters is smaller because we require the residual

series to be a member of the ARMA -family. Because of its optimal small

sample properties, the use of the GlS -method in time domain seems more

natural than the method suggested by Hannan.
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Let us now denote

9 (A)E:
f (A)

y

where f y ' f Xy and f X will mean the Parzen or Tukey-Hamming esti­

mators of f y ' f Xy and f X' respectively. We will use the letter 9

here to emphasize the difference between gE: and fE:. Anyway, we can

fit different ARMA-spectra for gE: as well, but it is not immediately

clear that the resulting estimates will share the optimality properties

in Theorem 3.2.2. This will be shown in the next chapter.

If the data has been differenced and if at the same time the spectral

density of the residuals seems to have very low values at the frequencies

corresponding to the differentiation span, we suggest that a model con-

necting the original undifferenced series with each other should be

specified. This does not mean, however, that we could not identify the

model and estimate its parameters in the differenced form as well, be-

cause the MA-part of the residual model does not have to be invertible.

If for instance quarterly data has been seasonally differenced and

the estimated residual spectral density has a very low value at frequency

n/2, a seasonal MA-parameter should be included in the residual model.

The ME-estimate of the parameter will probably be fairly large (close

to unity). It should be replaced by in the calculation of the weighted

covariances between the input and output variables. By this means the

effects of the differencing will be taken correctly into account and

valid conclusions about the form of the structural model can be made.
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4.3 The Asymptotic Properties of the ME-GlS-Estimators

We will first consider the ME -estimators for W r~' e'] based on

before discussing the asymptotic properties of the GlS -estimators for

the structural parameters.

The results in Sections 3.2 and 3.3 are not directly applicable,

/

because cannot be interpreted as a window estimator of some observed

or unobserved series. Anyway, it turns out that ME -estimator W based

on has the same asymptotic distribution as the one based on the window

estimator f that could be computed if the error terms E(t) were ob­
E

servable.

Define

and

z(t)
w,(l)

= ------ x,(t)
61(l)

w (l)
+ ••• + _m x (t)

0m(l) m

y(t) = z(t) + E(t) t , , ••• ,n •

The essential assumption here is that the number of structural parameters

should be finite. Model (2.3) will not be discussed separately, because

all the following statements will apply to it as well.
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As before, let us denote

and

k = 1, •••• m

Let 5 denote the maximum of the degrees of the polynomials o*(L),

Suppose now that starting values z(O), ••• ,z(-s)j x(O), .•• ,x(-s)

and £(0), ... ,£(-5) are available. We will use the following notations:

n
F (A) =(2nn)-1/2 E x(t)eitA

x t=l

and

n
f (A) f W (A A')F (A')F (A') dA' ,

xy -n n x y

where

M
n

E w ,).VA
V= -M V-

n

Suppose that the input sequences X(t) satisfy the following conditions:
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AI: X(t), though possibly "fixed", will behave like a stationary process

with a finite vector-ARMA-representation, i.e., the second order

moments will die out exponentially and the fourth order cumulants

will constitute an absolutely convergent series (cf. Hannan, 1970,

p. 280).

A2: X(t) is bounded and \I fX(A) II and II fX(A) -1 II are bounded (cf.

Brillinger, 1975, p. 198).

Then the following two lemmas will hold for X(t) and for linear func-

tions of X(t):

Lemma 4.3.1

uniformly in A.

Proof Because

it follows that

(4-.1)
1T
f W O.

n
-1T
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On the other hand,

~ W (A - A')F (A')e- inA ' dA'
-1T n x,

~1
, n

- - L
- 21T \I=-~l

n

because x,(t) is bounded. Thus, the second term of (4.1) will be

OeM In). The first term of (4.1) can be written in the formn

(4.2)
1T
f W (A - A')F (A')F (A') dA' •

-1T n x, x2

-iAe

-iAe

k(~ )J
n

-iAe

Because the k -functions were supposed to be twice continuously differ-

entiable, we can write

k ( \1-') _ k (~)
M M

n n

2 2
= - ~ k' (~ ) + ~ k" (~ ) + 0(\12)

n n M~ n Mn
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The second term on the right hand side of (4.2) can thus be written in

the form

(4.3)

11n
1 E [0 _ :::!- k' (:::!-)

2n M Mv=-M +1 n nn

M
1 1 n

= - -.- E
Mn 2n v=-M +1

n

because 2 ,,2
k" (:::!-) + M 0(~2

Mn n M
n

1- stays bounded. For the Parzen window
v2

k' (x) 1
2-12x + 18x sgn(x)

