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Rouvinen, Petri – Issues in R&D–Productivity Dynamics: Causality, Lags, and ‘Dry Holes’,

Helsinki: ETLA, Elinkeinoelämän Tutkimuslaitos, The Research Institute of the Finnish Econ-

omy, 1999, 29 p. (Keskusteluaiheita – Discussion Papers, ISSN 0781-6847, No. 694).

Abstract: This paper focuses on four key issues in the dynamic relationship between R&D and

productivity, namely, (1.) does R&D cause productivity and/or vice versa, (2.) is there a lag be-

tween R&D and its productivity effects, (3.) does the potency of R&D vary in timing and magni-

tude, and (4.) what is the role of R&D spillovers and aggregate shocks? An unbalanced panel of

2.5-digit manufacturing industries in twelve OECD countries from 1973 to 1997 is being used.

The results suggest that (1.) R&D Granger causes total factor productivity (TFP) but not vice

versa, (2.) productivity seems to respond to changes in R&D expenditure with a considerable lag,

(3.) the potency of R&D indeed varies in timing and magnitude but at least during the sample pe-

riod in a somewhat unpredictable manner, and that (4.) the elasticity of TFP with respect to ag-

gregate shocks is high but negligible with respect to R&D spillovers.

Keywords: Panel data, total factor productivity, R&D, dynamics, causality, lag structure, spill-

overs.

JEL codes: C23, D24, O30, O40.

Rouvinen, Petri – Näkökohtia tuotekehityksen ja tuottavuuden dynamiikkaan: kausaali-

suus, aikaviiveet ja ’kuivat jaksot’, Helsinki: ETLA, Elinkeinoelämän Tutkimuslaitos, The Re-

search Institute of the Finnish Economy, 1999, 29 s. (Keskusteluaiheita – Discussion Papers,

ISSN 0781-6847, No. 694).

Tiivistelmä: Tässä tutkimuksessa käsitellään neljää keskeistä seikkaa tuotekehityksen (T&K) ja

tuottavuuden välisessä dynamiikassa: (1.) aiheuttaako tuotekehitys tuottavuuskasvua ja/tai päin-

vastoin, (2.) ilmenevätkö tuotekehityksen tuottavuusvaikutukset viiveellä, (3.) vaihteleeko tuote-

kehityksen vaikutusvoima yli ajan ja (4.) millainen on aggregaattishokkien ja tuotekehityksen ul-

koisvaikutusten rooli. Havaintoaineistona on kahdentoista OECD-maan 2.5-numerotason teolli-

suustoimialoista muodostettu epätasapainoinen paneeli.

Tulosten mukaan (1.) T&K ’Granger’ aiheuttaa kokonaistuottavuuden kasvua mutta ei päinvas-

toin, (2.) tuotekehityksen vaikutukset ilmenevät merkittävällä viiveellä, (3.) T&K:n vaikutusvoi-

ma vaihtelee määrän ja ajoituksen suhteen joskin vaikeasti ennustettavalla tavalla, ja (4.) aggre-

gaattishokkien vaikutus kokonaistuottavuuteen on huomattava mutta tuotekehityksen ulkoisvai-

kutusten vähäinen.

Avainsanat: Paneeliaineisto, kokonaistuottavuus, tuotekehitys, dynamiikka, kausaalisuus, viive-

rakenne, ulkoisvaikutukset.
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DYNAMIC EFFECTS OF R&D ON PRODUCTIVITY
IN OECD MANUFACTURING INDUSTRIES

INTRODUCTION

The relationship between R&D and productivity1 is one of the great folk theorems of the

economic profession. On this issue Griliches (1995, p. 52) notes:

“Most of us also share the conviction that both the public investment in science
and the private investments in industrial R&D have been crucial contributors to
world economic growth in the past and will also remain crucial as far as the fu-
ture is concerned. Nevertheless, the quantitative, scientific base for these convic-
tions is rather thin.”

