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KOSKELA, Erkki – OLLIKAINEN, Markku – PUHAKKA, Mikko, SADDLES, IN-
DETERMINACY AND BIFURCATIONS IN AN OVERLAPPING GENERA-
TIONS ECONOMY WITH A RENEWABLE RESOURCE. Helsinki: ETLA, Elinkei-
noelämän Tutkimuslaitos, The Research Institute of the Finnish Economy, 2002,30 p.
(Keskusteluaiheita, Discussion Papers, ISSN, 0781-6847; no. 789).

ABSTRACT: We incorporate a renewable resource into an overlapping generations
model with standard, well-behaved utility and constant returns production functions.
Besides being a factor of production the resource serves as a store of value. We charac-
terize dynamics, efficiency and stability of steady state equilibria, and show how their
nature in the presence of ‘well-behaved’ resource stock growth depends on the size of
the intertemporal elasticity of substitution in consumption. If that elasticity is at least
half, but not exactly one, steady states are saddle points. For the values of elasticity less
that one half we use a parametric example to demonstrate the existence of stable equi-
libria (indeterminacy) and a subcritical flip bifurcation. These findings lie in conformity
with empirics, which suggest that exploited fish populations exhibit not only the con-
ventionally analyzed steady yields, but also cycles and irregularities.

Keywords: overlapping generations, renewable resources, bifurcations.

JEL classification: D90, Q20, C62.



1. INTRODUCTION

The overlapping generations framework is a rich source for many kinds of interesting dy-
namics. Endogenous cycles, chaos, bifurcations, indeterminacy, and sunspot equilibria can
be observed in these models.1 The overlapping generations structure in itself is not neces-
sarily a source for indeterminacy and other types of “nonstandard dynamics”. For example,
Diamond’s (1965) overlapping generations model with production, but without govern-
ment debt, and with a regular neoclassical production function and a saving function with a
positive interest rate elasticity exhibits determinate dynamics.

Since Gale (1973) it has been known that indeterminacy and cycles are possible in the
overlapping generations models. By applying the theory of flip bifurcations Grandmont
(1985) showed in a simple monetary model without capital accumulation that periodic
equilibria and chaos can occur, when the consumer’s offer curve is backward bending. To
generate backward bending offer curves, it is necessary to have the intertemporal elasticity
of substitution smaller than one.2 The small size of this elasticity seems to be essential to
obtain cycles in one-dimensional dynamics. Indeed, it is also the case that the basic over-
lapping generations model with production can have indeterminate equilibria, if saving is a
decreasing function of the interest rate.3

Reichlin (1986, 1990) has shown that endogenous cycles, however, can be observed in
models with elastic labor supply or a two-sector technology producing a consumption and
a capital good, but without the restriction on the intertemporal elasticity of substitution.
Farmer (1986) shows in an overlapping generations model with production and the gov-
ernment as a lender that a bifurcation may emerge giving rise to invariant cycles.

Calvo (1978) showed that indeterminate equilibria can occur in overlapping generations
models.4 His examples were not restricted to a monetary model. A two-sector model with-
out a nominal asset can exhibit indeterminacy.

An overlapping generations model with production and government debt has two steady
states, one of which (with zero level of debt) is locally stable (indeterminate).5 More recent
examples of this class of models are Schreft and Smith (1997) and Boyd and Smith (1998),
who introduce market imperfections to a monetary growth model, and obtain multiple
steady states and cycles. The fact that market imperfections cause complex dynamics is not
surprising, since they are important sources for indeterminacy in many other models, too.6

                                                
1 Models with indeterminate equilibria are prime candidates for having sunspot equilibria. Boldrin and

Woodford (1990) have an extensive survey on cycles and chaos in overlapping generations models. For a
survey on sunspot equilibria, see Cass and Shell (1989).

2 Grandmont demonstrated the existence of cycles when the Arrow-Pratt relative risk aversion of the old
agents exceeds two, in which case saving is a decreasing function of the interest rate. Jullien (1988) has
shown that Grandmont’s result can be generalized to a monetary economy with production if there is
“enough” substitutability between factors of production. Grandmont (1985) is based on backward dy-
namics. For forward dynamics, see the model by Benhabib and Day (1982) which also exhibits periodic
equilibria.

3 For a demonstration, see e.g. Azariadis (1993).
4 Model by Grandmont with backward bending offer curve naturally has a lot of indeterminate equilibria.
5 For a demonstration see Azariadis (1993), p. 199 and 201.
6 See the survey by Benhabib and Farmer (1999).
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In the renewable resource literature Kemp and Long (1979) and Mourmouras (1991, 1993)
have analyzed the sustainable use of renewable resources within the overlapping genera-
tions framework. They demonstrate the generally well-known fact that competitive equilib-
ria in overlapping generations economies may be inefficient, but do not study dynamics
and stability of the model. Koskela, Ollikainen and Puhakka (2001) analyze the dynamics
of an overlapping generations renewable resource economy with quasi-linear preferences,
and show that all equilibria, be they efficient or not, are saddles. Our present paper, how-
ever, utilizes a more general utility function, and yields strikingly different results. Finally,
Olson and Knapp (1997) study an overlapping generations economy with an exhaustible
resource. Among other things they demonstrate the existence of cycles and multiple equi-
libria.

In this paper we study the dynamical properties of an overlapping generations model with a
renewable natural resource. The empirical relevance of this research issue is easy to estab-
lish. It is well known that exploited renewable populations may behave in many different
ways. By using historical data Caddy and Gulland (1983) have found that while some fish
stocks provide steady yields, some others provide cyclical, irregular or spasmodic yields.7
Hilborn and Walters (1992) stress that, in fact, most species do not appear to be capable of
producing steady yields, and they wonder why studies of fisheries management have not
devoted attention to this feature, which has potentially significant economic implications.
Our paper focuses on the possibility that a renewable resource economy may have other
type of dynamics than a conventional steady state.

In our model the resource with a strictly concave growth function serves as a factor of pro-
duction and a store of value. A model with a renewable resource differs from a standard
overlapping generations model in one important aspect, the appearance of the “well-
behaved” biological growth function. This means that the gross return from investing in the
resource is not a linear function of the resource stock. The strict concavity of the growth
function does not bring about any non-convexity into the model. Yet, in addition to saddles
we are able to show that our model can possess indeterminate equilibria, and flip bifurca-
tions.