-6 (1 - Ix I)2sgn (x)

for Ixl ~ i
for Ixl > i

and for the Tukey-Hamming window

k'(x)

Thus, we can write

k' (x)

-O.46nsinnx .

o= xk (x) ,

where kO(x) remains bounded for all -1 < x < 1. Because the cross

correlations

series

were supposed to die out exponentially, the
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M
n

L
\J=-t·1 +1

n

will converge when ~1 -+ "'.
n

That is why the whole expression (4.3) will

be O(1/M2). This completes the proof of the lemma.
n

I]

Because f is bilinear with respect to x1 and x
2

' thisx
l
,x

2
immediately implies the following lemma:

Lemma 4.3.2

where 01(L) and 02(L) are any lag polynomials of finite degrees.

After these preliminaries, let us define

(4.4) t 1, •• • ,n .

Because z~(t) _ 0 for all t 1, •.. ,n, we have

f (>..)
lIE

z
o .

On the other hand, Lemma 4.3.2 implies
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(4.5)

+ O(1/M2) + OeM In) •
n n

Because substituting

for

will minimize the nonnegative quadratic form, constituted by the first

four terms on the right hand side of (4.5), this implies

(4.6) f (A) - fx (A)'fX(A)-1 fx (A) = O(1/M2) + OeM In)z ,z ,z n n

uniformly in A.

On the other hand, (4.4), Lemma 4.3.2 and the form of the model

imply

(4.7)

and

o :: f
It

Z ,f:

(A)

+ O(1/M2) + OeM In)n n
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+ O(1/M2) + O(M In) .
n n

Because £(t)- and X(t) -processes are independent of each other,

f X (A) =0 and thus
,£

(4.9) f
X

().) = 0«Min) 112 )
,£ n

By combining this with (4.7) and (4.8) we get

(4.10) f (A) - f
X

(A)'f
X

(A)-1 fX (A)
Z,£ ,Z ,£

=0(1/M2
) + O(M In) + [0(1/M2

) + O(M In)]O«M In) 1/ 2
)n n n n n

= 0(1/M2
) + O(M In)

n n

'"
and II f x().) II are by Assumption A2 uniformly

bounded. Equation (4.9) also implies

(4.11) f
X

(A)'f
X

(A)-1 fX (A) = O(M In) •
,£ ,£ n

Finally, by combining (4.6), (4.10) and (4.11) we get
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g (>..) - f (>..)E: E:

f (>..) + f (>..) + f (>..)Z Z,E: Z,E:

A A

• [f X (>..) + f X (>.. )]
,Z ,E:

When H(>..) is any bounded, continuous function, it follows now that

plim In
n+oo

Iv!n
11.1- LM . M

n J=- n

H(L)g (L)
J E: J

M
n

M L
n j=-Mn

A

H(L)f (>...) II
J E: J

o

because lim In/M2
n+oo n

o and lim M /In = O.
n+oo n

By combining this result with Theorem 3.2.2 we have proved the fol-

lowing theorem:

Theorem 4.3.3 Under conditions AI, A2 and the conditions of Theorem 3.2.2,
- -

the fv1E -estimators 1/1 = [<\J' 8']', based on gE:(>") ,

normal and In (w - 1/1) has the asymptotic distribution

where the form of 1(1/1) is given in Theorem 3.2.2.

are asymptotically

N (0,1(1/1)-1),
p+q

Let us now turn to the problem of estimating the structural param­

eters of the model (2.1). Suppose for a moment that o*(L) = LO or that

the model is of the Almon type (2.3). Then, the model (2.1) can be put

in the standard regression form
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y Xw + E,

where

Y [Y(S+1) ••• yen)]'

x

x
1

(n-s)

x (s+1)
m

x (n)
m

x (1)
m

x (n-s)
m

[¢' 8'J' and -2
r(~) = a COV(E) •

2An explicit formula (5.3) for a r(~) = COV(E) will be derived in Chap-

ter 5.2.

Because ~ is consistent for ~, it is easy to see from the corre-

sponding inverted form (5.4) that

whenever the latter exists.

Because the generalized least squares estimator

w
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~as a conditional distribution

(4.12)

"the asymptotic distribution of In (w - w) will be

(4.13)
2 1, -1-1

N ( 1)(0,0 (lim - X E(~) X) )m s+ nn-+oo

Note that w is unbiased regardless of the value of W, and thus

cov(w) = ~ cov(w!W) + cov E(wlw)

1\1 I\J

= E(X'E(~)-1X)-1X'E(w)-1X(X'E(~)-1X)-102

Iji

Now, because the conditional distribution (4.12) is normal and the as-

ymptotic distribution of W is normal, the joint asymptotic distribu-

tion of wand W will be normal, too.