Griliches recognizes three main alternatives to analyzing the contribution of R&D to

growth: historical case studies, invention count or patent statistics analyses, and econometric

studies relating productivity to R&D and possibly other variables. In what follows, we will con-

centrate on the last alternative. We will study four important issues in the R&D–productivity re-

lationship:

1. Does R&D cause, in the Granger sense, productivity growth and/or vice versa?

2. Is there a lag between R&D expenditure and the productivity growth it may cause?

3. Does the potency of R&D vary in timing and magnitude?

4. What is the role of R&D spillovers and aggregate shocks in the R&D–productivity dynamics?

Many econometric studies take for granted a causal relationship between R&D and pro-

ductivity and/or assume that R&D is exogenous rather than endogenous (or predetermined) in

productivity equations. Granger causality tests will be the starting point of our empirical analysis.

Given that R&D indeed contributes to productivity growth, the next obvious question is,

how soon can we expect the positive effects of an R&D investment. Sterlacchini (1989) rightfully

criticizes the literature for ignoring the lag structure in the relationship in the effects of R&D on

TFP; most studies either construct R&D stocks using the perpetual inventory method2 or ignore
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the issue altogether.3 Park (1995) and Englander et al. (1988) use three-year lags of R&D stock

measures. Strauss and Ferris (1996) implement a dynamic error correction model as suggested by

Phillips and Loretan (1991). Ravenscraft and Scherer (1982) paper is one of the few studies ex-

plicitly discussing the timing of R&D effects. Deflated gross profits4 are regressed on a distrib-

uted lag of deflated R&D outlays and other variables. After experimenting with several distrib-

uted lag specifications it is concluded that “There is strong evidence that the lag structure is

roughly bell-shaped, with a mean lag of from four to six years.” (p. 619).

Scientific breakthroughs seem to come about in a somewhat erratic manner. A range of

related innovations follows a major invention or discovery (e.g., semiconductors). It is even ar-

gued that technological breakthroughs are the force behind ‘long wages’ or ‘Kontratieff cycles’

(Freeman & Perez, 1988). Similarly, there is no apparent reason why R&D should contribute to

productivity in a predictable manner. It is quite possible, for instance, that the productivity im-

provement potential of current knowledge is exhausted to the extent that even considerable in-

vestments in R&D do not bear fruit until efforts are redirected after some promising discovery.

Englander, Evenson, and Hanazaki (1988, p. 8) state that5

“Given this long-run role of technological change, it is important to consider the
possibility that a slowing of the generation or diffusion of new technology may
have contributed to the slowdown in the growth of total factor productivity (TFP)
… [many] [s]tudies… implicitly assume that the efficacy or potency of R&D is
essentially constant [over time]… This a restrictive assumption, as there is no
reason ex ante that R&D cannot be in a period of “dry holes”, in which potency
is temporarily reduced.”

A peculiar feature of R&D is that a firm investing in it is often unable to exclude others

from freely obtaining some of the benefits (for review see, e.g., Griliches, 1992; Mohnen, 1990;

Mohnen, 1996; Nadiri, 1993). Given that these R&D spillovers exist, accounting for them should

contribute to the explanatory power of a R&D–productivity model. There is also some discussion

on ‘productive spillovers’ (Caballero & Lyons, 1989; Caballero & Lyons, 1990; Caballero & Ly-

ons, 1992), which should be equally important in the R&D–productivity model. It has been sug-

gested, however, that these spillovers are merely a specification error (Basu & Fernald, 1995), so

we will rather call these ‘spillovers’ from productivity developments in other industries ‘aggre-

gate shocks’.
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MODEL

We complement a standard Cobb-Douglas production function with an industry i ’s

knowledge (R&D) stock, a disembodied technological shock at time t , a measure of any time in-

variant variables possibly affecting industry i ’s performance, and with a vector of other possible

explanatory factors itX , i.e.,

i t K L R X
it it it it itY e e K L Rη γ β β β= X ββββ , (1)

where subscript 1,2, ,i N= !  refers to a cross-sectional unit (individual), subscript 1,2, , it T= !

refers to a point in time, itY  is the real value added of industry i  at time t , itK  is the corre-

sponding physical capital stock,  itL  is the labor input, itR  is the knowledge stock, iη  is a meas-

ure of time-invariant variables affecting industry i ’s  performance, tγ  is a time-varying technol-

ogy shock, and itX  is a set of other possible explanatory factors. The measure of the time-

invariant variables may include any country or industry specific variables, e.g., geographical lo-

cation or a country’s overall innovativeness in industry i , provided that they do not vary across

time.