Our model will be a two dimensional planar system. We characterize the steady state equi-
librium, compare competitive and efficient solutions, and in particular, study its stability
properties. The nature of the steady state equilibrium will depend on the value of the in-
tertemporal elasticity of substitution in consumption. In particular, if the size of this elas-
ticity is at least half, but different from one, then steady states are saddle points. This result
holds for a general strictly concave resource growth function.

For the values of intertemporal elasticity of substitution less than one half we use a para-
metric example with logistic resource growth to demonstrate the existence of a subcritical
flip bifurcation in the case of an inefficient equilibrium. This means that a repelling two-
cycle emerges on that side of the flip bifurcation, where the steady state is stable. This in-
determinacy indicates a possibility for sunspot equilibria. When the intertemporal elasticity
of substitution equals unity, the dynamical system reduces to a first-order nonlinear differ-

                                                
7 The meaning of steady state, cyclical and irregular is obvious; spasmodic means fish stocks, which have

produced high yields and then collapsed without any major recovery. Examples of these cases are North
Sea turbot fishery, Baleares hake fishery, Norwegian fishery for juvenile herring and Pacific sardine
fisheries, respectively (see Hilborn and Walters 1992, Ch. 2).
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ence equation in the resource stock and the system is stable. In our model flip bifurcations
and complex dynamics emerge due to the mixture of low elasticity of substitution in con-
sumption and “well-behaved” logistic growth.

We proceed as follows. The elements of an overlapping generations economy with a re-
newable resource are presented, and the equilibrium conditions of the economy character-
ized in section 2. Conditions for a unique steady state and its efficiency are analyzed in
section 3. In section 4 we study dynamical equilibria of a planar system for harvesting and
resource stock, and characterize the case where all the stationary equilibria are saddle
points. Since saddle point equilibria may not exist if the intertemporal elasticity of substi-
tution in consumption is low enough, section 5 studies this case. Finally, section 6 summa-
rizes our findings.

2. THE MODEL AND THE EQUILIBRIUM CONDITIONS

We consider an overlapping generations economy where agents live for two periods. There
is no population growth. Agents maximize the following intertemporally additive lifetime
utility function

(1) )()( 21
tt cucuV β+= ,

where ci
t  denotes the period i (=1,2) consumption of consumer-worker born at time t and

1)1( −+= δβ  with δ  being the rate of time preference. We assume that 0>′u , 0<′′u  and
the Inada conditions, i.e. 0)('lim =

∞→
cu

c
 and ∞=

→
)('lim

0
cu

c
. The young are endowed with

one unit of labor, which they supply inelastically to firms in the consumption goods sector.
Labor earns a competitive wage. The representative consumer-worker uses the wage to buy
the consumption good and to save. He can save in the financial asset or buy the available
stock of the renewable resource.

The firms in the consumption goods sector have a constant returns to scale technology,
),( tt LHF , to transform the harvested resource ( tH ) and labor ( tL ) into output. This tech-

nology can be expressed in factor intensive form to give )(/),( tttt hfLLHF = , where th
(= tt LH / ) is the per capita level of the harvest. The per capita production function has the
standard properties: 0>′f  and 0<′′f . Furthermore, we assume ∞=′

→
)(lim

0 th
hf  and

0)(lim =′
∞→ th

hf .

The growth of the resource is )( txg , where tx  denotes the beginning of period t stock of
the resource. )( txg  is assumed to be a strictly concave function, i.e. 0<′′g . Besides
owning the stock the current old generation (generation t-1 in period t) will also get its
growth, so that the stock they have available for trading is )( tt xgx + . Furthermore, fol-
lowing renewable resource economics, we assume that there are two values 0=x  and

xx ~=  for which 0)~()0( == xgg . Consequently, there is a unique value x̂  at which
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0)ˆ( =′ xg . Hence, x̂  denotes the stock providing the maximum sustained yield (MSY),
while x~  is the level at which growth is zero, i.e. the maximal stock that the natural envi-
ronment can sustain. Moreover, it is reasonable to assume that there are no Inada condi-
tions for the resource stock growth function. For instance, a logistic growth function
( 2)2/1()( bxaxxg −= ) fulfills these assumptions.

The renewable resource in our model has two roles. It is both a store of value and an input
in the production of the consumption good. The market for the resource operates in the
following manner. At the beginning of the period the old agents own the stock, and also
receive that period’s growth of the stock. They sell the stock (growth included) to the
firms, which then decide how much of that resource to harvest and use as an input in the
production of the consumption good. The firm will sell the remaining stock of the resource
to the young at the end of the period.

It is interesting to note that via growth function this “natural” production activity yields a
profit for its owner. These profits could presumably be distributed in alternative ways. For
instance, there could be a stock market where the ownership rights for the resource are ex-
changed. The young buy the shares for the resource, and when old, get the dividend and
the proceeds from selling the shares next period.8 This kind of arrangement leads to the
same allocation, which we will have in our model.9

The transition equation for the resource is

(2) )(1 tttt xghxx +−=+ ,

where th  denotes that part of the stock which has been harvested for use as an input in
production. The initial stock and its growth, )( txg , can be conserved for the next period’s
stock or used for this period’s harvest.

In addition to trading in the resource markets, the young can also participate in the finan-
cial markets by borrowing or lending, the amount of which is denoted by ts .  The periodic
budget constraints are thus

(3) tttt
t wsxpc =++ +11

(4) [ ] ttttt
t sRxgxpc 11112 )( ++++ ++=

where tp  is the price of the resource and tw  is the wage rate in terms of period t’s con-
sumption, and 11 1 ++ += tt rR  is the interest factor. The young generation buys an amount

                                                

8 We are thinking here about the stock market arrangements proposed by Lucas (1978) and Brock (1982).
Since they have infinitely lived agents, the treatment of the stock market in their papers cannot readily be
applied to our overlapping generations model, where e.g. there is limited market participation. Brock
(1990) presents an overlapping generations version of the asset pricing model of Lucas, where the asset
pays a constant dividend each period. For a recent treatment of the stock market in an overlapping gen-
erations model with capital, see Magill and Quinzii (2001).

9 A sketch of the proof is available from the authors upon request.
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1+tx  of the resource stock from the representative firm. The firm has harvested an amount

th  of the stock, and 1+tx  has been left to grow. According to (4) the old generation con-
sumes their savings including the interest, and the income they get from selling the re-
source next period to the firm, [ ])( 111 +++ + ttt xgxp .

