

Keskusteluaiheita – Discussion papers

No. 884

Markku Stenborg*

WAITING FOR F/OSS:

COORDINATING THE PRODUCTION

OF FREE/OPEN SOURCE SOFTWARE**

* Contact information: Markku Stenborg, ETLA (The Research Institute
of the Finnish Economy), Lönnrotinkatu 4 B, FIN-00120 Helsinki, Finland,
markku.stenborg@etla.fi.
** This article is a part of the joint research program of BRIE, the Berke-
ley Roundtable on the International Economy at the University of California
at Berkeley, and ETLA, the Research Institute of the Finnish Economy
(brie-etla.org). Financial support from Nokia and the National Technology
Agency (Tekes) is gratefully acknowledged. All opinions expressed and er-
rors made are those of the author.

ISSN 0781-6847 29.12.2003

ETLA
ELINKEINOELÄMÄN TUTKIMUSLAITOS
THE RESEARCH INSTITUTE OF THE FINNISH ECONOMY
Lönnrotinkatu 4 B 00120 Helsinki Finland Tel. 358-9-609 900
Telefax 358-9-601 753 World Wide Web: http://www.etla.fi/

STENBORG, Markku, WAITING FOR F/OSS: COORDINATING THE PRODUCTION
OF FREE/OPEN SOURCE SOFTWARE. Helsinki: ETLA, Elinkeinoelämän Tutkimuslaitos,
The Researsch Institute of the Finnish Economy, 2003, 28 p. (Keskusteluaiheita, Discus-
sion Papers, ISSN 0781-6847, no. 884).

ABSTRACT: I analyze coordination of Free/Open Source Software (F/OSS) projects.
Costs of waiting for F/OSS program to be released are borne by all agents until enough
modules have been produced. Trade-off between producing a F/OSS module and free-
riding is analyzed as a game of war of attrition, in which modules to be developed and
potential developers are heterogeneous. It may be optimal to volunteer early for high-
profile module that creates reputation and signals programming ability. It may be opti-
mal to volunteer strategically for low-profile module even if high-profile module is avail-
able to speed up development process and reduce costs of waiting. Even if waiting brings
the opportunity to free ride, there may be a rush to develop high-profile module at first
opportunity. The model provides an explanation for how large-scale F/OSS projects can
be coordinated without markets and prices nor hierarchies such as firms.

Keywords: Open Source Software, War of Attrition, Coordination

STENBORG, Markku, WAITING FOR F/OSS: COORDINATING THE PRODUCTION
OF FREE/OPEN SOURCE SOFTWARE. Helsinki: ETLA, Elinkeinoelämän Tutkimuslaitos,
The Researsch Institute of the Finnish Economy, 2003, 28 s. (Keskusteluaiheita, Discus-
sion Papers, ISSN 0781-6847, no. 884).

TIIVISTELMÄ: Tutkimuksessa analysoidaan avoimen lähdekoodin (open source) tuotan-
non koordinointia. Ohjelmistomoduulien tuotanto mallinnetaan väsytystaisteluna (war of
attrition), jossa kaikki ohjelmistoa tarvitsevat joutuvat kärsimään odottamisen vaihtoeh-
toiskustannukset, kunnes jotkut heistä tuottavat riittävästi ohjelmamoduleja. Moduulit ja
ohjelmoijat ovat heterogeenisia. Vaikka odottaminen mahdollistaa vapaamatkustuksen,
ohjelmoijalla saattaa olla kannusteet tuottaa avoimen lähdekoodin moduuli, jos hän saa
siitä yksityistä hyötyä kuten mainetta. Ohjelmoija saattaa strategisesti tuottaa myös vä-
hemmän mainetta tuottavan moduulin nopeuttaakseen koko ohjelmiston valmistumista.
Ohjelmoijat saattavat myös rynnätä tuottamaan mainetta luovaa moduulia heti tilai-
suuden syntyessä. Malli selittää, miten laajan ohjelmistopaketin vapaaehtoinen tuotanto
voidaan organisoida ja koordinoida ilman, että käytetään markkinoiden hintasignaaleja
tai hierarkkista kontrollia kuten yrityksissä.

Asiasanat: Avoin lähdekoodi, väsytystaistelu, koordinointi

1 Introduction

A user-programmer that has some needs – bugs that require fixing, device drivers that

should be upgraded, dysfunctional Application Program(ming) Interfaces that cause

itches, an inadequate operating system, say – can either buy a commercial proprietary

product that solves her needs, do the programming herself or wait that somebody else

produces an appropriate piece of software and publishes it on the Internet. Until enough

modules have been published, a large-scale Free or Open Source Software (F/OSS) pro-

ject, such as Linux, is essentially useless, and all users must bear the opportunity costs

of waiting for the completed software package. This paper studies the coordination prob-

lem of the production of F/OSS modules as a waiting game.

Unlike Godot, F/OSS did and continues to arrive. This is rather surprising, as F/OSS is

public good produced by volunteers. According to the established economic theory, pri-

vate provision of a public good is supposed to be inefficient, as individuals face an incen-

tive to free ride on the contributions of the others. Further, many programming tasks are

best performed by a single individual, who bears the entire cost of providing a software

module which benefits the whole community. Individuals then have strong incentives to

free ride and let someone else take on the job. In addition, large scale F/OSS such as

Linux depends on coordinated contributions from a large number of developers. A key

element here is voluntary selection of tasks, as each person is free to choose what she

wishes to work on or to contribute. Smith and Kollock (1999) have even called Linux “the

impossible public good”. In theory, then, we should not see much F/OSS, and especially

large scale F/OSS such as Linux should be futile attempts against the iron logic of eco-

nomic.

There are then two key economic questions in F/OSS development: the motivation of

individuals and the coordination of effort. There is a growing body of economic literature

that attempts to explain the private incentives to provide F/OSS, and the topic is briefly

discussed below in Section 2. To my knowledge, this is the first paper to look at the eco-

nomics of coordination of F/OSS development. Also, most existing economic literature

looks at the incentives to participate in F/OSS development in static setting, in which

agents can make only one decision regarding whether to participate on a F/OSS project or

not. My paper adds time dimension to this problem. I allow agents to choose when to de-

velop the F/OSS. Waiting brings the opportunity that somebody else produces the module.

My paper starts with the idea that software is modular, and that many programming

tasks are most efficiently performed by a single individual. Then, one person bears the

entire cost of providing a module of software which benefits the whole community. Indi-

2

viduals have strong incentives to free ride and let someone else take on the job. This

leads to a waiting game: the longer one waits, the more likely it is that someone else will

do the job. But until somebody has volunteered, everyone has to wait, which is a cost to

the community. Even though individuals have the opportunity to free ride, in equilibrium,

they can have incentives to provide F/OSS. Bliss and Nalebuff (1984) were the first ana-

lyze this type of waiting game using a war of attrition: each individual decides how long

to wait for someone else to volunteer for a service before conceding and providing it her-

self. Bliss and Nalebuff show how time plays the role of a screening device in the pres-

ence of private information about the costs of providing the service. They derive a sym-

metric equilibrium in which individuals choose a waiting time that is positively related to

their provision costs. Bilodeau and Slivinski (1996) analyze a complete information and

finite horizon version of that waiting game, and show that the volunteer will be, ceteris

paribus, the individual for whom the benefit/cost ratio of performing the public service is

largest, the one most impatient to consume it, or the one who stands to benefit from it

the longest. Bitzer and Schröder (2003) use Bilodeau and Slivinski’s model to analyze

F/OSS production in the setting of complete information and finite horizon.

Second, software modules are heterogeneous. The effort and other private costs required

as well as reputation, signaling and other private benefits earned by the developer vary

between modules. Being credited for major developments of Linux kernel, say, might

generate higher hacking reputation and provide clearer signal to labor or capital markets

about the developer’s talent than being credited for the development of device drivers,

say, even if the public value of the former software without the latter is low. It is then

natural to consider the case in which several different software modules have to be pro-

duced. Further, also the potential developers are heterogeneous. They have varying

preferences for hacking reputation or use for labor or capital market signals, as well as

opportunity costs. However, Bliss and Nalebuff’s and Bilodeau and Slivinski’s model only

apply to the provision of homogenous good by one type of agents. Bulow and Klemperer

(1999) analyze a generalized war of attrition, in which N players are competing for N+K

prizes, and where each player’s value of surviving in the game is private information to

that player. That model helps us to analyze the provision of several different modules of

F/OSS and the coordination of the production of heterogenous modules under incomplete

information.

Third, note that some F/OSS are large and highly complex products. For instance, the

development of Red Hat Linux 7.1 distribution is estimated to have required about 8,000

person-years of development time, with an estimated cost over $ 1 billion, if produced by

conventional proprietary means in the U.S. (Wheeler, 2002). These large and complex

3

projects are somehow coordinated without the help of neither markets and prices nor

hierarchical control such as in firms. Existing economics models of F/OSS do not discuss

how and why volunteers coordinate the production of all the required modules. My paper

provides an explanation for coordination of programming effort without market prices or

formal hierarchical control, such as in firms.