On the other hand,

cov(w,l\I)
A _

~[E«w - w)(1ji - Iji)' !W)]
Iji

o for all n

because of the unbiasedness of w. Thus, In (w - w) and In (Iji - Iji)

will be asymptotically independent of each other and their asymptotic

distributions will be given by (4.13) and Theorem 4.3.3. This means that

wand Iji are jointly asymptotically efficient. Note that the informa-

tion matrix will be of block diagonal form.
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This result does not of course guarantee the "optimality" of the

proposed estimators. It merely states that the proposed method does not

systematically waste information. Although the asymptotic distribution

of the estimators is identical with that of the ML -estimators, we be­

lieve that in finite samples the ML -method is still to be preferred.

On the other hand, the ML -method cannot be used to solve ill-defined

problems (i.e., if the models are overspecified or badly misspecified)

and it is computationally cumbersome. These facts underline how important

it is to identify the model form correctly before the ML -estimation. The

ME -method combined with the GLS -procedure seems to be very well suited

for identification purposes, because it is possible to choose the forms

of the structural model and the residual model one at a time. The choice

of the residual model can be made either visually or by means of the

AICME or SBICME criteria as described in Chapter 3. The form of the struc­

tural model can be chosen with regard to the usual t- and F -statistics,

to the signs and magnitudes of the parameter estimates, etc.

It should be noted that if a linear restriction

Rw Y

is added to the model, the corresponding least squares estimator

will be obtained from the weighted moment matrix
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xJ

by the usual calculations. Thus, once (4.14) is calculated, the choice

of the model form will be as easy (or as difficult) as the choice of a

normal regression model. Ridge estimators, selection criteria for Almon

models, estimators with "end conditions" in Almon models, etc., can be

obtained from (4.14) in the usual manner.

Only if the initial guess for s is too large, it might be neces­

sary to recalculate (4.14) in order to save observations at the beginning

of the observation period.

If o*(L) i LO
, the identification problem is more difficult. To

identify the forms of the transfer functions we suggest the calculation

of (4.14) with fairly large s. After estimating all possible linear

coefficients up to lag s by the GLS -method one can norm the coeffi­

cients by the largest absolute value of the coefficient estimates for

each input variable. The resulting sequences can be taken as "autocorre­

lation sequences" and suitable rational forms can be identified for in­

stance by the corner method of Beguin et al. (1980). For a short expose

of this method, see Liu and Hanssens (1982). We cannot claim the esti­

mators of the structural parameters to bc asymptotically efficient in

this case. Anyway, the residual parameters will be estimated asymptoti­

cally efficiently by the ME -method.
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4.4 An Example of the Use of the ME-GLS Method

Example 2: In Example 1 we estimated an ARIMA-model for the volume of

Finnish exports to western countries. In this chapter we will try to

include two explanatory variables in the model. The first one (called

SEM) measures the size of the western market for Finnish export commod-

ities and it is constructed as a weighted average of the indices of in-

dustrial production in the 11 most important DECO countries, using

the values of Finnish exports to these countries as weights. The graph

of the series has been presented in Figure 4. The second one (called

WEP) is a ratio between the price index of Finnish exports and the price

index of competing exports from other countries (see Figure 5). The lat-

ter index is constructed as a weighted average of the import price indices

of the 11 DECO countries with the weight structure described above.

The import price indices naturally contain commodities which Finland

does not export, but the construction of a better price index for com-

peting exports would be a cumbersome task. All variables were made sta-

tionary by taking logarithms and by computing their annual differences.

(A prefix D4L will be attached to each variable symbol to denote this

transformation.) We calculated all spectral and cross spectral densities

between the three series at 50 frequencies with a Parzen window esti-

mator of width M = 25. The corresponding residual spectral density
n

gE (see Chapter 4.2) was estimated. Tentative models for the disturb­

ances were identified by interpreting the Fourier transform of gE as

an autocorrelation function. The 10 first autocorrelations and the cor-

responding partial autocorrelations were
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FICURE 6 Residual spectral density of D4LEXP and a spectral density of model type 2 (broken line)
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Lag Autocorrelation Partial autocorr.
coefficient coefficient