The periodic budget constraints (3) and (4) imply the lifetime budget constraint

(5)
[ ]

1

11111

1

2
1

)(

+

+++++

+

−+
+=+

t

tttttt
t

t

t
t

R
xpRxgxp

w
R
cc .

Maximizing (1) subject to (5) and the appropriate non-negativity constraints leads to the
following first-order conditions for ts  and 1+tx

(6) )(')(' 211
t

t
t cuRcu β+=

(7) [ ] )(')('1)(' 2111
t

tt
t

t cuxgpcup β++ += .

These conditions have straightforward interpretations. (6) is the Euler equation which says
that the marginal rate of substitution between today’s and tomorrow’s consumption should
be equal to the interest factor. According to (7) the marginal rate of substitution between
consumptions in two periods should be equal to the resource price adjusted growth factor.
(6) and (7) together imply the arbitrage condition for two assets

(8) [ ]
t

t
tt p

p
xgR 1

11 )('1 +
++ += ,

so that the interest factor is equal to the resource price adjusted growth factor.10 Using (8)
we can rewrite the lifetime budget constraint as

(9)
[ ]

1

1111

1

2
1

)(')(

+

++++

+

−
+=+

t

tttt
t

t

t
t

R
xxgxgp

w
R
cc .

The term in the square brackets is positive, since the growth function is strictly concave.

Next we define competitive equilibrium as follows.

                                                

10  Note that by choosing x the young can affect the marginal return of the resource, g ′ . This reflects the
fact that a renewable resource, like fish stock, differs markedly from a conventional asset, whose return
is independent of the amount invested.
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Definition. A price system and a feasible allocation,

  { } ∞
=

−
1

1
21 ,,,,,, ttt
tt

ttt xhccwRp  are competitive equilibrium, if

(i) given the price system, consumers and firms solve their decision problems and

(ii) markets clear for all t = 1,2,...,T,...

Market clearing conditions are

(10a) )(1
21 t
tt hfcc =+ −

(10b) )(1 tttt xgxhx +=++

(10c) 0=ts

(10d) tt phf =′ )(

(10e) tttt whfhhf =′− )()(

(10a) is the resource constraint for all t, and (10b) is the transition equation for the renew-
able resource stock. The fact that there is only one type of a consumer per generation and
no government debt forces the asset market clearing condition to be such that st = 0  for all
t. Equations (10d) and (10e) in turn are the first-order conditions for profit maximization,
and determine the evolution of factor prices, tp  and tw .

The market clearing condition (10b) and the first-order condition (7) for the resource stock
and harvesting together with the periodic budget constraints (3) and (4) and the equilibrium
conditions (10d) and (10e) imply the following planar system that describes the dynamics
of the model.

(11)  )(1 tttt xghxx +−=+

(12) [ ] =−− +1)(')(')(')(' tttttt xhfhhfhfuhf

[ ] [ ])('1))()(('')(' 11111 +++++ ++ ttttt xgxgxhfuhfβ

Equations (11) and (12) are the main objects of our study.11 Before analyzing the qualita-
tive properties of this system we characterize the steady state equilibria.

                                                
11 Instead of using Euler equation (12) we could have taken another route, as in Olson-Knapp (1997),  for

the dynamic analysis  by concentrating on the evolution of total savings defined as
),,,(),,,( 11111 tttt

t
ttttt ppRwcwppRwq ++++ −≡ . It is straightforward to show that 0/ 1 <∂∂ +tRq , when

the intertemporal elasticity of substitution is less than unity. See discussion below on the crucial importance
of this elasticity in our analysis.
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3. STEADY STATE EQUILIBRIA AND EFFICIENCY

In the steady state ( 0=∆ th  and 0=∆ tx ) the following equations hold

(13) )(xgh =

(14) [ ] [ ] [ ])('1))()(('')(')(')(' xgxgxhfuxhfhhfhfu ++=−− β .

Given the properties of the growth function, the curve defined by (13) is not monotone.
Totally differentiating (14) we get

(15) 0
)'1)(('')('')('')(''

')('')'1(')('''')('
21

1
2

22 >
++−+−

+++=
ghxfcuhxfcu

fcugfcugcu
dx
dh

β
ββ .

The steady state in our model with general preferences and technology is not necessarily
unique. When the growth rate, )(' xg , is positive, the Euler equation can cross the growth
curve in many points. For steady state to be unique, it is necessary that the Euler equation
cuts the growth curve from below. For growth rate 0)(' ≤xg  the steady state equilibrium is
necessarily unique because of decreasing growth curve.

We next explore the existence and uniqueness of the steady state. The Euler equation (12)
in the steady state reduces to

(16) [ ]
[ ] )('1

))()((''
))((')(' xg

xgxhfu
xhhfhfu +=

+
+−

β
.

First we consider the limit of the left-hand side, when the level of stock approaches the
maximum steady state stock, x~ . Because 0)~( =xg , the harvest is zero at x~ . Given the
Inada conditions on the utility and production functions there must be a level of stock de-
noted by *x  such that

(17) [ ]
[ ] ∞=

+
+−

→ ))()((''
))((')('

*
lim

xgxhfu
xhhfhfu

xx β
.

While the right-hand side is a decreasing function of x , since )(xg is a strictly concave
function, one cannot conclude that the left-hand side of (16) is a monotone function of x .
The existence is guaranteed, if the left-hand side starts below the right-hand side at 0=x .

It is easily seen that [ ])0('1)(
0

lim gxRHS
x

+=
→

β . Without Inada conditions on the re-

source growth function, this term is a finite number. In particular, in the logistic case, there
is a level of stock, say 'x , such that 0)'('1 =+ xg .

To be able to say more about the existence, and in particular, the uniqueness of the steady
state we consider a parametrized example. For the purposes of being able to tie the exis-
tence of the steady state to the values of economically interesting parameters we assume
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that the periodic utility function is of the form ))/1(1/()(
11

ρρ −=
−

ccu , where ρ  is the in-
tertemporal elasticity of substitution. Using this utility function and the fact that in steady
state )(xgh =  we rewrite equation (16) as

(18) [ ])('1
)(')(')(

)(')('
1

xg
hxfhhfhf

xhfhhf +=





−−

+ β
ρ

.

The part in parenthesis in the left-hand side can be written as follows

(19)
1

'

1

)(')(')(
)(')('

−−

+
=

−−
+

h
x

hf
f

h
x

hxfhhfhf
xhfhhf .

If we have the Cobb-Douglas production function (i.e. αhhf =)( , with 10 <<α ), then
α/1'/ =hff , where the quantity hff '/  is the elasticity of output with respect to harvest.