My paper owes most to Bilodeau and Slivinski (1996), Bitzer and Schröder (2003), Bulow

and Klemperer (1999) and, especially, Sahuguet (2003). Bitzer and Schröder use Bilo-

deau and Slivinski’s complete information finite horizon model to analyze the provision of

one type of a software module.1 Bulow and Klemperer analyze a general N+K player war

of attrition for K different prizes with incomplete information. Sahuguet modifies Bulow

and Klemperer’s model to analyze volunteer production of public goods.2

Following Sahuguet, I only look at the simplest case in which three user/programmers

can volunteer to produce two software modules. The modules are not equivalent, as one

is more costly to complete than the other – one task involves more boring programming

chores or has a lesser effect on programmer’s reputation on labor or capital markets,

say, than the other. The model has the characteristics of both war of attrition and pre-

emption, as there are countervailing incentives operating here.3 On one hand, individuals

want to wait and volunteer as late as possible to avoid bearing the costs of development,

and on the other hand, volunteering early, first, reduces the risk of being stuck with the

most costly task, and second, speeds up the waiting game. Each user-programmer can

volunteer for any of the two tasks. Waiting bears an opportunity cost, as individuals have

to use a commercial product, suffer from bugs or dissatisfactory operation of software,

etc. I assume that all individuals have to wait until enough modules have been devel-

oped. The costs and benefits for an individual to perform each task is her private infor-

mation.

Even if individuals have the option to wait for somebody else to produce the software

modules, it may still be optimal to volunteer and volunteer early. This is especially true

1 Bitzer and Schröder also discuss repeated production of F/OSS modules.
2 Also LaCasse et al. (2002) look at the provision of multiple public goods in a war of attrition with

complete information. In their model C wars of attrition are simultaneously waged by N agents.
Since each agent can only perform one task at a time, volunteering is a credible commitment
not to take another task before finishing with the first. Their main insight is the analysis of the
strategic trade-offs that the ability for commitment and the multiplicity of tasks provide.

3 The typical example of a preemption game is the grab the dollar game, in which the first player
to move gets a prize, but players get nothing if they move simultaneously. See Park and Smith
(2003) for an analysis of a more general class of timing games with rank-order payoffs that
subsumes both war of attrition and preemption games as special cases.

4

for a high-profile module that has high private benefits, e.g., that creates reputation and

signals programming ability. It may also be optimal to volunteer strategically for a low-

profile module even if a high-profile module is available. This is to speed up the process

and to reduce the costs of waiting.

The model provides an explanation for how large F/OSS projects can be coordinated

without markets or hierarchies such as firms. In my model, “time is money”: time and

opportunity costs of waiting take the role of prices and formal control, and guide the de-

cisions of the agents. Waiting is a substitute for lack of market prices or formal hierarchi-

cal control within firms here. The model is based on individual incentives to develop

F/OSS. The individuals who gain most from the F/OSS relative to their programming

costs are most eager to participate, and the individuals who have high programming

costs relative to private and public benefits from software are willing to wait the longest

for somebody else to publish F/OSS modules.

The paper is organized as follows. In the next Section, I shall briefly discuss the concept

and the economics of F/OSS. Section 3 presents the formal model, and Section 4 looks at

the full information case. In Section 5, I start the analysis of the incomplete information

version with the second-stage subgame between two players. Section 6 analyzes sepa-

rating equilibrium in which the first programmer develops the high-profile module, and

Section 7 the case in which the first volunteer rationally develops the low-profile module.

Section 8 discusses pooling equilibrium with a rush to develop the high profile module.

Section 9 concludes. The proofs are found in the Appendix.

2 Some Economics of Free/Open Source Software

F/OSS is privately produced public good. Anyone can download a copy of Linux, say,

along with its source code for free, which means it is truly non-excludable.4 Because it is

a digital product that can be replicated infinitely at no cost, it is truly non-rival. F/OSS

relies on volunteering for the provision of new code, bug fixes of the existing code, online

help with problems running and installing the program. According to the established eco-

nomic theory, private provision of a public good is supposed to be Pareto inefficient, as

individuals face an incentive to free ride on the contributions of the others. Second, many

programming tasks are often best performed by a single individual. Then one person

4 See http://www.opensource.org/docs/definition.php for the definition of the Open Source and
http://www.opensource.org/licenses/ for the Open Source licenses.

5

bears the entire cost of providing a software module which benefits the whole commu-

nity. Individuals then have strong incentives to free ride and let someone else take on

the job. Third, a key element here is voluntary selection of tasks, as each person is free

to choose what she wishes to work on or to contribute. Large scale F/OSS such as Linux

are subject to collective provision constraint, as their production depends on coordinated

contributions from a large number of developers. Smith and Kollock (1999, p. 230) have

even called Linux “the impossible public good”. Thus, large scale F/OSS ought to be at

the worse end of the spectrum of public goods. In theory, then, we should not see much

F/OSS, and especially large scale F/OSS such as Linux should be unsuccessful attempts

against economic logic.

Contrast the theory with the facts. Currently, there exists thousands of F/OSS projects,

ranging from small utilities and device drivers to large and complex pacages such as Li-

nux, Apache, Open Office and MySQL. F/OSS has proved to be successful mode of inno-

vation and software production, as several projects capture market shares from their

commercial competitors and have a reputation for innovation and reliability.5 For in-

stance, GNU/Linux and other free UNIX-based operating systems are the only real chal-

lengers to the Microsoft Windows operating system for Intel-based PCs, Sendmail routes

at least 42% of mails in the Internet,6 and Apache dominates the web server market.7

Further, arguably, some of the F/OSS products are of better quality than competing

commercial products. For instance, Kuan (2001) tests the quality of software using bug

resolution rates as a proxy for quality, and finds support for the hypothesis that F/OSS

outperforms commercial proprietary software. All this suggest that there does not seem

to be under-provision nor delays in the supply of F/OSS, and that open source provision

may be highly efficient form of software production. My paper aims to provide an expla-

nation for this apparent paradox.

Some explanations for this paradox have already been proposed. Richard Stallman has

emphasized a normative argument about the nature of software as scientific knowledge,

not a proprietary product, thus something to be shared and distributed “like sharing of

recipes among cooks”. Eric Raymond and other developers offer ego gratification as an

explanation, based on, inter alia, observations that hackers are motivationally very much

like artists, in the sense that they seek fun, challenge, and beauty in their work. Musto-

5 For more on F/OSS and related political economics, see, e.g., Weber (2004).
6 http://www.dwheeler.com/oss_fs_why.html
7 According to the Netcraft survey, http://www.netcraft.co.uk/Survey/, in January 2003, over

65% of all active web sites use Apache.

6

nen (2002) offers an explanation based on increased compatibility between proprietary

and free programs that increases the value of the proprietary program, providing incen-

tives to support F/OSS efforts. Bessen (2002), Johnson (2002) and Kuan (2002) note

that individual user-programmers know their own preferences better than a firm does.

Bessen’s (2002) explanation hinges on the complexity of the software. In Johnson (2002),

a greater skill set belonging to the community of programmers as a whole can be ex-

ploited. Kuan (2002) models open source as customer vertical integration into production.8

Private benefits as an idea to explain F/OSS production can also arise through reputation

and signaling, as even hobbyists compare performance and acknowledge reputations for

expertise. Johnson (2002), Lee et. al. (2003), Leppämäki and Mustonen (2003), Lerner

and Tirole (2002) and Mustonen (2003) and claim that programmers behave as to be

appreciated by their fellows and like to show off their abilities. The economics approach

adds delayed monetary compensations to that story. Peer recognition creates a reputa-

tion that can be monetizable in the form of job offers, privileged access to venture capi-

tal, etc. Also my paper provides an explanation to the F/OSS paradox that is partly based

on these ego gratification, reputation and signaling arguments. My paper adds the timing

element in the signaling and reputation stories as a player can wait for another volunteer

to produce the piece of F/OSS before she does it herself.

Reputation and signaling can arise as F/OSS is organized such that every significant con-

tribution can be traced back to the original author. For instance, in one of the biggest

F/OSS-projects, the Linux kernel, there exists a public “changelog” file which lists all

those programmers who have contributed to the official source and their specific inputs.

Not everyone makes it onto the list. Each proposal to modify the code undergoes a peer

review process and only those modifications sanctioned by the referees make their crea-

tors legitimate authors. The authors’ names and contributions are recorded in the chan-

gelog file which is an honoring and a sign of expertise among the programmers.9 A spot

in the credits thus serves as a valuable signal on job and capital markets characterized

by asymmetric information. It then pays off to extend effort on OSS programming. The

ex ante expected value of the deferred payoff makes striving for the signal worthwhile

since the unrestricted access to the Linux kernel code and its changelog file allows for the

right interpretation and honoring even by outsiders ex post. Contributions to F/OSS are

not only unselfish donations or the pursuit of ego gratification, but also investments

based, e.g., on future career concerns.