1 0.336 0.336

2 0.199 0.097

3 -0.201 -0.334

4 -0.475 -0.429

5 -0.284 0.073

6 -0.197 0.046

7 0.056 -0.041

8 0.067 -0.234

9 0.109 -0.021

10 -0.021 -0.081

The following AICME and SBICME criteria were recorded for the tentatively

identified models:

Model Model form AICME SBICME

1 (O,2)x(l,O)4 -78.98 -73.31

2 (0,2)x(0,l)4 -80.06 -74.38

3 (0,l)x(0,2)2 -76.60 -70.92

Figure 6 shows the estimated residual spectral density together with the

most resembling ARMA(0,2)x(0,l)4 -spectrum. The ME -estimates of the MA­

parameters are represented in Table 3. A weighted correlation matrix for

the three variables and their lags up to 7 was computed using

as weighting matrix. The most plausible model had D4LSEM with lags

0, 4, 5 and 7 and D4LWEP with lags 0 and 4 as explanatory variables.

Almon models did not seem to be of any help. The GLS -estimates for the

parameters are shown in Table 3 together with the ML -estimates.



TABLE 3

Variable Parameter ME -estimate (std. dev.) ML -estimate (std. dev.)

D4LSEM w 1.898 (0.369) 1.841 (0.354)
0

II w4
0.954 (0.453) 0.924 (0.436)

II w5 -1. 301 (0.497) -1.275 (0.499)

II w7
1.078 (0.412) 1.059 (0.371)

D4LWEP w -1. 285 (0.233) -1. 282 (0.199)
0

II w4
0.447 (0.234) 0.454 (0.210) V1

\0

constant 0.024 (0.010) 0.025 (0.009)

8, -0.277 (0.278) -0.213 (0.166)

8
2

-0.335 (0.246) -0.327 (0.152)

e 0.475 (0.237) 0.460 (0.170)
1

cr 0.049 0.045
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5. COMPUTATIONAL ASPECTS

OF THE ME- AND ML-ESTIMATION METHODS

5.1 Description of the Computer Program

The ME-, ML-and ME-GLS -methods have been implemented in a computer

program called SARMA. It has been integrated into the SURVO-76 system

(cf. Mustonen, 1977) on Wang 2200 computers. SURVO-76 is a statistical

data processing system with a data storage arrangement that is common to

all of the more than 50 programs integrated into the system. The unified

data storage system allows the user to link different programs together

flexibly by saving intermediate results in a disk file and using these

results as input data for the next program in the runstream. Larger pro­

grams may consist of several modules because of the limitations of the

core memory size. The execution of different operations can be started

with the so-called F-keys on the keyboard. The roles of these keys are

redefined by each program module. A basic SURVO module surveying data

transitions and program execution always occupies a part of the core

memory. The range of available programs covers most fields of applied

statistics.

The SARMA program consists of 20 modules that can be used in sequences

according to Chart 1. There are three main lines of operations:

1. The first one computes exact maximum likelihood estimates for

models (2.1) with restriction (2.2) and at most two input variables.

Module SAR/DAT loads the data into the core memory and allows the
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user to specify the model. The optimization of the likelihood is

carried out either by SAR!OAl or by SAR!OA2 depending on the

form of the model. The final module of this line is SAR!PR that

will print the estimates and save the results, residuals and fore­

casts on disk. There is also a direct link to recursive estimation.

2. The second line of operations computes ME -estimates for the par-

ameters of ARMA-models. A spectrum file is needed as a prerequisite.

It can be computed and saved on disk with the program SPECTRUM in

the SURVO-76 system. At most five variables (one output and four

inputs) can be inspected simultaneously. Module SAR!SP2 will com­

pute residual spectral densities when the shares of selected inputs

have been eliminated from the output spectra. The ME -estimates will

be computed in SAR!SP3. If the estimates are to be used as initial

values for the ML -procedure, one can use the direct link to SAR!DAT.

To facilitate the choice of the residual model, it is possible

to calculate autocorrelations and partial autocorrelations connected

with the estimated residual spectrum or its inverse. (For the in­

terpretations of inverse autocorrelations, see Cleveland, 1972,

and Bhansali, 1983.) The final choice of the model should be made

on visual grounds possibly aided by AICME- or SBICME -criteria. To

draw the graphs of different spectral densities, SAR!SP3 makes

use of the same submodules as the PLOT program in SURVO-76.

When a suitable model has been found and the estimation of par­

ameters has been carried out, weighted correlation matrices of selec­

ted lags of the input and output variables can be computed. It is

also possible to include variables incorporating polynomially dis­

tributed lags. The GLS -stage of the transfer function identification
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can be carried out with the programs LINREG or STEPREG.