Thus we can rewrite the LHS of (18) as

(20) 

ρ

α

1

1
)(

1

1
)()(



















−−

+
=

xg
x

xg
x

xLHS .

A straightforward differentiation yields

(21) 



















−−









−+

+
−−

−



















−−

+
=

−

2

22

11

)11(

)'()1(

11

)'(

1
)(

1

1
)(1)('

g
x

g
x
g

g
x

g
x

g
x

g
x
g

g
x

xg
x

xg
x

xLHS

ααα
ρ

ρ

.

Since the growth function is strictly concave, and provided that 11 −−
g
x

α
 is positive,

0)(' >xLHS .12

Given the limit in (17) above it is sufficient for existence that RHS
x

xLHS
x 0

lim)(
0

lim
→

<
→

.

Now we can rewrite that condition as

                                                

12 Note that 0)(')(')(1 >−−= xhfhhfhfc  in a steady state, then .01
'

' >







−−

h
x

hf
fhf
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(22) [ ] )0()0('1
1

)0(
11

1
)0(

1

)0(

1

RHSg

avg

avgLHS =+<


















−−

+
= β

α

ρ

,

where xxgxavg /)()( =  evaluated at 0=x  is finite as mentioned earlier. The economi-
cally interesting parameters are the elasticity of output with respect to harvest (α ), dis-
count factor ( β ), and the intertemporal elasticity of substitution ( ρ ). The higher the dis-
count factor and the smaller the elasticity of output, the easier it is for the condition to
hold. The effect of the intertemporal elasticity on condition (22) depends on the value of
the term in parenthesis. If it is greater than unity, increasing the elasticity will decrease the
LHS, and thus makes it easier to obtain the existence. If it is less than unity, increasing the
elasticity will increase the LHS.13 We depict the behavior of functions )(xLHS  and

)(xRHS  in Figure 1.

[ ])0('1 g+β

RHS

LHS

LHS(0)

x

LHS

RHS

Figure 1. Existence and uniqueness of the steady state equilibrium.

We collect the previous discussion in

Proposition 1. With iso-elastic utility function and Cobb-Douglas production

function, the existence of steady state depends on elasticity of output with respect

to harvest, discount factor, and intertemporal elasticity of substitution. If steady

                                                

13 If we have the following logistic growth curve: 2)2/1()( xxxg −= , then 1)0( =avg . If 4/1<α ,
the term in brackets is less than unity. If 2/14/1 <<α , that term is bigger than unity.
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state exists, it is unique with these spefications of the utility and production func-

tions.

In the subsequent analysis we will concentrate on the nontrivial unique steady state.14  We
will describe the loci 0=∆ tx  and 0=∆ th  in the hx -space. The slope of the locus,

)( tt xgh = , evaluated at the steady state is

(23) )('
0

xg
dx
dh

txt

t =
=∆

,

and it can be positive, zero or negative. The slope of the locus (derived in Appendix 1) de-
termined by equation (12), and evaluated at the steady state is

(24)

[ ])'1(')('')'1)(('''')(')('')(''')(''
)'1(')('')'1('')(')'1(')(''

2211

3
221

0 gfgxfgcugcugxfcufcu
gfcuggcugfcu

dx
dh

tht

t

+−++−++−
+++++=

=∆ ββ
ββ

and is always positive given our assumptions on the utility function and the fact that '1 g+
needs to be positive, because in the stationary equilibrium '1 g+  equals the interest factor
(c.f. arbitrage equation (8)).

The fact that we concentrate on the unique steady state implies that the following holds in
steady state

(25)
00 =∆=∆

>
tt xt

t

ht

t

dx
dh

dx
dh .

Thus the Euler equation cuts the growth curve from below.

Are the steady states efficient? It is a well-known fact that the competitive equilibria in
overlapping generations models can be inefficient. Keeping in mind that )(' xg  is the rate
of interest in the steady state and the population growth rate is zero in our model, we con-
clude that all those steady states for which 0)(' ≥xg  are efficient. This is the case where
the real interest rate exceeds or equals population growth rate. Steady states in which

0)( <′ xg  are inefficient, since consumption could be increased for every generation by
harvesting some of the resource stock during any period. This case corresponds to the
situation where the real interest rate is less than the population growth rate. This overac-
cumulation is inefficient.15

                                                
14 It can also be the case that the only point where the curves cross is the origin, especially, since we have

not imposed Inada conditions on the growth function.
15 Efficiency outside steady states is a more complicated problem. One can study the efficiency of non-

stationary paths by modifying the criterion developed by Cass (1972) to the needs of the model at hand.
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4. DYNAMICAL EQUILIBRIA: SADDLES

To study the qualitative properties of our model we start by considering paths for which
tt xx ≥+1  and tt hh ≥+1 . It follows from (11)

(26) tttttt xxghxxx ≥+−⇔≥+ )(1 tt hxg ≥⇔ )( .

This means that x  is increasing below the growth curve, and it is decreasing above the
curve.

Considering paths for which tt hh ≥+1 , requires more work. In Appendix 1 (equation A.3)
we derive the following expression (evaluated at the steady state) for the derivative of the
right-hand side of equation (12) above with respect to 1+th

(27) A
c

ufg
h

RHS
t

≡





−+=

∂
∂

+ )(
11''')'1(

21 ρ
β ,

where )( 2cρ  ( [ ])(''/)(' 222 cuccu−= ) is the reciprocal of the elasticity of the marginal util-
ity of consumption. This is also known as the intertemporal elasticity of substitution, and it
depends inversely on the curvature of the periodic utility function. Given the values of tx
and th , the right-hand side of equation (12) is an increasing  (decreasing) function of 1+th ,
if ρ  is less (greater) than unity.