8 See also Weber (2004), Chapter 5.
9 For more on this, see Weber (2004), especially Chapter 4.

7

While reputation and signaling incentives for monetary benefits indeed might be part of

the motivation for some programmers, empirical evidence seems to suggest that such

benefits might be slim (Lakhani and von Hippel, 2003). Osterloh et al. (2003) argues that

if developers really competed for reputation, we would expect them to try to heighten

their visibility by submitting numerous contributions. Kogut and Metiu (2001) analyzed

the “Changes” files to the Apache between March 1995 and February 2000 that lists the

new patches included in each new version of Apache with their authors, and found that

82 % of individuals made only one or two contributions, which seems to contradict the

reputation and signaling hypothesis. Perhaps reputation and signaling alone are then un-

likely to explain why so many programmers participate in F/OSS. However, even if repu-

tation building and signaling behavior have only little direct explanatory power, they can

have significant indirect influence on F/OSS production, as is the case in this paper. Fur-

ther, it is unlikely that bug fixing, upgrading device drivers or working on some other

low-profile tasks provide much reputation and signaling effects. Still this type of F/OSS is

being produced. My paper provides an explanation for this observation as well.

3 Model

Consider a group of N risk-neutral individuals, each of whom has the ability to develop

one discrete software module for the F/OSS project consisting of two software modules.10

Until the entire F/OSS project is finished, all agents need to pay an opportunity cost of

waiting, as they need to use an alternative commercial closed-source program, suffer

from bugs or from dysfunctional Application Program(ming) Interfaces, or in some other

manner find the existing software less than adequate. Following Bulow and Klemperer

(1999), Sahuguet (2003) and others, I normalize the cost of waiting equal to 1 per unit

time until the entire software project is completed. There is no discounting.11

Once somebody produces a F/OSS module, she pays a one-time private cost C, discussed

below, and publishes the software for free. The public benefits from the F/OSS project

are delayed until the whole project is complete. The first programmer then pays a wait-

10 In the formal model, I will assume N = 3. Bulow and Klemperer’s model of generalized war of
attrition gives us tools to analyze N individuals developing K modules but here a model with
more than three players or with more than two modules would be more cumbersome without
adding any major insights to the strategic trade-offs (see also Sahuguet, 2003, footnote 3).

11 This is without loss of generality. Discounting is equivalent to an exogenous flow of probability
that the game ends and agents will stop accruing benefits and costs. Discounting leaves the
formulae for optimal stopping time unchanged, but increases the costs of waiting relative to the
discounted value of free riding. See also Bulow and Klemperer, p. .

8

ing cost of c per unit time, 0 ≤ c ≤ 1, until the second programmer is found. For c < 1,

the first programmer is able to draw some private benefits, such as reputation or signal-

ing, from her efforts, even if the F/OSS project is still incomplete.12

Completed software is non-rival and non-exclusive, and brings benefits to all individuals

over some period of time. Once the project is completed, all individuals receive the flow

utility value from the F/OSS being available. B(i) denotes the total present value of public

benefits player i draws from a completed project.13

Programmers are heterogeneous, as each might have different opportunity costs for pro-

ducing F/OSS, place different value on reputation and signaling, e.g., due to differences

in future career plans, or in some other manner value programming chores and the fin-

ished F/OSS modules differently. Assume that the differences between the individuals

can be captured by a one dimensional private type θ. Types are drawn independently

from a distribution F(θ), with 0)(=θF and ,1)(=θF that has a derivative f which is

strictly positive and finite on , .θ θ 
  

 It will be convenient to write h(θ) for the hazard rate

.
)(1

)(
θ

θ
F

f
−

 Agent’s type θ as well as the value of benefits B(θ) and the net development

costs Cj(θ) are private information to that agent

Programming requires time, effort, etc., that is costly to the agent. The net cost of de-

veloping software module j consists of a one-off actual development cost and a net utility

flow incurred during some period of time after the module has been released. The utility

flow is here due to the value of improved reputation within the community of program-

mers, the value from signaling of programming ability to labor or capital markets, or any

other private benefits above B(θ) the programmer with type θ is able to draw from work-

ing on software module j. The net costs of developing the software module j at time t are

then measured by the present value of the net costs, and denoted by Cj(θ).14

The modules to be developed are also heterogenous. There is a “high-profile” module

that has lower private opportunity costs than the “low-profile” module. The former re-

12 The analysis of a more general case where there are some public benefits from a partially com-
plete F/OSS project is left for the future work.

13 Also B() is defined with respect to the waiting costs. For instance, an individual who bears no
opportunity cost of waiting for the F/OSS has B() ≤ 0.

14 The programming cost C is obviously defined with respect to the fixed waiting cost of 1 per unit
time. For instance, an individual who bears no opportunity cost related to waiting, e.g., as she
finds the existing software more than adequate for her purposes and has no use for hacking
reputation, has an infinite net programming cost.

9

quires less effort, involves interesting rather than mundane programming tasks, has

higher reputation and signaling value, or is in some other manner preferred by the pro-

grammers, ceteris paribus. The expected total net costs for an agent with type θ of exert-

ing effort for the high-profile and the low-profile task are CH(θ) and CL(θ), respectively,

and assume that CH(θ) < CL(θ) for all θ. The payoffs from producing the low-profile and

the high-profile task are then UL(θ) = B(θ) - CL(θ) and UH(θ) = B(θ) - CH(θ), respectively,

and the payoffs from free riding are UF(θ) = B(θ). Assume UL(θ) < UH(θ) < UF(θ) for all θ.

I assume that Cj(θ) are increasing and B(θ) are decreasing in θ for all.15 Hence, an indi-

vidual with a high type has high programming costs or places a large valuation for free

riding, e.g., as she faces large learning costs, expects to enjoy only small rents from sig-

naling her programming ability or does not value the reputation to be earned within the

hacking community.

Time is continuous, and players can choose to produce a module at any point in time.16

Players also decide which module to choose, if there are more than one left. Their deci-

sions are allowed to depend on observations, e.g., on past actions. If no one has pro-

duced a module at time t, each player draws inferences about the types of the other

players. Here, this information process is predictable, as will become clear below.

Let θR be the lowest possible remaining type at any point of the game, i.e., the type with

the lowest cost that has not yet produced a module, conditional on all other players hav-

ing followed their equilibrium strategies, up to that point in time. Let T(θ;θR) denote the

additional amount of time that the player with type θ who has not yet released a module

will wait to do so, unless somebody else releases it prior to her. Let P(θ;θR) denote the

type θ player’s probability for outlasting the waiting game and being able to free ride.

Player’s decision reveals information about her type. But note that here the only piece of

information revealed is the fact that players do not observe an earlier decision from an-

other player. Hence, they can predict in advance what information they will learn. Then a

strategy for a player can be summarized by a type-dependent time to wait before pro-

15 As I concentrate on symmetric equilibrium, I shall often drop the notation for individual i and
identify a player with her type θ.

16 Notice, that here the development of a module does not take any time, as the decision to start
programming and the release of a complete module are simultaneous. We can think that i’s deci-
sion to start working on a module is announced publicly, the announcement is a credible commit-
ment to complete the project, and that the announcement preempts others from working on this
module. The more realistic case where the time between development decision and the release od
final module is explicitly included in the model seems only to complicate the analysis without
bringing new insights for the problem of coordination of effort in F/OSS development.

10

gramming a module in the three-player stage and the software module she would select,

and an additional time to wait in every possible two-player subgame. These subgames

are characterized by the remaining programming task and the updated beliefs about the

other player’s type.

Here, the beliefs consist of updating the probability distribution of the type of the remain-

ing players only. A deviation from the equilibrium strategies can only be observed if a

player released a module, so a deviation removes the deviating player out of the waiting

game. Hence, beliefs can always be computed according to Bayes’ rule, even for histories

that are off the equilibrium path. For the players that did not produce F/OSS module, the

updating will merely eliminate the types that should have done so before the actual deci-

sion occurred.

I shall only look at the symmetric perfect Bayes Nash equilibria. There obviously exist

multitude of asymmetric equilibria of this game,17 but as Farrell and Saloner (1988) and

Bolton and Farrell (1990) argue, asymmetric equilibria are unconvincing and inappropri-

ate for the study of decentralized coordination mechanisms. For instance, it is not clear

how agents would decide between those equilibria without assuming some explicit coor-

dination. Further, games in continuous time face technical difficulties, which I shall com-

pletely avoid. I assume that after a player releases a module, a new subgame arises and

that strategies are defined with respect to this subgame.