3. The third line of operations is for recursive estimation of the

parameters of models (2.1) with polynomial transfer functions vi(L),

i = 1, .•• ,m. Good estimates (preferably ML -estimates) for some

short initial period and the corresponding residuals are required.

The recursive residuals and the series of estimates of selected

parameters will be saved on disk for later inspection.

This line will not be discussed here any further. A paper rep­

resenting the details of the estimation procedure and the potential

use of the recursive residuals will be published later.

Directions for the Use of the Program:

The following symbols and phrases are used in the specification of

the form of the model:

P degree of the non-seasonal AR-part of the residual

PS degree of the seasonal AR-part of the residual

o and OS will denote the degrees of the non-seasonal and seasonal MA­

parts, respectively.

In the ML -estimation routine transfer functions are supposed to be

of the form (2.2). Symbols OMEGA(J) and DELTA(K) will refer to the

notation in (2.2).

At most two inputs are allowed for.
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The inputs do not have to be stationary, but if nonstationary series

are used, the initial estimates ought to be good, because numerical dif-

ficulties may arise if the transfer functions are poorly specified.

The length of the time series must not exceed 220 observations. The

maximal degree of all lag polynomials is 3. This restriction does not

apply to the numerators of transfer functions, where the maximal degrees

are not limited. Only 5 parameters can be attached to each numerator.

The maximal number of parameters altogether is 10.

No lags in the ARMA-structures are allowed to exceed 15.

F -functions:

~: INITIATING THE PROGRAM (NO ESTIMATES PREVIOUSLY COMPUTED)

~: RECALLING ESTIMATES FROM A OISK FILE

UJO: COMPUTING INITIAL ESTIMATES, BASED ON THE ESTIMATEO SPECTRUM

IF41: RECURSIVE ESTIMATION

[1]: Initiates the ML -estimation. It is possible to keep watch 011

the iteration process on the screen. The iteration can be stopped

manually by pressing the full-stop key. The terminal may be released

to other purposes by pressing the R -key.

NOTE: During the iteration, a set of transformed parameters is

used (cf. Osborne, 1976) to make sure that all polynomials in the
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model will meet the stability requirements. This is why one should

not try to interpret the parameter values displayed on the screen

during the iterations.

When an optimum has been found or the iteration has been stopped,

the following F -functions will be available:

F~: PRINTING THE ESTIMATES (WITHOUT STANDARD DEVIATIONS)

F1: COMPUTING THE STANDARD DEVIATIONS

F2: RESTARTING THE ITERATION (AFRESH)

F3: CONTINUING THE ITERATION

If either F~ or F1 is pressed, module SAR/PR will be called

to the core memory. The new F -definitions will be:

F1: PRINTING THE ESTIMATES OF THE PARAMETERS

F2: SAVING THE RESULTS ON A DISK FILE

F3: SAVING THE RESIDUALS ON A SURVO FILE

F4: CALCULATING THE COVARIANCES OF THE ESTIMATES

F5: FORECASTING

F6: CONTINUATION TO RECURSIVE ESTIMATION (RESIDUALS

MUST BE SAVED BY F3)

F2 is used if one wants to recall the estimated model later for

example to generate forecasts. The results can be recalled by

using ~.

F3 can be used for model diagnostics etc. F5 is pressed when

forecasts are required. If the forecasting model includes a transfer
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function part, one has to make sure that all necessary values of

the input variables are available in the data file.

If the data has been differenced before modelling, forecasts for

the original variables can be calculated with module LAG.

DJD: Recalls the results of some earlier ML -estimation from disk and

goes straight to SAR/PR.

TI:D: Starts the ME -estimation procedure. If there are several vari­

ables in the spectral disk file (created with SPECTRUM), one of

them will be chosen as an output variable, and the influences of

the other variables can be removed from the output spectrum.

The F -functions will be

F1: STARTING THE ITERATION

F2: PLOTTING THE FITTED ARMA-SPECTRUM

F3: DIRECT CONTINUATION TO ML -ESTIMATION

F4: PRINTING THE ESTIMATES

F5: PLOTTING THE SPECTRAL DENSITY TO BE FITTED

F6: COMPUTING WEIGHTED CORRELATIONS BETWEEN SELECTED

LAGS OF SELECTED SERIES (THE WEIGHTS WILL CORRESPOND

TO THE ARMA-STRUCTURE OF THE RESIDUAL)

F7: RESTARTING THE INITIAL ESTIMATION ROUTINE

F8: ESTIMATING THE ACF OF THE RESIDUAL

F9: ESTIMATING THE INVERSE ACF OF THE RESIDUAL

When F1 is pressed and the form of the ARMA-model has been
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given, the following text will appear on the screen: PRESS 'RE­

TURN' TO START THE ITERATION ....