If 1>ρ  we get from (12)

(28) [ ] ≤−−⇔≥ ++ 11 )(')(')(')(' tttttttt xhfhhfhfuhfhh

[ ] [ ])('1))()(('')(' 111 +++ ++ ttttt xgxgxhfuhfβ

Weak inequality, (28), is equivalent to the following statement

(29)
[ ]

[ ] [ ] 1
)('1)()((''

)(')(')('

111

1 ≤
++

−−

+++

+

tttt

ttttt

xgxgxhfu
xhfhhfhfu

β

If 1<ρ , the inequalities in (28) and (29) are reversed. Therefore, the motion of h  on both
sides of the curve, where tt hh =+1 , depends on the size of intertemporal elasticity of sub-
stitution. This fact points out to the possibility that dynamics of the system can drastically
change when ρ  passes through unity (logarithmic preferences). Intuitively, if the in-
tertemporal elasticity of substitution is higher (lower) than one, then the substitution effect
of the interest rate exceeds (falls short of) the income effect. Arbitrage condition (8) im-
plies that more harvesting will increase (decrease) future consumption and gives the rela-
tionship in (28).
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In order to study formally the stability properties of dynamical equilibrium, we first rewrite
equation (11) as follows

(30) ),()(1 tttttt hxGxghxx ≡+−=+

Substituting the RHS of (11) for 1+tx  in (12) gives an implicit equation for 1+th ,

(31) ),(1 ttt hxFh =+

The planar system describing the dynamics of the renewable resource stock and harvesting
consists now of equations (30) and (31). The Jacobian matrix of the partial derivatives of
the system (11)-(12) can be written as

(32)










 −+
=








=

A
B

A
C

g

FF
GG

J
hx

hx
1'1

,

where A  has been derived above in equation (27) and B  and  C  are the partial derivatives
of equation (12) with respect to th  and tx  respectively, and have been derived in Appen-

dix 2. By defining 
1

ˆ
−

=
ρ

ρρ  the two ratios in the Jacobian matrix can then be expressed as

(33) ρ
β

ˆ
''
'''

)('''
)'1)(('''

)('''
)('''

2

2
2

2

2

1
2









−
+

−−=
f
gf

cuf
gcuf

cuf
cuf

A
C

(34)  ρ̂
)'1(''

'''
)('''

)('')'1('
)('''
)('''

)('
))(('''1

2

2
2

1

1
2

1

1









+
+

+
++

+
−=

gf
gf

cuf
cugf

cuf
cuf

cu
hxcuf

A
B ,

where we can see the importance of the magnitude of the intertemporal elasticity of sub-
stitution for the stability analysis. These elements of the Jacobian change signs whenever
ρ  passes through unity, since the bracketed term in AC /  is negative and in AB /  is posi-
tive.

The trace and determinant of the characteristic polynomial of our system can be calculated
as

(35)






 +

−+=
)('

))(('''
1ˆ)'1(

1

1

cu
hxcufgD ρ

(36) ρ̂
)'1(''

'''
)('''

)('')'1('
)('''
)('''

)('
))(('''1)'1(

2

2
2

1

1
2

1

1









+
+

+
++

+
−++=

gf
gf

cuf
cugf

cuf
cuf

cu
hxcufgT .
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Armed with these calculations (see Appendix 2 for details) we get the following Proposi-
tion.

Proposition 2. If the intertemporal elasticity of substitution is at least one half, but

differs from unity, then all the steady state equilibria are saddle points.

Proof. See Appendix 3.

According to Proposition 2, steady states are saddle points for a wide range of the values
for intertemporal elasticity of substitution.16 But when the intertemporal elasticity of sub-
stitution is unity, the periodic utility function is logarithmic, ccu ln)( = , and the term

)(' 1+thf  in equation (12) cancels out. It follows that the dynamical system reduces to a
first-order nonlinear difference equation in the level of stock, x . Once the evolution of x is
determined, the behavior of h can be obtained recursively. It can be shown that

Proposition 3. When the utility function is logarithmic, the planar system reduces to a

nonlinear first-order difference equation for the natural resource stock. If the

steady state is unique, it is stable regardless of whether the equilibrium is efficient

or not.

Proof. See Koskela, Ollikainen and Puhakka (2002).

As Proposition 3 reveals, the assumption of logarithmic utility function in our model is
special; saddle point equilibria vanish and stable equilibria emerge. Qualitatively though
the properties of the equilibria with logarithmic preferences are very close to those of the
saddle point (and thus determinate) equilibria. Since the initial condition for the resource
stock is determined by history, the steady state and all the nonstationary equilibria tending
towards it are determinate. An economic interpretation for Proposition 3 is the following.
With logarithmic utility the substitution and income effects of the rate of return on con-
sumption and saving will offset each other, so that changes in harvesting and resource
stock via the arbitrage condition have no effect on Euler equation (12). Hence, the planar
system reduces to natural resource stock dynamics and the system becomes recursive.

Empirical evidence on the size of the intertemporal elasticity of substitution does not, how-
ever, necessarily coincide with those parameter values presented in Propositions 2 and 3,
but often points out to lower values.17 It is therefore of interest to study also the character-
istics of equilibria in the case when 2/1<ρ .

                                                
16 For the saddle point one of the eigenvalues must be stable, i.e. it must be less than one in absolute value.

Since the determinant is the product of eigenroots we can conclude that the stable root is negative if
0<D , and it is positive if 0>D .

17 See the discussion e.g. in Deaton (1991, pp. 63-75) and for a more recent survey by Attanasio (1999).
Empirical evidence lies in conformity with the notion that the intertemporal elasticity of substitution is
below one and might be less than one half.
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5. DYNAMICAL EQUILIBRIA: INDETERMINACY AND FLIP BI-
FURCATIONS

In the above discussion we found that when 1>ρ , the determinant (D) and the trace (T) of
the system are positive, and D-T+1 < 0. Steady states are thus saddles. These equilibria are
in area C in Figure 2, in which we have reproduced the familiar graphical description of
dynamical equilibria in a planar system (see e.g. Azariadis 1993, p. 66). Stable equilibria
lie in area B , and the other saddle poin equilibria are in area A . Thus complex roots are
not possible in our model.

We are interested in seeing whether our model displays bifurcations. When 1<ρ , the de-
terminant of the system becomes negative, and D-T+1 positive. This means that the saddle-
node bifurcations, which require among other things that D-T+1 = 0, are not possible. We
already proved that steady state equilibria are saddles for 2/11 ≥> ρ . Since D+T+1 cannot
be unambiguously signed for 21<ρ , it is possible to have stable equilibria and flip bifur-
cations (see areas A  and B  in Figure 2).

Figure 2. Characteristics of stability in a planar system

Assuming 2/1<ρ  we have D < 0. We established in Proposition 1 that, when
2/11 ≥< ρ  D-T+1 > 0. To get stability, we need to have D+T+1 > 0 as well. Because we

have rigorously shown the existence of saddles when D < 0 (area A in Figure 2), we can
also show the existence of flip bifurcations, if we can show the stability of equilibria. To
proceed we rewrite D+T+1 as follows

D

T

D+T+1=0D-T+1=0

A

   B

C

1

-1

2-1 1-2



15

(37) { }1ˆ)'1( ++= MgD ρ

(38) { }1ˆ)'1( ++++= NMgT ρ ,

where 0
)('

))(('''

1

1 >
+

−=
cu

hxcufM

0
)'1(''

'''
)('''

)('')'1('
)('''
)('''

2

2
2

1

1
2

>












+
+

+
+=

gf
gf

cuf
cugf

cuf
cuf

N .