4 Full Information

In this Section, I shall first look the case in which the types and all the costs and benefits

are common knowledge, as in Bitzer and Schröder. First, consider a static game. If we

model the problem as a simultaneous one-shot game with the strategy set {produce L,

produce H, free ride}, the problem becomes a static game of Chicken, in which the win-

ners are able to free ride and receive the payoff B(θ), and each of the losers develops

one module and receives the payoff B(θ) - Cj(θ). If no one develops F/OSS, the payoff for

all is 0. Given the specifications above and the assumption of full information in static

setting, I can state the following.

Lemma 1. Let θH be an individual such that B(θH) – Uj(θH) = 0. No individual with type

θ ≥ θH ever volunteers for the task j = L,H in a static game.

11

In other words, only those individuals who face low development costs or who benefit

most from the F/OSS, directly or indirectly, are the potential developers of the software.

The community of potential developers for module j then consists of individuals with θ ≤

θj
H.

This game has a large number of pure and mixed strategy Nash equilibria, in which any-

one might be the actual developer of the software. Hence one cannot deduce who will

actually develop the F/OSS, nor can we analyze the coordination of who shall produce

which module.

If we then expand the strategy sets and allow the agents the option of postponing the

decision to produce F/OSS, they can wait and see if someone else develops the modules

instead. The length of time an agent is willing to wait naturally depends on the benefits

she would gain if the F/OSS were to exist, and on the net costs of developing the module

herself. In the normal form version of this game, a pure strategy for a player with type θ

consists of a two-tuple of time to wait [T1(θ),T2(θ;θR)], Ti(θ) ∈ [0,∞), where T1(θ) denotes

the time when type θ will produce the first module and T2(θ;θR) denotes the time when θ

will produce the second module when type θR volunteered for the first task, unless some-

body did so at T < Ti(θ), and the module j(θ) = L,H to choose, if more than one module is

left.

Consider first the “second-stage” two-player war of attrition subgame for module j start-

ing at the time the first programmer chooses a module other than j. The present value of

programming module j at time T2 is B(θ) - Cj(θ) – T2, which is decreasing in T2.

Lemma 2. Any individual with type θ ≤ θj
H will develop the F/OSS voluntarily and imme-

diately at time T2 = 0 in the second-stage war of attrition associated with the module j.18

Lemma 2 states that an individual who gains considerably from reputation or signaling

programming ability, simply develops the software at the first opportunity, rather than

waits for someone else to provide it. By Lemma 2, the second-stage subgame ends at

time T2 = 0. With similar reasoning, the first-stage game ends at T1 = 0, i.e., an agent

that benefits enough from the F/OSS module volunteers immediately.

Lemma 3. Any individual with type θ ≤ θj
H will develop the F/OSS voluntarily and imme-

diately at time T1 = 0.

17 See, e.g., Ponsati and Sákovics (1995).
18 All the proofs are found in the Appendix.

12

Thus every individual in the community of potential developers would rather develop the

F/OSS immediately than live without it forever, so the game ends immediately.

A more complex game emerges under the assumption that C(θ) < 0, i.e., when the pri-

vate net costs outweigh private net benefits. The game now becomes an N player con-

tinuous time war of attrition. Using the existing results in Hendricks et al. (1988) and

Bilodeau and Slivinski (1996), one can characterize the following equilibria for this type

of game. For every individual i, there is a subgame perfect equilibrium outcome in which

only i will develop the OSS immediately. If no one but i develops a module, then i’s best

strategy is to develop that module immediately, and if i develops the module immedi-

ately, best reply for everyone else is to wait. The game then has many subgame perfect

equilibria – as is usual for this type of game – in which anyone might volunteer, and it is

not possible to characterize the individual who will actually provide the software module.

Assuming a finite time horizon Bitzer and Schröder (2003) show that a unique subgame

perfect equilibrium exists, in which the individual with the lowest θ volunteers at time t =

0. That is, in equilibrium, F/OSS module is produced at the first opportunity.

However, the assumptions that the public value of finished software, the private value

drawn form the module programmed, and the net development costs are common

knowledge are strong. Below I shall look at the problem when information is incomplete

and where there is no arbitrary bound for the potential waiting time.

5 Two-player subgame

Now, turning to the incomplete information version of the game, as in Bulow and Klem-

perer and Sahuguet, let us first analyze the behavior in the last subgame – that is, the

subgame following the first decision to program a F/OSS module. Here, there are two

agents, and one is needed to produce the second module to complete the F/OSS pack-

age, while the other is able to free ride. This is a standard war of attrition game.

The two-player subgames, beginning after the choice of the first programmer, are char-

acterized by a single value W(θ), where W(θ) = UH(θ) or W(θ) = UF(θ), depending on the

choice of the first volunteer. Let F(θ;θR) be the distribution of types, where θR denotes the

lowest possible type that has not yet produced a module, conditional on all other players

thus far having followed their equilibrium strategies

13

() .
otherwise

)(1
)(

 if 0

 ;










−

<

=

R

R

R

F
F

F

θ
θ

θθ

θθ

Let T2(θ;θR) denote the equilibrium stopping time for type θ in the subgame starting at

the programming decision by type θR, i.e., it is the time at which a player of type θ re-

leased a F/OSS module, conditional on beliefs θR. T2(θ;θR) is scaled such that it measures

the waiting time in that subgame only. Recall P(θ;θR) denotes player θ’s probability of

being able to free-ride, conditional on type θR having produced the other module.

Proposition 1. In any equilibrium, for all θR, the equilibrium strategy T2(θ;θR) is strictly

increasing in θ, and P(θ;θR) equals the probability that player with type θ is able to free

ride, conditional that the other remaining player’s value exceeds θR,

() ()
(;) .

1 ()
R

R
R

F F
P

F
θ θθ θ

θ
−

=
−

Proposition 1 basically states that players that have low effort costs or who place high

value on benefits such as reputation and signaling develop F/OSS early rather than wait

in hope of free riding.

Proposition 2. There is at most one symmetric equilibrium in the subgame.19

The reason behind the Proposition 2 is that the difference between the expected surplus

of any two types is uniquely determined by the standard incentive compatibility argu-

ments. Since any agent’s probability of being able to free-ride is fixed by Proposition 1,

the difference between the two types’ waiting costs must also be uniquely determined. If

there were two different equilibria specifying different waiting times T2(θ;θR), these two

equilibria would yield different differences between the type’s waiting costs for at least

one pair of types. Hence, the equilibrium in the subgame must be unique.

Proposition 3. The unique symmetric Bayesian Nash equilibrium of the two-player war of

attrition subgame is characterized by a time to wait before conceding T2(θ;θR) such that

() .)()(;2 ∫=
θ

θ
θθ dtthtWT R

20

19 This is a special case of Lemma 2 in Bulow and Klemperer and Proposition 6 below, so the proof
is omitted.

14

Proposition 3 describes the equilibrium behavior: waiting times are increasing in type, as

high-cost types are more willing to wait longer. Each player knows that her decision to

develop a module is relevant only when the other remaining player has not yet done so.

The subgame is strategically equivalent to a static game in which players simultaneously

commit to waiting times.

The intuition behind Proposition 3 is the following. At each moment, the marginal individ-

ual type θ that the equilibrium calls for to program a module, has to be indifferent be-

tween producing one now and waiting infinitesimally more to let types between θ and

θ+dθ to produce the module. The cost of waiting corresponds to T’(θ)·dθ, the time

needed for types between θ and θ+dθ to concede. This must be equal to the benefit of

waiting more, that is the value of free riding W(θ) times the probability f(θ)/[1-F(θ)]·dθ =

h(θ)·dθ that the other player will develop the module during this time interval.

Proposition 4 characterizes the expected surplus of an agent of type θ.

Proposition 4. The expected surplus S(θ) of an individual of type θ in the two-player

war of attrition subgame is

() .)()('∫=
θ

θ
θ dttFtWS

Note that this game can be interpreted as a second-price all-pay auction, in which both

players pay the bid of the second highest bidder (bear the cost of waiting). The highest

bidder (the one willing to wait the longest) wins the prize (gets to free ride), and both

bidders pay the lowest bid, i.e., the second price (both wait until the lower of the remain-

ing types produces the module).

Proposition 5 presents the expected length of the second-stage two-player waiting game.

Proposition 5. The expected length Te of the two-player war of attrition is equal to

[]{ } [] .)(1)()()(),(min
2
1

21 ∫ −==
θ

θ
θθ dttFtftWWWET e

Recall W(θ) = B(θ) – Cj(θ). Note that the higher the private cost Cj of the module is, ce-

teris paribus, the more time it takes to find a programmer, which is intuitive.

20 This proposition can also be found in, e.g., Bliss and Nalebuff (1984) and Bulow and Klemperer
(1999).

15

Interpret again the problem as a second-price all-pay auction. Note that in an equilib-

rium, the prize goes to the type that values the prize highest and that the surplus of the

lowest type is zero, so the war of attrition is an “optimal auction”. The Revenue Equiva-

lence Theorem21 applies: the expected revenue generated in an optimal auction does not

depend on the particular auction format. The expected cost per player can be character-

ized by a second-price auction.22 Hence, the expected cost per player in the game is ex-

actly the expected length Te of the war of attrition, which is equal to half the expected

price paid by the winner in a second price auction. The price paid by the winner in the

second-price auction is the expected value of the smaller of the two bids. The price paid

is also equal to the expected value of the minimum of the players’ valuation since, in a

second price auction, bidders reveal their true valuation.