If you do not want to start the ME -estimation, press F0.

After the ME -estimation, the estimates can be printed by F4.

It usually takes the computer some time to calculate the approximate

standard deviations of the estimates. This is why the printing pro­

ceeds rather slowly.

It is advisable to plot the fitted spectrum (F2) in the same

graph with the residual spectrum (F5) in order to judge the good­

ness of fit visually.

By pressing F6, one can compute weighted covariances between

chosen variables. The user can choose the lags of potential rel­

evance for each variable by entering the desired lags as a sequence

(separated by commas) after each variable name, for instance

DLOGP: 0,1,4,8,12

If Almon models are desired, the previous list can be augmented

for example with symbols A3/16 which will mean an Almon polynomial

of degree 3 with a maximal lag length 16. All the four Almon vari­

ables will then be generated automatically.

IF4J: The use of the recursive estimation module will not be discussed

here, because recursive estimation lies outside the scope of this

paper.



68

5.2 Inverting Covariance Matrices of Observations from ARMA-Processes

In Chapter 2, it was seen that, in order to compute the values at-

tained by the likelihood (2.4), we need a method for inverting efficiently

matrices

cOV([z(t
O

+1) ••• zen)]') ,

where

z{t) o*(L)6(L) aCt)
tCL)

and aCt) ~ NID(0,o2).

To simplify the notation, let us consider a general sta~ionary

ARMA(p,q)-process

¢(L)E(t) = 6(L)a(t) ,

Let

2aCt) ~ NID(O,o) t = ••• ,-1,0,1, •••.

yet) = 1_ aCt)
¢(L)

t = ••• ,-1,0,1, •••

s = max(p,q) •
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and

o ...

(sxs)

Q<t> = ~ COY ( [y (s) ... y ( 1)r) .
a

Matrices

let

on' e, Qe are defined in a similar fashion. Finally,

.[
and

1
r = 2' cov(

a

dO)

d-s+1)

(nxs)
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Now, obviously

(5.1)

for any k ~ 1.

According to Ali (1977),

(5.2)

The above definitions and the Yule-Walker equations imply

Because the equation

holds for all

<I> 1: cP'
n n n

n > s and because CPn and e commute, we haven
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Further,

(5.3)

By applying the Sherman-Morrison-Woodbury formula to the inverse of the

matrix

(5.4)

I + e*re*' we get

If eel) fulfils the invertibility conditions, equations (5.1) and (5.2)

provide an efficient way of calculating

(5.5)

whenever n = ks.

+ ••• +

Because det ~n det en = 1, (5.3) further implies

(5.6)

This way of calculating ~~1 and det ~n resembles closely Dent's

method (cf. Dent, 1977).

It is to be noted that the MA-part of the residual does not have to

be invertible to enable one to apply (5.4). The only thing that breaks

down when eel) is noninvertible is the shortcut in calculating e*'e*.

It can, however, be computed in accordance with (5.5) as well. This means

that it is possible to take superfluous differencing of the data into

account at the estimation stage.
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5.3 Some Comments about the Stationarity Assumption of an Unobserved

Disturbance

When one is estimating the parameters of model (2.1) with polynomial

transfer functions v. (L) (i = 1, .•• ,m) and an autoregressive residual
1

dt) = where a(t) ~ NID(O,o2)

t = ..• -1,0,1, •.•

"

it seems tempting to filtrate the y(t)- and xi(t) -series (i = 1, ••• ,m)

with the filter ~(L), where ~ denotes some preliminary estimator of

the ~ -parameters. Then, one could use the ordinary least squares method

in the estimation of the transfer function parameters and obtain new

estimates for ~ on the basis of the least squares calculations. These

kinds of procedures have been suggested among others by Cochrane and

Orcutt (1949) and by Hatanaka (1976). Both of these procedures are some-

times used iteratively (cf. Harvey, 1981, p. 192, Luukkonen, 1983 or

Mellin, 1983), although Hatanaka introduced his method only as a two-

step procedure. The iterative versions of both procedures are numeri-

cally asymptotically equivalent to the ML -estimation method, and are

thus often considered "almost equivalent" to the ML -method. In small

samples, however, the difference can be substantial, because only the

ML -procedure has the requirement of the stationarity of the unob~~v-

ab£~ E(t) imbedded. The difference is perhaps best illustrated by a

practical example:
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xample 3: Let us consider a simple double logarithmic demand model for

the annual consumption of furniture, furnishings and household equipment

in Finland:

where

logq(t) So + B,logp(t) + B210gQ(t) + €(t) ,

q(t) the consumption of furniture, furnishings and

household equipment in the year t, fixed prices

pet) the relative price index of the commodities

mentioned above

OCt) total private consumption expenditure in Finland,

fixed prices

The estimation period is 1950 - 1979.