Using this notation we can express D+T+1 after some manipulation as

(39) D+T+1 = )ˆ1)('2(ˆˆ)'2( ρρρ +++++ gNMg .

This shows that at least in principle D+T+1 can be zero or positive, if the last term, the
only positive term in the expression, dominates. Note that when D <0, D-T+1 > 0 and
D+T+1 = 0 we have a flip bifurcation (see the line between areas Α and Β in Figure 2).

Providing analytical results on bifurcations is easier for a one-dimensional model. Since
our planar system is quite complex, mainly due to the nonlinear gross return from investing
in the natural resource, we conjecture that reducing the dimension of our planar system to
one by finding the center manifold (applying the Center Manifold Theorem) for our model
may not be a straightforward task.18 In this section we consider a parametric example with
logistic growth function and standard explicit functional forms for utility and production:

2

11

2
1)(;)(,1;

11
)( bxaxxghhfccu −==≠

−
=

−

α
ρ

ρ

ρ

where ρ  is the intertemporal elasticity of substitution. In the steady state, 2)2/1( bxaxh −= .
Using this expression for h , the Euler equation and budget constraints, we end up with the
following expression (see Appendix 4) for the stock of the renewable resource in a steady
state equilibrium

(40) αα
β ρρ −=

−
+

−++
1

2
1)1(1

1

bxabxa
.

A straightforward but tedious calculation yields the following expression for D+T+1

                                                
18 On the Center Manifold Theorem, see Guckenheimer and Holmes (1986), p. 127. For an example of

finding the center manifold in a different two-dimensional model, see Reichlin (1992).



16

(41) 





−

−−++





 −−−

−+−+
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ρ
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ρ 1
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1

1
1
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βαβα

ρα ρ

ρρρ
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In the sequel we undertake a numerical analysis for the parametric example of our model.
We assume the following values for parameters of the growth function and the discount
factor: 1== ba  and 2/1=β .19 The values for growth parameters mean that 1ˆ =x  and

2~ =x , and furthermore that the condition 0)('1 ≥+ xg  holds for all 20 ≤≤ x . Hence we
use the assumptions of the growth function, which in the one-dimensional case eliminate
more complex dynamics, and are in this sense “well-behaved”.20 Economically interesting
parameters are the output elasticity of resource (α ), which determines the price elasticity
of resource demand, and the intertemporal elasticity of substitution ( ρ ). For this reason
our focus will be on finding out for what values of these parameters we will get stability
and flip bifurcations. 

Solving α  from equation (40) and plugging that value into (41) we find out for what com-
binations of x  and ρ  D+T+1 is greater or less than zero or exactly zero. Solving α  from
(40) we get

(42) 





−++−+

−−
−+

−= ρρ β
α

)1(1
1

22
2

22
2

bxabxa
bxa

bxa
bxa .

Plugging this relationship into (41) gives the following expression

(43) 





−
−−++−+−+





−

=++
ρ
ρβ

ρ
ρρ

1
21)2()1)(2(

1
11 bxabxabxaTD

[ ]
[ ][ ] 




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


−+++−−+
−++−+−







−

+ ρρ

ρρ

β
βρ

ρ )1(122)1(2
)1(1)22)(2(

1
1

bxabxabxa
bxabxabxabx

[ ] +







−+++−

−++−+−






−

+ ρρ

ρρρρ

β
ββ

ρ )1(122
))1(1()1)(2(

1
1

bxabxa
bxabxabxa

                                                
19 If we want to interpret literally the length of the period in our overlapping generations economy to be

around 25 years, then the annual discount factor 0.975 (or the rate of time preference about 2.6 percent)
means that the discount factor for 25 years should be around ½.

20 If the value of the parameter a varies, and in particular, is above three, then a period doubling bifurcation
and chaos start to emerge even in this one dimensional logistic equation. Since this has been thoroughly
studied in the existing literature on nonlinear dynamics, we use a parameter value for a , which in itself
does not produce bifurcations or chaotic behavior, see e.g. Holmgren (1996).
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       [ ] 







−+++−

−++−+−






−

+ ρρ

ρρ

β
β

ρ )1(122
))1(1)(1)(2(

1
1

bxabxa
bxabxabxa .

To get a more precise idea where to look for stable equilibria, note that the only positive
term in this expression is the second term. Combining this term and the first term we get
after rearranging

(44) [ ]ρρ βρ
ρ

)1()21(
1

2 bxabxa −+−−





−

−+ .

Consider first the efficient allocations, which lie on the left-hand side of the maximum
sustained yield, i.e. bax /0 ≤≤ . It is quite straightforward to see that the term in the
brackets of (44) is negative. This means that all the steady states are saddles. Therefore, we
should look for possible stable equilibria from the right-hand side of the MSY, where
equilibrium is inefficient.

For given a, b and ρ , the stationary equilibrium condition (40) indicates that there is an
inverse relationship between α  and x. Because we will now concentrate on such alloca-
tions for which bax /> , the value of α  must be relatively small for equation (40) to hold.

Our approach will be the following. We will first graph the surface defined by equation
(43) in the (D+T+1) ρx - space. Then we set D+T+1 = 0, and graph those values of x  and
ρ  for which D+T+1 = 0 holds.
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1.98
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0.1

0.2
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-0.2

0
D+T+1

1.94

1.96

1.98

x

Figure 3. D+T+1.

Figure 3 is the three-dimensional graph of equation (43) (when α  has been substituted in
for the expression of D+T+1). It points out to the fact that D+T+1 will be positive only for
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extremely high (i.e. values which are close to x~  (= 2)) levels of the renewable resource
stock.

In Figure 4 we have projected those values of the resource stock x  and the elasticity of
intertemporal substitution ρ  for which D+T+1 is exactly zero, i.e., for which we have flip
bifurcations. Values of x  and ρ , which lie above the curve will yield stable equilibria, and
for the values of x  and ρ  below the curve we have saddle point equilibria.