6 Separating Equilibrium

Now turn to analyze the “first stage” waiting game. Here, there are two factors that enter

into the players’ decisions. First, there is a trade-off between programming the high-

profile module and waiting longer. Waiting brings the opportunity to free-ride, at the risk

of being stuck with the need to develop the low-profile module, without which the public

benefits B(θ) of the F/OSS project are not realized. Second, a programmer must make a

choice between high-profile and low-profile module. It may seem obvious that, in equilib-

rium, the first programmer who should always choose to develop the high-profile mod-

ule, as the low-profile module has higher private net cost. This need not be the case. In

this Section, I shall look at a monotonic symmetric equilibrium in which the high-profile

module is chosen first, and derive conditions under which such an equilibrium exists. I

shall look at some other cases below in next Sections.

In a separating equilibrium, waiting times are strictly increasing in types, so there is a

one-to-one mapping between types and waiting times. Beliefs can then be updated in a

simple way: after observing a release of a module, the remaining players compute the

type θR that corresponds to this observed waiting time. The updated beliefs about the

type of the remaining player is characterized by the posterior distribution F(θ;θR). Recall,

F(θ;θR) is the truncated distribution at the point of time that corresponds to the type that

released a module at that time; that is

21 See, e.g., Myerson (1981), Riley and Samuelson (1981) or Klemperer (2003).
22 Bulow and Klemperer (1999), Corollary p. .

16

() .
otherwise

)(1
)(

 if 0

 ;










−

<

=

R

R

R

F
F

F

θ
θ

θθ

θθ

Recall also that T1(θ) denotes the waiting time for the first module, and T2(θ;θR) denotes

the additional equilibrium waiting time of a player of type θ in the “second stage” sub-

game after type θR has released the first module,

()2 ; () () .
R

R FT c U t h t dt
θ

θ
θ θ = ∫

In an equilibrium, no player can have unilateral incentives to deviate, if all other players

follow the equilibrium strategies. The usual incentive compatibility construction that

characterizes the equilibrium is here as follows. The expected payoff of a player θ using

type θ’ strategy, denoted by U(θ,θ’), when all the other players are following the equilib-

rium strategies is

1

'

2
1

'

(, ') 2 () 1 () (,) ()

1 (') () () () () 1 ()H F

U f t F t S t T t dt

F U T c U f t F t dt

θ

θ

θ

θ

θ θ θ

θ θ θ θ

 = − −    

+ − − − −          

∫

∫

The equation notes the fact that player type θ using type θ’ strategy is either the first to

develop the high-profile module or another player does so before her. The second and

the third term on the right hand side of the equation are the following. With the probabil-

ity [1-F(θ’)]2, the player with type θ using type θ’ strategy is the first to choose the high-

profile module. After waiting T1(θ’), she gets UH(θ). Then she has to wait until the second

module finds a programmer, and must pay a cost c per unit time, 0 ≤ c ≤ 1, for the ex-

pected length of the “second-stage” war of attrition. The first term on the right hand side

of the equation tells us what happens when another player is the first one to develop at

time T1(θ’). In this case, that player gets the expected surplus S(θ,θ’) of a type θ in the

subgame starting when a type θ’ player develops the high-profile module. This case oc-

curs with the probability complementary to the case of player in question choosing to

develop the high profile module first.

A necessary condition for T1(θ) to be an equilibrium is that it is optimal for type θ to fol-

low the recommended equilibrium strategy T1(θ) rather than mimic any other type θ’.

That is, the partial derivative of U(θ,θ’) with respect to θ’ has to be zero at θ’ = θ. The

partial derivative is

17

2 '
1 1

1

(, ')
2 (') 1 (') () () 1 (') ()

'
() (') 1 (') 2 (') 1 (') (, ') (')

H

F

U
f F T U F T

cU f F f F S T

θ θ θ θ θ θ θ θ
θ

θ θ θ θ θ θ θ θ

∂   = − − − −         ∂
− − + − −          

Evaluate then the partial derivative at θ = θ’, and set the derivative equal to zero to get

2 '
1

'
1

() () 1 () 2 () () 1 () 1 (') () 0

() () 2 () ()

F H

F H

cU f F U f F F T

T cU U h

θ θ θ θ θ θ θ θ

θ θ θ θ

 − + − − − =        
⇒

= −  

To characterize the equilibrium strategies, we still need to find a boundary condition to

tie down the differential equation T1’ above. The usual way in static incentive problems is

to analyze the participation constraints of high-cost types. Here, that method is not use-

full, as participation constraint consists of a dynamic optimization between conceding and

waiting, and as non-participation is here equal to waiting forever. Fortunately, here there

is an other way. The optimal decision by player with the lowest type θ is to concede im-

mediately, as she knows that there is no other type θ’ who, in an equilibrium, would do

so before her. Waiting a small amount t > 0 costs her t without affecting her probability

to free ride, i.e., to win VF, nor without increasing the speed at which the “second stage”

war of attrition game evolves. To minimize her costs she then leaves the waiting game

immediately, so that T1(θ) = 0. We then get

1() () 2 () () .F HT cU U h dt
θ

θ
θ θ θ θ= −  ∫

The equilibrium strategy can also be interpreted as follows. At each point in time, the

marginal individual with type θ has to be indifferent between developing the module at

the time the equilibrium calls for and waiting a bit more to wait that types between θ and

θ+dθ concede. The cost of waiting consists of the probability 2h(θ)·dθ = 2f(θ)/(1-F(θ))·dθ

that another player is going to concede during this time interval times the utility value of

the high profile task UH(θ) that is lost if someone else concedes in this interval. This cost

of waiting has to be equal to the difference between T’(θ;θ’)·dθ, the time needed for

types between θ and θ+dθ to concede when two players remain, and t’(θ)·dθ the time

needed for types between θ and θ+dθ to concede when three players remain. For these

two effects to be equal, the rate at which types stop waiting and concede needs to be

slower after an initial concession. Otherwise, there would be no benefit in waiting, and

players would find it optimal to concede earlier than the equilibrium calls for. In the equi-

librium, players increase their chance of getting the higher prize by conceding early, but

this is compensated by a larger waiting cost in the following subgame.

18

For these strategies to constitute an equilibrium, stopping times need to be increasing in

types. Otherwise, the rule used to update beliefs would not be consistent. A sufficient

condition for stopping times to be increasing is in Assumption 1:

Assumption 1. cUF(θ) > 2UH(θ) for all θ.

This condition requires that the private benefits drawn from the high-profile module are

significantly more valuable than from the low-profile module. The intuition is that if the

high-profile low-cost task has low enough net programming costs CH(θ), agents will not

wait and take the risk of performing the low-profile high-cost task, so they prefer to con-

cede immediately for the high-profile module.

Proposition 6. There is at most one symmetric separating equilibrium in the game.

The reason behind the Proposition 6 is the same as that of Proposition 2: the difference

between the expected surplus of any two types is uniquely determined by the incentive

compatibility arguments, as discussed above. Since any agent’s probability of being able

to free-ride is uniquely fixed, the difference between the two types’ waiting costs must

also be uniquely determined. If there were two different equilibria specifying different

waiting times T1(θ) and T2(θ;θR) for a type θ, these two equilibria would yield different

differences between the type’s waiting costs for at least one pair of types, which would

offer that type a beneficial unilateral deviation. Hence, the separating equilibrium in this

game, if one exists, must be unique.

Note that the expected net benefits of waiting increase with the value of free riding. Then

as the value of free riding increases, the longer it takes on average for someone to vol-

unteer. This is self-evident from the formula of the length of a two-player war of attrition

derived in Proposition 5 above. But this then implies that the first volunteer can influence

the length of the “second stage” war of attrition by her choice of task. There exists a

trade-off between the gross payoff coming from the choice of task and the waiting cost

that is borne by waiting for one more person to concede. When do the agents prefer to

choose the high profile rather than the low profile task?

Proposition 7. If

2

() () 1 ()
() , for all ,

1 ()

H

H

U t f t F t dt
U

F

θ

θθ θ
θ

−  
>

−  

∫

all types choose the high-profile rather than the low-profile module when they are the

first to develop a module.

19

The interpretation of the Proposition 7 is the following. The left-hand side is the benefit of

producing the high rather than the low-profile module. The right-hand side is value to the

type θ of the expected reduction in the length of the “second stage” war of attrition, in

which the remaining players are trying to free ride and choose the developer for the low-

profile module.