OLS -estimates of the parameters are:

Parameter Estimate Std. error

Bo -2.609 0.324

B, -0.848 0.288

B2 0.990 0.031

2 D-W = 0.443R = 0.975

Because of the low value of the Durbin-Watson test statistic, it seems
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natural to use Cochrane-Orcutt technique in the estimation and augment

the model with the assumption

2E(t) - $E(t-l) = aCt) ~ NID(O,cr ),

The resulting iterated estimates are

Parameter Estimate Std. error

80
-5.067 1.181

8, 0.228 0.174

82 1.217 0.109

4> 0.881 0.088

t ', .•• ,n.

The nine first autocorrelations of the estimated aCt) -residuals are

lag acf

1 0.17

2 -0.19

3 -0.16

4 -0.03

5 0.26

6 -0.01

7 -0.12

8 0.05

9 -0.10

resulting in a Box-Ljung statistic (cf. Ljung and Box, 1978)

B-L = 5.26.
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Apart from the positive price elasticity, the model seems to fit the

data and everything seems to be in order. A graph of the fitted and

observed values (Figure 7) reveals, however, that the model is unaccept­

able because the £(t) -residuals do not even look stationary.

The corresponding ML -estimates are

Parameter Estimate Std. error

Bo -2.821 0.721

B1
-0.140 0.226

B2 1.013 0.068

~ 0.882 0.081

The Box-Ljung statistic, calculated from nine residual autocorrelations,

is

B-L = 5.49.

OLS seems to overestimate the importance of price changes, but the ML

estimates seem sensible. The results of the iterative Cochrane-Orcutt

method are not of much value.

There are other, even more striking examples where the trajectories

of the observed and fitted values do not even cross each other during

the sample period.
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The previous example is meant to illustrate the difference between

6~~on of the observed data in order to whiten the residual of a

linear model and the corresponding proper w~ght{ng procedure (GLS -pro­

cedure). The differences between these methods are not only due to the

different uses of the information contained in the p first observations,

but also to the fact that shere filtration of the data does not take the

stationarity of €(t) into account. Yet, the stationarity of the dis­

turbance is one of the most relevant assumptions in model (2.1).

In non-iterative methods, the difference between weighting and fil­

tration is not quite as clear, but we feel that one should be prepared

to pay a small computational price for the soundness of the estimation

principle. That is why we have suggested in Chapter 4 that the GLS

method should be used in the identification of models (2.1) instead of

the filtration of yet) and X(t), which has been proposed by some

other authors (cf. e.g. Edlund, 1984).
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6. SUMMARY

There are two stages in the selection ofa transfer function model,

namely, the specification of the transfer functions and the description

of the regularities of the disturbances by means of a parametric model.

Because the disturbance model is usually of the ARMA type, we have in

this paper discussed the identification of univariate ARMA-models. The

methods based on the estimated autocorrelations usually suggest several

possible models whose superiority can only be evaluated by estimating

the parameters of the different models, and by inspecting how well they

fit the data. Thus, there is a need for a fairly quick estimation pro­

cedure and a method for visualizing the goodness of fit of the estimated

models. The so-called ME -method suggested in this paper satisfies these

requirements. Because of the asymptotic efficiency of the method, it is

also possible to build an asymptotic test theory on it.

Simultaneously, the ME -estimation principle makes it possible to

start the identification of a transfer function model with the choice of

the disturbance model. In this way, one can weight the observations ac­

cording to the disturbance autocorrelation already at the first stage

of transfer function specification. Proper weighting usually reduces

the number of iteration stages in the model selection, because the re­

sults of different specification tests are fairly reliable already at

the first stage. Furthermore, different models can be tentatively estimated

with very little computational effort. The parameter estimates produced

by the generalized least squares method are asymptotically efficient,
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and they constitute good starting values for the maximum likelihood method.

Computationally, the ME-GLS -procedure is suitable even for micro computers.