Figure 4. A characterization of indeterminacy and flip bifurcations

In Figure 5 we have depicted α , x  and ρ  in the same diagram, i.e. we have graphed
equation (42). This figure indicates that to get stable equilibria and flip bifurcations the
value of α  needs to be quite small. Hence there is a set of parameter values of α  and ρ ,
for which our parametrized economy exhibits stable equilibria, i.e., indeterminacy and flip
bifurcations.21 This also means that there can be endogenous cycles in our model, since the
characteristic roots are of different sign.

There are two types of flip bifurcations. In a supercritical flip bifurcation a stable two-
cycle emerges on the side of the bifurcation value, where the steady state is a saddle. In a
subcritical bifurcation, an unstable two-cycle emerges on the side of the bifurcation value,
where the steady state is stable.

                                                

21 E.g. if 01.0=α  and 03.0=ρ  we get the level of the steady state stock to be 1.95664 and the level of
harvesting 0.04242. We also get 00119886.01 =++TD . If instead we let 011.0=α , we get the
equilibrium stock to be 1.95228, the level of harvesting 0.04658, and 00373852.01 −=++TD .
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Figure 5. Equation (42).

To investigate the type of flip bifurcation, i.e. on which side of the flip bifurcation a two-
cycle exists in our model, we resort to numerical simulations, and ask is it possible to find
four numbers { }2211 ,;, hxhx , which solve the following transition and Euler equations?
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If we find a four-tuple that fulfills equations (45) and (46), then a two-cycle exists. We
fixed 004.0=α , and chose the values of the intertemporal elasticity of substitution from
both sides of the Flip bifurcation curve in Figure 4. In Figure 6 we have chosen to depict
the emergence of the two-cycle for the resource stock x (the vertical axis).
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Figure 5. Subcritical flip bifurcation

Figure 6. Subcritical flip bifurcation.

The flip bifurcation occurs for values of ρ  (the horizontal axis) between 0.1825 and
0.1826. If ρ  = 0.1826, we have a saddle, and if it is 0.1825 we have a stable equilibrium.
As the Figure indicates the period doubling occurs on the stable side, which means that we
have a subcritical flip bifurcation. We are now in a position to summarize our findings in

Proposition 4. If the intertemporal elasticity of substitution is less than half, and

the logistic resource growth function is “well-behaved”, there exists stable

equilibria (indeterminacy) and a subcritical bifurcation.

Flip bifurcations and complex dynamics emerge in our model with standard overlapping
generations structure due to the mixture of low elasticity of intertemporal substitution in
consumption and a well-behaved logistic growth. The parameter values for the intertempo-
ral elasticity of substitution for which we get stability and flip bifurcations are empirically
quite plausible. The parameter values of the share of the resource in total output, α , are
quite small. This seems to be quite plausible when one considers, for instance, exploitation
of fish stocks in typical fishing nations such as Spain and Norway in Europe; Canada, Peru
and Chile in North and South America, or Japan in Asia.
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6. CONCLUSIONS

The stability properties of an overlapping generations model with capital accumulation,
like periodic equilibria and indeterminacy of equilibria, have been subject to a fairly large
amount of research since the mid 1980s. These issues have not, however, been studied
carefully in models with renewable resource use, like fisheries. This is somewhat surpris-
ing in the light of the fact that exploited fish populations seldom exhibit steady state yields,
and more likely provide cyclical, irregular or spasmodic yields. In this paper we have ex-
amined the dynamic properties of an overlapping generations economy with standard as-
sumptions about the utility and production functions, but augmented with a renewable re-
source, which is a factor of production and serves as a store of value.

We showed that the nature of the steady state equilibrium depends on the value of in-
tertemporal elasticity of substitution in consumption. In particular, if the intertemporal
elasticity of substitution is at least one half, but different from unity, then steady states are
saddle points. Interestingly, for smaller values of the intertemporal elasticity of substitu-
tion, which are plausible on the basis of empirical evidence from consumption behavior,
we use a parametric example to demonstrate the existence of a subcritical flip bifurcation
for the case of inefficient equilibrium. This means that a repelling two-cycle emerges on
the side of flip bifurcation where the steady state is stable. When the intertemporal elastic-
ity of substitution is equal to one, the dynamical system reduces to a first-order nonlinear
difference equation in the resource stock and is stable.

We have demonstrated a possibility for different types of equilibrium dynamics in a stan-
dard overlapping generations model with a renewable resource. Interestingly, these various
properties of dynamical equilibria lie in conformity with empirics from the exploited fish
populations, which exhibit not only the conventionally analyzed steady yields, but also cy-
cles and irregularities.
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Appendix 1. The RHS of equation [12] as a function of 1+th , and the deri-
vation of equation [24]

•  The right-hand side of equation (12) as a function of 1+th .

The RHS of (12) is

A.1 [ ] [ ])('1))()(('')(')( 111111 ++++++ ++= tttttt xgxgxhfuhfhRHS β

Differentiating this with respect to 1+th  we get (dropping the arguments when convenient)

A.2 [ ]))((''''')'1(''')'1()(' 1 xgxfufgufghRHS t ++++=+ ββ

       [ ]''))(('''')'1( uxgxfufg +++= β

Keeping in mind that ))(('2 xgxfc +=  we have

A.3 





−+=+ )(

11''')'1()('
2

1 c
ufghRHS t ρ

β

where 
)(''
)('

)(
2

2
2 ccu

cuc −
=ρ   is the elasticity of intertemporal substitution. From A.3 it is now

easy to see that )0(0)(' 1 <>+thRHS when )1(1)( 2 ><cρ .

•  The derivation of equation (24)

We first rewrite equation (12), and take into account the fact that we consider paths, where
tt hh =+1  for all t  but x  may vary.

A.4 [ ] [ ] ))('1())()(('')(')(')(' 1111 ++++ ++=−− ttttttttt xgxgxhfuxhfhhfhfu β

Totally differentiating A.4 and taking into account equation (10) we get

A.5 { [ ] −+++− + )('')(''))(('')('' 121 t
t

tt
t xgcufxgxfcu β

[ ] } ttttt
t dhxgxgfxgxfcu ))('1()('1('))(('')('' 11112 ++++ ++++β

=

{ ++++ + ))('1)(('')(')('1(')('' 121 tt
t

t
t xgxgcuxgfcu β

[ ][ ] } ttttt
t dxxgxgxgxgfcu ))('1())('1)((')('1')('' 112 ++ ++++β .