When the condition in Proposition 7 is not satisfied, i.e., when the private benefits of the

high-profile module are large enough, there are some types who prefer to volunteer for

the low-profile task. This is to speed up the development process. Call these types “im-

patient”. Impatient types find the opportunity cost of waiting the F/OSS project to be

completed more important than the net costs of programming the low-profile module.

We can now summarize the discussion above as Proposition 8.

Proposition 8. When the difference between the net development costs for different

modules is large enough (Assumption 1 is satisfied) and nobody is impatient (the condi-

tion in the Proposition 7 is satisfied), the unique symmetric perfect Bayesian equilibrium

is characterized by the waiting time T1(θ) and the choice of the high-profile task by the

first agent, and by the additional waiting time T2(θ;θR) in the subgame following the first

decision by type θR

[]

() .)()(;

,)()(2)()(

2

1

∫

∫
=

−=

θ

θ

θ

θ

θθ

θ

R

dtthtUcT

dtthtUtcUT

FR

HF

Here, “time is money” – time acts as a screening device, as high-cost types are willing to

wait longer than low-cost types. Time takes the role of price system lacking from this

“market”, or the role of command mechanism or hierarchy lacking from this “organiza-

tion”, and acts as a coordinating device here. After the first F/OSS module has been re-

leased, high-cost types know they have a good chance to free ride. Thus, high-cost types

are more willing to wait longer than low-cost types. This waiting game results in perfect

sorting and is efficient for the task assignment. The player with the highest cost (or the

highest value for free-riding) is ready to wait the longest and gets to free-ride, and the

agent with the lowest net cost develops the high-profile module. The inefficiency is due

to the waste of time in F/OSS development.

20

7 Strategic Decision to Speed Up Volunteering

It may seem obvious that the first volunteer should always choose the high-profile task,

as the low-profile module has a higher private net cost. However, this is not always true,

as that decision need not minimize all the costs. The choice of low-profile module by the

first volunteer reduces the costs faced by the second developer, and speeds up the “sec-

ond-stage” two-player war of attrition subgame, hence the entire F/OSS project. I shall

then look at the possibility that the first volunteer chooses the low-profile module in the

this Section.

Consider the case in which the condition in the Proposition 7 is not satisfied for some

types. This means that some types are impatient: they prefer to develop the low-profile

module even when the high-profile one is available. The rationale here is that the loss in

term of disutility of effort is more than compensated by the benefit of reducing the time

waiting for the entire F/OSS project to be completed. To see the intuition, suppose the

difference between the costs of the modules is very large, that there is a low-cost type

that θl that receives high benefits from the completed F/OSS project B(θl) and two high-

cost types that would wait for long before developing the low-profile module. Then if the

player with θl chooses the low-profile module, the lower of the two types concedes in the

waiting game more quickly for high-profile rather than low-profile module.

In equilibrium, the rate at which types concede depends on the hazard rate and on the

patience of the types that are supposed to concede at that time. On might guess that

low-cost types are more likely to be impatient. Suppose then that there exists a type θp

such that types equal or lower than that are impatient and higher types are patient.

Proposition 9. When the heterogeneity of modules is large enough (Assumption 1 is

holds) but some types are impatient (condition in Proposition 7 does not hold for types θ

≤ θP), the unique symmetric Bayesian Nash equilibrium is characterized by a stopping

time T1(θ) and the choice of low-profile module for impatient type and the choice of the

high-profile module for patient types,

1

1

() () () () for , and

() () () () () 2 () () for ,
P

P

F H P

F H F H P

T U t U t h t dt

T U t U t h t dt cU t U t h t dt

θ

θ

θ θ

θ θ

θ θ θ

θ θ θ

= + ≤  

= + + − >      

∫

∫ ∫

and an additional stopping time

()2 ; () () , with () () or () () (),
R

R F F HT c W t h t dt W t U t W t U t U t
θ

θ
θ θ = = = −∫

21

in the subgame following a decision to volunteer by type θR.

It can then be rational to choose the less attractive module even if a more attractive one

is available. This happens when an individual has a high opportunity cost of waiting for

the complete F/OSS package relative to the cost difference between tasks. When what

matters is not the reputation, signaling or other such private benefits but to have the

F/OSS project completed as early as possible, it can be an optimal strategy to volunteer

for the low-profile task.

9 Pooling Equilibrium

So far, I have examined monotonic separating equilibrium in which waiting time coordi-

nates agents’ behavior. Here I turn to the case where the monotonic equilibrium does not

exist. When the net costs of the high-profile module are very low, i.e., the private bene-

fits are very high, relative to those of the low-profile module, choosing the high-profile

module becomes very attractive. The problem then presents the characteristics of the

Grab the Dollar game, and players have strong incentives to concede immediately.

In a pooling equilibrium, each player attempts to seize the opportunity to develop the

high profile module, one of them is awarded the high-profile task, and the two remaining

players enter in a war of attrition to decide who develops the low-profile module.23 Since

all types behave in the same way, players do not learn anything in the first stage of the

game, and there is no updating of beliefs.

A player gets to develop the high-profile module with probability of 1/3, and then waits

the expected length of the “second stage” game. With probability of 2/3, another player

gets the opportunity, and the player receives her type’s expected surplus in the two-

player “second stage” game. Her expected payoff is then

'1 2
() () () ()(1 ()) () () .

3 3P H F FV U c U t f t F t dt U t F t dt
θ θ

θ θ
θ θ

 
= − − + 

 
∫ ∫

The only deviation available is not to volunteer immediately. This yields an expected

payoff equal to the surplus in the two-player war of attrition with probability 1

23 This rush can also be limited to low-cost types who volunteer immediately while higher types
wait. I shall not analyze this semi-pooling equilibrium here.

22

∫=
θ

θ
θ .)()()(' dttFtUS F

Hence, for a pooling equilibrium to exist, the incentive constraint that the expected bene-

fits from the development of the high-profile module at the first opportunity plus the ex-

pected surplus from the two-player “second stage” game exceeds the surplus from the

two-player war of attrition probability 1 for all θ needs to be satisfied. This can be rewrit-

ten as Assumption 2:

Assumption 2. For all θ,

() '() () () () 1 () .H F FU U F dt c U f t F t dt
θ θ

θ θ
θ θ θ θ≥ + −  ∫ ∫

Proposition 10. When Assumption 2 is satisfied, the unique symmetric Bayesian Nash

equilibrium is characterized by the stopping times T1(θ) and T2(θ) for the high-profile and

the low-profile task,

1

2

() 0,

() () () ,F

T

T c U h t dt
θ

θ

θ

θ θ

=

= ∫

respectively.

For a rush to start, the high-profile module must be very valuable compared to free rid-

ing. Assumption 2 hints that such an equilibrium arises when the private value of the

high-profile module is large, the expected cost of waiting until the two-player war of at-

trition is resolved is small, e.g., if the parameter c near zero, or if the surplus in the two-

player war of attrition is small, ceteris paribus.

9 Conclusions

I have analyzed programmers’ incentives to produce a F/OSS module instead of free-

riding as a game of war of attrition. Even if each agent is tempted to wait for someone

else to produce a piece of F/OSS, it may still be optimal to volunteer early for a high-

profile module that creates reputation and signals programming ability. It may also be

optimal to volunteer strategically for a low-profile module even if a high-profile module is

available to speed up the process and to reduce the total costs of waiting.

23

The model provides a partial explanation for why F/OSS is being produced and by whom.

The individuals who gain most from the F/OSS relative to their programming costs are

most eager to produce F/OSS modules, and the individuals who have high programming

costs relative to private and public benefits from software are willing to wait the longest.

The main insight here is an explanation for how large F/OSS projects can be coordinated

without markets or hierarchies such as firms. Here, “time is money” – impatience and

opportunity costs guide the decisions of the agents, and substitute for lack of prices and

formal hierarchical control.

The model predicts that only those potential F/OSS projects are completed that have

high value. High-value projects are those in which all the essential modules have low

enough private net programming costs, so that a developer is found for each module, or

ones that have high enough public benefits, so that somebody is willing to develop also

the high-cost modules to complete the project. If the public value of a complete F/OSS

package is high for some individual, relative to her programming costs, that individual

has an incentive to also produce those software modules that have low private value,

e.g., that do not create reputation among hackers or provide valuable signal to labor or

capital markets. Then also these low-profile tasks are taken care of.

Policy conclusions that can be drawn from the analysis are that those individuals or or-

ganizations that wish to support the completion of a F/OSS project should volunteer for

low-profile modules, or increase the net private value of the development by subsidizing

costs or other means. Rate of volunteering can also be increased by raising the associ-

ated private benefits. This can be accomplished by increasing reputational benefits drawn

from F/OSS modules or from potential business opportunities built on the use of F/OSS.

24

Appendix

Proof of Lemma 2

Proof: The condition implies B(θ,t) > C(θ) for all t. Since B(θ,t) is monotone and falling
in t, B(θ,0) maximizes utility.