There are many subjective elements involved in the method, such as

the choice of the window form and width for the spectral estimator, and

the choice of the frequency points. Because the ME-GLS -procedure should

be primarily regarded as an identification method and because it contains

subjective elements, we have not tried to investigate the small sample

properties of the method by simulation.

The question naturally arises, whether the same idea could be im­

plemented to the identi fication of vector ARMA-models with exogenous explana­

tory variables. As far as we can see, the answer is negative, because the

spectral theory seems to be better suited for the analysis of one-sided

relationships than of feedback relations.
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APPENDIX

Proof of Theorem 4.1.1

First, we need the following lemma:

lemma let Z ~ N <0,1) and detr " where r is a positive definite
-- n

nxn -matrix. Then

p{Z'rz < t} < P{Z'Z ~ t}

Proof let

C, ::0 {Z E::R
n I z'rz ~ t, Z'Z > t}

C2
::0 {Z E::R

n I Z'Z ~ t, z'rz > t}

and

C3 = {Z E::R
n I Z'Z ~ t, z'rz ~ t}

The lebesgue-measures of C1 and C2 are equal, because C1 n C3 ::0

C2 n C3 ::0 0 and C, U C3 and C2 U C3 have the same measure, Further,

for all Z, E: C, and Z2 E: C2, Thus

J PZ<Z) dZ <
C,
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and

P{Z'Z ~ t}

Proof of the Theorem Let A, ~ .•• ~ An > ° be the eigenvalues of

[I

Ln = cov([d') ... e:(n)]') and let Z = [z,

According to Makelainen (1970),

z r '\.. N (0,1).
n . n

and

P{F > c}

2 2
A,z, +... + A z

< P {~. r r
r 2 2

A,Z ,+•••+Az
m+ m+ n n

> c}

P{F > c}

2 2
A ,z ,T ...+AZ.

> P {~. n-r+ n-r+ n n > c} •
r A z2 'z2

", +••• + I\n_m n-m

By combining this with the previous Lemma we get

P{F > c}

2 2z, +... + Z
< P { !I.::!!! • r

r 2 2
zm+' +...+ zn

> c
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Further,

P{F > c}

2 2
z 1 + ••• + Z

> P {~. n-r+ n
r 2 2

z1 + ••• + zn_m

It has been shown (cf. Grenander and Szego, 1958, pp. 64-65) that

2 e1enr 2
A
1

< max 0
~(eiA)

< o c 1
and- A

min 0
2 e1enr 2

A >
c!l{eiX )

> o c2n - A
-

On the other hand,

1 . n-m;
1m)" 1" .)"

n+oo m+ n

detE
: lim ( n ) 1/{n-m)

n+oo A ... >..
1 m

-2nbecause 0 detI tends to a fixed limit when n + 00 (see formula 5.6n

or formula 12 in Grenander and Szego, 1958, p. 65).

So, asymptotically,

and

irrespective of X{t), t = 1, ••• ,n.
I]
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LIST OF SYMBOLS AND NOTATIONS

Matrices and most vectors will be denoted by capital letters, real

or complex scalars usually by lower case letters.

-z Conjugate of a complex number z.

" A " Euclidean norm of a vector (or matrix) A.

DG(X) Derivative matrix of a differentiable function G: Ilk + IlP

at point X e::Rk [DG(X)] .. = aG.(X)/dX .. To avoid con-
lJ 1 J

fusions, a subsrcipt is sometimes used to specify the vari-

ables that the derivative operator D refers to.

Probability density function of a vector random variable X.

Spectral density matrix of a stationary random sequence X(t).

Sample cross correlation of sequences X 1(1), ••• ,x1(n)

and x2(1), ••• ,x2(n) defined by

n-JvJ
L (x 1(t) -x 1)(x

2
(t+v)-x 2)

t=1

r (v)
x

r (v)
X

Sample autocorrelation of sequence x(1), ••• ,x(n);

r (v).x,x

o(x) Generic expression of a term of smaller order than x;

lim 1. o(x) = O.
x+O x

O(x) A term of the same order as x·, lim 1. O(x) = const. > O.
x+O x

X(t) ~ NID (V,L): p-dimensional random variables X(t) are independent
. p

of each other and normally distributed with expectation ~

and covariance matrix L; t = 1,2, •.••



L
x = y :

L
x(t) + y
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Random variables - x and y have a common distribution.

Sequence x(t) (t = 1,2, ..• ) of random variables tends to

a limiting random variable that has the same distribution

as y.

LS : Least squares method.

OLS Ordinary least squares method.

GLS Generalized least squares meth'od.