Rearranging and evaluating A.5 at the stationary point, tt hh =+1  and tt xx =+1 , yields
equation (24) in the text.
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Appendix 2. Development of the Jacobian Matrix of the Partial Deriva-
tives

For the purposes of stability analysis we develop the Jacobian matrix, its determinant and
trace.

A.6 ),(1 ttt hxGx =+

A.7 ),(1 ttt hxFx =+

The stability of the steady state depends on the eigenvalues of the Jacobian matrix of the
partial derivatives


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hx

FF
GG

J .

Calculating the partial derivatives of the Jacobian matrix we first obtain

)('1),( tttx xghxG += , 1),( −=tth hxG .

To get the partials of ),(1 ttt hxFh =+ we first do the implicit differentiation in the
following manner

A.8 ttt CdxBdhAdh +=+1 ,

where A, B and C  are appropriate partial derivatives to be presented in a moment. Calcu-
lating these we take into account )(1 tttt xghxx +−=+ . Given the definitions of A, B and
C  we will then have

A
ChxF ttx =),( , 

A
BhxF tth =),( .

As for A (as evaluated at the steady state) we get from A.3

A.9
ρ

ρβ 1)(''')'1( 2
−+= cufgA .

For the future developments we define 
1

ˆ
−

=
ρ

ρρ . Clearly, 0)(<>A , as 1)(><ρ . Totally

differentiating (12) with respect to th  (again taking into account the transition equation)
we obtain

A.10 [ ] +++−+= )('))()(('')('')(')(')('' 11 tttt
t

t
t
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[ ] [ ] 0)('')(')(')('1)('')(' 121
2

12
2
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t

tt
t

t xgcuhfxgcuhf ββ ,
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and totally differentiating (12) with respect to tx  (again taking into account the transition
equation) we have

A.11 [ ] [ ] [ ] −+−+−= ++ )('1)('')(')(')('1)('')(' 1211
2

tt
t

tt
t

t xgxgcuhfxgcuhfC β

[ ] [ ] [ ] 0)('1)('1)('')(' 2
12

2
1 >++ ++ tt

t
t xgxgcuhfβ .

Next we evaluate A, B and C at the steady state. By taking into account the Euler condition
at the steady state )(')'1()(' 21 cugcu β+= , we get
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Clearly, 0)(/ <>AC  when )1(1 ><ρ , and 0)(/ <>AB  when )1(1 <>ρ .

We can now rewrite the Jacobian as follows

A.13
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C

g
J

1'1
.

The determinant (D) and the trace (T) of the Jacobian matrix, J, are D = 
A
C

A
Bg ++ )'1( and

T = 
A
Bg ++ '1 respectively.  Using equations A.9, A.10 and A.11 we have the following

expressions
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Appendix 3. Proof of Saddle Point Stability

We analyze the stability of system (30) and (31) on the basis of (11) and (12).

The characteristic polynomial associated with the system (30) and (31) expressed in terms
of D and T is

A.16 0)( 2 =+−= DTp λλλ

It is known from the stability theory of difference equations (see e.g. Azariadis, 1993, pp.
63-67) that for a saddle point to exist the roots of 0)( =λp  need to be on both sides of
(minus and plus) unity. Thus for a saddle we need that D-T+1 < 0 and D+T+1 > 0 or D-
T+1 > 0 and D+T+1 < 0.

When ρ̂  is positive ( 1>ρ ) both the determinant and the trace in A.14 and A.15,
respectively, are positive, which also means that D+T+1 > 0 holds. Making inferences
about the sign of D-T+1 requires work. A straightforward calculation yields

A.17 D-T+1=
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so that A.17 cannot be signed yet for 0ˆ >ρ . To get the sign of D-T+1 we use the assump-
tion that our steady state is unique. This is assured by comparing slopes of the curves,
where tt hh =+1  and tt xx =+1 . We develop the condition

A.18
00 =∆=∆

>
tt xt

t

ht
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dx
dh

dx
dh ,

as

A.19 [ ] '
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+++++
ββ
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Multiplying both sides of A.19 by the denominator (negative sign) on the left-hand side we
get

A.20 <+++++ 3
221 )'1(')('')'1('')(')'1(')('' gfcuggcugfcu ββ

')('')'1)((''''')(''''))(('''')('' 2211 ghxfgcuggcugfhxcugfcu ++−++− ββ

'')'1)(('' 2
2 gfgcu ++ β .

and collecting terms A.20 can be re-expressed as
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A.21 '''))(('')'1(')('''')('')('' 1
2

221 gfhxcugfcugcufcu +++++ ββ

0')('')'1)(('' 2 <+++ ghxfgcuβ .

Dividing by ( 0)(''' 2 <cuf β ), using Euler condition and the fact that )('2 hxfc +=
yields
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Now we multiply both sides by )'1/(' gf +  (>0) to get
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Rearranging and taking into account the definition of ρ̂  yields
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If 0ˆ >ρ  (i.e. 1>ρ ) we get by multiplying with ρ̂
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Note that this is exactly D-T+1, which means that we have a saddle when 1>ρ .

If 0ˆ <ρ  (i.e. 1<ρ ) we get by multiplying with ρ̂

A.26
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which means that D-T+1 is positive. To get a saddle in this case, we need to have D+T+1 < 0.
To explore this possibility when 0ˆ<ρ  we rewrite D and T as follows

A.27i { }1ˆ)'1( ++= MgD ρ

A.27ii { }1ˆ)'1( ++++= NMgT ρ ,
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where
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Using this shorthand notation D+T+1 can be expressed after some manipulation

A.28 D+T+1 = )ˆ1)('2(ˆˆ)'2( ρρρ +++++ gNMg .

The first two terms in (A.28) are negative, when 0ˆ <ρ . The third term is also negative
when 0ˆ1 <+ ρ . This happens when 2/1>ρ . So we have a saddle in this case, too. This
completes the proof of Proposition 1. Q.E.D.
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Appendix 4. Derivation of equation (40)

Given the assumed functional forms, the Euler equation can be written

A.29 [ ] 12 )'1( cgc ρβ+= .

Plugging this into the equilibrium condition, )(21 hfcc =+  and using the budget constraint
))()(('2 xgxhfc += gives

[ ]
ρρ

α

β)1(1
))2/1((

1 bxa
bxaxc

−++
−=  and  [ ] [ ]

))2/1((
)2/1(1))2/1((

2 bxa
bxabxaxc

−
−+−=

αα .

If we plug these expressions for consumption back into the equilibrium condition we get
equation (40) in the text.
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