Proof of Proposition 1

Proof: A higher-cost type cannot choose to develop a module before a lower-cost type of
the same player has done so. If the low-cost type gets the same expected surplus from
strategies with two different probabilities of being a free-rider, the high-cost type strictly
prefers the strategy with higher probability of free riding than the low-cost type.

Also, at no moment of time does any player develop a module with strictly positive prob-
ability. By symmetry, all players would have strictly positive probability of programming,
but then any player would strictly prefer programming just after this point in time. So,
T2() is strictly increasing in θ for any θR, and a player is able to free ride if and only if the
other remaining player has type lower than her’s. QED24

Proof of Proposition 3

Proof: Given that all other agents use this decision rule, the expected surplus of a type θ
using the strategy of type θ’ is

in which the first term represents the utility of the agent θ when he is the first to develop
the module, and the second term the expected utility of the player in case he is able to
free ride. A necessary condition for an equilibrium is that U(θ,θ’) = 0 at θ’ = θ.

The second-order condition is satisfied since sign(∂U(θ,θ’)/∂θ) = sign(θ-θ’). Using the
boundary condition T2(θ) = 0 we get the statement in the Proposition. QED25

Proof of Proposition 4

Proof: By definition, S(θ) = maxθ’ EU(θ,θ’) = EU(θ,θ). Since all the functions are con-
tinuously differentiable, we can use the Envelope Theorem, and get

24 See also Lemma 1 in Bulow and Klemperer. Note that this proof extends to T1() as well.
25 See also Lemma 3 in Bulow and Klemperer.

2

'
(, ') 1 () () () () ()U F t T t f t W T t dt

θ

θ
θ θ θ= − + −      ∫

'
2

'
2

1 () () () () 0

() ()
() () ()

1 ()

F t T t f t W

f W
T t W h

F

θ

θ θ θ θ
θ

− + =
⇒

= =
−

25

() (,) () () () ()S EU W t f t dt W F
θ

θ
θ θ θ θ θ′ ′ ′= = =∫

Integration yields

() '() () ().S W t F t dt S
θ

θ
θ θ= +∫

S(θ) = 0 as the lowest cost type does not wait. QED.

Proof of Proposition 5

Proof: This proof is an application of the Revenue Equivalence Theorem for auctions. A
war of attrition is an optimal auction – the prize always goes to the highest type and that
the surplus of the lowest type is zero. The expected cost per player in the war of attrition
is exactly the expected duration of the war, as the cost of waiting is one per unit time.
The expected cost per player is then equal to half the expected price paid by the winner
of a second price auction. The price paid by the winner in the second-price auction is the
expected value of the smaller bid or the expected value of the minimum of the players’
valuation:

E[R] = E[min(W(θ1),W(θ2))] = E[R] = 2ET =>

T = E[min(W(θ1),W(θ2))]/2. QED.

Proof of Proposition 6

Proof: Use Lemma 2 of Bulow and Klemperer (1999).

Proof of Proposition 7

Proof: The payoff of a player of type θ who chooses to develop the high-profile module is

() () (|) 1 (|) .H FU U t f t t F t t dt
θ

θ
θ θ θ− > − >  ∫

The payoff of a player who chooses chooses to develop the low-profile module is

() () (|) 1 (|) .F HU t U t f t t F t t dt
θ

θ
θ θ− − > − >      ∫

The condition then becomes

2

() () (|) 1 (|)

() () 1 ()
. QED.

1 ()

H H

H

U U t f t t F t t dt

U t f t F t dt

F

θ

θ

θ

θ

θ θ θ

θ

> > − >  

−  
=

−  

∫

∫

26

Proof of Proposition 9

Proof: The derivation of T1(θ,θ’) comes from Proposition 3. The expected utility of an
agent with type θ behaving like a type θ’ when the other agents follow the equilibrium
strategy is

2
1

2
1

1 () () () 1 () () ()

1 1 () () 2 () 1 () (,) ()

F H

H

F T c f t F t U t U t dt

F U t f t F t S t T t dt

θ

θ
θ

θ

θ θ

θ θ

′

′

′ ′− − + − −          

 ′+ − − + − −            

∫

∫

A necessary condition for T to be an equilibrium is that it is optimal for type θ to volun-
teer at time T(θ) rather than mimic type θ’. The derivative of the preceding expression
with respect to θ’ is

2

1 1

1

2 () 1 () () 1 () () () () 1 () () ()

2 () 1 () () 2 () 1 () (,) () .

F H

H

f F T F T cf f t F U t U t

f F U t f F S T

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

′ ′ ′ ′ ′ ′ ′− − − + − −              
′ ′ ′ ′+ − + − −          

This has to be zero when evaluated at θ’= θ, i.e.,

2
1

1

1 () () () 1 () () () 2 ()

() () () () . QED

F H H

F H

F T cf F U U U

T h U U

θ θ θ θ θ θ θ

θ θ θ θ

′− = − − +          
⇒

′ = +  

27

References

Bessen, J. (2001), “Open Source Software: Free Provision of Complex Public Goods”,
mimeo, Research on Innovation, available at http://www.researchoninnovation.org.

Bilodeau, M. and A. Slivinski, (1996), “Toilet Cleaning and Department Chairing: Volun-
teering for a Public Service,” Journal of Public Economics, 59: 299-308.

Bitzer, J. and P.J.H Schröder (2003), “Bug-Fixing and Code-Writing: The Private Provision
of Open Source Software”, mimeo, DIW Berlin – German Institute for Economic Re-
search. Paper presneted at EARIE 2003.

Bliss, C. and B. Nalebuff (1984), “Dragon-Slaying and Ballroom Dancing: The Private
Supply of a Public Good,” Journal of Public Economics, 25: 1-12.

Bolton, P. and J. Farrell (1990), “Decentralization, Duplication and Delay,” Journal of Po-
litical Economics, 98: 803-26.

Bulow, J. and P. Klemperer (1999), “The Generalized War of Attrition,” American Eco-
nomic Review, 89: 175-89.

Farrell, J. and G. Saloner (1988), “Coordination Through Committees and Markets,” Rand
Journal of Economics, 19: 235-53.

Hendricks, K., A. Weiss and C. Wilson (1988), “The War of Attrition in Continuous Time
with Complete Information”, International Economic Review, 29: 663-80.

Johnson, J.P. (2002), “Economics of Open Source Software,” Journal of Economics &
Management Strategy, 11: 637–662.

Klemperer, P. (2003), “Why Every Economist Should Learn Some Auction Theory”, in M.
Dewatripont, L. Hansen and S. Turnovsky (eds.), Advances in Economics and
Econometrics: Theory and Applications, Vol. 1, pp. 25-55, Cambridge University
Press.

Kogut, B. and A. Metiu (2000), “The Emergence of E-Innovation: Insights from Open
Source Software Development”, Working Paper, University of Pennsylvania, avail-
able at http://jonescenter.wharton.upenn.edu/papers/2000/wp00-11.pdf

Lacasse, C., C. Ponsati and V. Barham (2002), ”Chores,” Games and Economic Behavior,
39: 237-81.

Lakhani, K. and E. von Hippel (2003), “How Open Source Software Works: ‘Free’ User-to-
User Assistance,” Research Policy, 32: 923-43.

Lee, S., N. Moisa and M. Weiss (2003), “Open Source as a Signalling Device - An Eco-
nomic Analysis”, Working Paper No. 102, Goethe-University, Frankfurt am Main.

Leppämäki, M. and M. Mustonen (2003), “Spence Revisited - Signalling with Externality:
The Case of Open Source Programming”, mimeo, University of Helsinki.

Lerner, J. and J. Tirole (2002), “Some Simple Economics of Open Source”, Journal of In-
dustrial Economics, 52: 197–234.

Morgan, J. and V. Krishna (1997), “An Analysis of the War of Attrition and the All-Pay
Auction”, Journal of Economic Theory, 72: 343-362.

Mustonen, M. (2002), “Why Do Firms Support the Development of Substitute Copyleft
Programs”, Discussion Paper No 439, University of Helsinki.

Mustonen, M. (2003), “Copyleft – The Economics of Linux and other Open Source Soft-
ware”, Information Economics and Policy, forthcoming.

28

Myerson, R. (1981), “Optimal Auction Design,” Mathematics of Operation Research, 6,
58-73.

Osterloh, M., S. Rota and B. Kuster (2003), “Open Source Software Production: Climbing
on the Shoulders of Giants”, mimeo, University of Zürich.

Park, A. and L. Smith (2003), “Caller Number Five: Timing Games that Morph from One
Form to Another”, mimeo, University of Cambridge, available at
http://www.econ.cam.ac.uk/phd/ap248/

Ponsati, C., and J. Sákovics (1995), “The War of Attrition with Incomplete Information,”
Mathematical Social Sciences, 29, 239–54.

Raymond, E.S. (1999), The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary, O'Reilly & Associates, Inc., available at
http://www.catb.org/~esr/writings/cathedral-bazaar/.

Riley, J. and W. Samuelson (1981), “Optimal Auctions,” American Economic Review, 71,
381-392.

Sahuguet, N. (2003), “Volunteering Public Services when Tasks are not Equivalent”,
mimeo, Université Libre de Bruxelles.

Smith, M.A. and P. Kollock, eds. (1999), Communities in Cyberspace, Routledge.

Weber, S. (2004), The Success of Open Source, Harvard University Press, forthcoming.

E L I N K E I N O E L Ä M Ä N T U T K I M U S L A I T O S (ETLA)
THE RESEARCH INSTITUTE OF THE FINNISH ECONOMY
LÖNNROTINKATU 4 B, FIN-00120 HELSINKI
__

 Puh./Tel. (09) 609 900 Telefax (09) 601753
 Int. 358-9-609 900 Int. 358-9-601 753
 http://www.etla.fi

KESKUSTELUAIHEITA - DISCUSSION PAPERS ISSN 0781-6847

Julkaisut ovat saatavissa elektronisessa muodossa internet-osoitteessa:
http://www.etla.fi/finnish/research/publications/searchengine

No 852 MIKA MALIRANTA – PETRI ROUVINEN, Productivity Effects of ICT in Finnish Business.

12.05.2003. 42 p.

No 853 LOTTA VÄÄNÄNEN, Does Public Funding Have a Halo Effect? Evidence from Finnish

SMEs. 14.05.2003. 19 p.

No 854 PETRI BÖCKERMAN – MIKA MALIRANTA, The Micro-level Dynamics of Regional Pro-

ductivity Growth: The source of divergence in Finland. 15.05.2003. 30 p.

No 855 CHRISTOPHER PALMBERG – OLLI MARTIKAINEN, Overcoming a Technological Dis-

continuity – The Case of the Finnish Telecom Industry and the GSM. 23.05.2003. 55 p.

No 856 RAINE HERMANS – ILKKA KAURANEN, Intellectual Capital and Anticipated Future Sales

in Small and Medium-sized Biotechnology Companies. 28.05.2003. 30 p.

No 857 ERKKI KOSKELA – MATTI VIREN, Government Size and Output Volatility: New Interna-

tional Evidence. 10.06.2003. 16 p.

No 858 TOMI HUSSI, Intellectual Capital and Maintenance of Work Ability – The Wellbeing Perspec-

tive. 28.05.2003. 35 p.

No 859 LOTTA VÄÄNÄNEN, Agency Costs and R&D: Evidence from Finnish SMEs. 23.06.2003.

54 p.

No 860 PEKKA ILMAKUNNAS – MIKA MALIRANTA, Technology, Labor Characteristics and

Wage-productivity gaps. 26.06.2003. 27 p.

No 861 PEKKA ILMAKUNNAS – MIKA MALIRANTA, Worker inflow, outflow, and churning.

26.06.2003. 30 p.

No 862 ERKKI KOSKELA – MARKKU OLLIKAINEN, A Behavioral and Welfare Analysis of Pro-

gressive Forest Taxation. 05.08.2003. 24 p.

No 863 ERKKI KOSKELA – RUNE STENBACKA, Profit Sharing and Unemployment: An Approach

with Bargaining and Efficiency Wage Effects. 06.08.2003. 28 p.

No 864 ANTTI-JUSSI TAHVANAINEN, The Capital Structure of Finnish Biotechnology SMEs – An

Empirical Analysis. 08.08.2003. 62 p.

No 865 VILLE KAITILA, Convergence of Real GDP per Capita in the EU15 Area: How do the Acces-

sion Countries Fit in? 15.08.2003. 30 p.

No 866 ANNI HEIKKILÄ, Yrityskohtainen palkanasetanta suomalaisessa työmarkkinoiden sopimusjär-

jestelmässä (Firm-level Wage Setting in the Finnish Wage Bargaining System). 15.08.2003. 87 s.

No 867 ANNI HEIKKILÄ – HANNU PIEKKOLA, Economic Inequality and Household Production –
The effects of specialization of genders. 21.08.2003. 29 p.

No 868 HANNU PIEKKOLA – LIISA HARMOINEN, Time Use and Options for Retirement in

Europe. 25.09.2003. 28 p.

No 869 VILLE KAITILA, An Assessment of Russia´s Growth Prospects in 2003-2010. 18.09.2003. 28 p.

No 870 JUKKA JALAVA, Electrifying and Digitalizing the Finnish Manufacturing Industry: Historical

Notes on Diffusion and Productivity. 26.09.2003. 16 p.

No 871 ESSI EEROLA – NIKU MÄÄTTÄNEN, Strategic Alliances, Joint Investments, and Market

Structure. 17.10.2003. 12 p.

No 872 TERTTU LUUKKONEN, Variability in Forms of Organisation in Biotechnology Firms.

21.10.2003. 26 p.

No 873 JENNI OKSANEN, Knowledge and Learning in The Determination of the Optimal form of

Firm Organisation. 05.11.2003. 48 p.

No 874 RITA ASPLUND – JENNI OKSANEN, Functional Flexibility Strategies: Evidence from com-

panies in five small European economies. 05.11.2003. 54 p.

No 875 RITA ASPLUND, Flexibility and Competitiveness: Labour Market Flexibility, Innovation and

Organisational Performance – Finnish National Report. 20.11.2003. 109 p.

No 876 OLAVI RANTALA, Yritysten T&K-panostusten määräytyminen ja julkisen T&K-rahoituksen

vaikutus toimialatasolla. 07.11.2003. 15 s.

No 877 RAINE HERMANS – ISMO LINNOSMAA, Price Markups and R&D Inputs: the Pharmaceuti-

cal Industry in Finland and the USA. 12.11.2003. 18 p.

No 878 EDVARD JOHANSSON, A Note on the Impact of Hours Worked on Mortality in the OECD.

11.11.2003. 11 p.

No 879 RITVA HIRVONEN – PEKKA SULAMAA – EERO TAMMINEN, Kilpailu sähkömarkkinoil-

la – Sähkömarkkinoiden keskeiset piirteet ja toiminta. 18.11.2003. 32 s.

No 880 REIJO MANKINEN – PETRI ROUVINEN – LOTTA VÄÄNÄNEN – PEKKA YLÄ-

ANTTILA, Yrityspalveluiden kasvu, kansainvälistyminen ja kilpailukyky. 19.11.2003. 39 p.

No 881 CHRISTOPHER PALMBERG – OLLI MARTIKAINEN, The Economics of Strategic R&D

Alliances – A Review with Focus on the ICT Sector. 21.11.2003. 50 p.

No 882 JUHA FORSSTRÖM – JUHA HONKATUKIA – PEKKA SULAMAA, Global Change and

Energy Markets – Analysis the Effects of Nordic Electricity Market Integration on Environ-
mental Policy Using GTAP-E Model. 02.12.2003. 26 p.

No 883 RAINE HERMANS, New Economic Geography of Market Potential Innovation Intensity and

Labor Structure in EU Regions. 30.12.2003. 25 p.

No 884 MARKKU STENBORG, Waiting for F/OSS: Coordinating the Production of Free/Open Source

Software. 29.12.2003. 28 p.

Elinkeinoelämän Tutkimuslaitoksen julkaisemat "Keskusteluaiheet" ovat raportteja alustavista
tutkimustuloksista ja väliraportteja tekeillä olevista tutkimuksista. Tässä sarjassa julkaistuja mo-
nisteita on mahdollista ostaa Taloustieto Oy:stä kopiointi- ja toimituskuluja vastaavaan hintaan.

Papers in this series are reports on preliminary research results and on studies in progress. They
are sold by Taloustieto Oy for a nominal fee covering copying and postage costs.

	teksti.pdf
	ABSTRACT: I analyze coordination of Free/Open Source Software (F/OSS) projects. Costs of waiting for F/OSS program to be released are borne by all agents until enough modules have been produced. Trade-off between producing a F/OSS module and free-riding
	TIIVISTELMÄ: Tutkimuksessa analysoidaan avoimen lähdekoodin (open source) tuotannon koordinointia. Ohjelmistomoduulien tuotanto mallinnetaan väsytystaisteluna (war of attrition), jossa kaikki ohjelmistoa tarvitsevat joutuvat kärsimään odottamisen vaihtoe
	1 Introduction
	2 Some Economics of Free/Open Source Software
	3 Model
	4 Full Information
	5 Two-player subgame
	6 Separating Equilibrium
	7 Strategic Decision to Speed Up Volunteering
	Pooling Equilibrium
	9 Conclusions
	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof: Use Lemma 2 of Bulow and Klemperer (1999).
	Proof of Proposition 7
	Proof: The payoff of a player of type ? who chooses to develop the high-profile module is
	Proof of Proposition 9
	Proof: The derivation of T1(?,?’) comes from Proposition 3. The expected utility of an agent with type ? behaving like a type ?’ when the other agents follow the equilibrium strategy is
	References