By dividing both sides with K L
it itK Lβ β , the left-hand side of the equation coincides, after

appropriate scaling, with the total factor productivity (TFP) measure used by OECD (see below).6

After taking natural logarithms, we get

ln( ) ln( ) ln( )it R it X it t i itTFP Rβ γ η υ= + + + +Xββββ , (2)

where itυ  is an error term. There are, however, two problems with the specification in Equation

(2). First, we do not observe itR . Second, productivity may adjust to shock with a lag. Let us

specify an autoregressive version of Equation (2):

( 1) ( 1) ( ) ( )
0

ln( ) ln( ) ln( ) ln( )
n

it TFP t i t R t k i t k X it t i it
k

TFP TFP IRβ β γ η υ− − − −
=

= + + + + +∑ Xββββ (3)

where itIR  is industry i ’s R&D expenditure at time t . Thus, we are explicitly assuming that

knowledge stock is accumulated through current and past R&D investments in some manner. We
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include the lagged dependent variable as a regressor in order to account for the dynamic adjust-

ment of productivity.

DATA7

Two commercially available databases by the Organisation for Economic Co-operation

and Development (OECD), namely, Analytical Business Enterprise R&D Database (known as

ANBERD, OECD, 1998) and International Sectoral Database (known as ISDB, OECD, 1999),

are our primary data sources. Both databases use International Standard Industrial Classification

(ISIC revision 2, UN, 1968) currently used in the OECD National Accounts publication. We are

forced to adapt the more aggregate ISDB industry definitions; we consider the fourteen manu-

facturing industries available (see Table 1).8

While both ANBERD and ISDB cover 15 countries, they overlap only on 13.9 Further-

more, we also exclude Australia due to prohibitively many missing observations.10 ANBERD and

ISDB have data on both the Federal Republic of Germany (West Germany) and the United Ger-

many (Germany), but we only included West Germany since at this point data on the United

Germany consisted of only a few annual observations.11 Thus, 12 OECD countries are included in

the analysis.12

We construct a panel of fourteen industries in twelve OECD countries from 1973 to

1997.13 Thus, in principle, we have a panel of 168 cross-sectional units observed in a period of 25

years – actual data patterns in the sample are illustrated in Table 2.

All-in-all 47 industries are lost due to missing or insufficient data. Nearly 80% of these

are three-digit industries. A balanced 1973–91 sub-sample would include 103 cross-sectional

units; years 1985–90 are observed for all 121 cross-sectional units.
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Table 1. Manufacturing industries included in the study.

ISDB code ANBERD code ISIC major 
division

Corresponding 
NACE code Title of category

FOD 31 31. 36 Food, beverages and tobacco

TEX 32 32. 42 Textiles, wearing apparel and leather 
industries

WOD 33 33. – Wood, and wood products, including 
furniture

PAP 34 34. 47 Paper, and paper products, printing and 
publishing

CHE 35 35. 17 + 49 Chemicals and chemical petroleum, coal, 
rubber and plastic products

MNM 36 36. 15 Non-metallic mineral products except 
products of petroleum and coal

BMI 37 37. 13 Basic metal industries

MEQ 38 38. 19 + 21 + 23 + 25 
+ 28

Fabricated metal products, machinery and 
equipment

BMA 381 381 19 Fabricated metal products, except 
machinery and equipment

MAI (382-3825) + 3825 382 21 Machinery except electrical

MIO 385 385 23 Professional, scientific, measuring and 
controlling equipment n.e.c.

MEL (3830-3832) + 3832 383 25 Electrical machinery apparatus, appliances 
and supplies

MTR 3841 + 3843 + 3845 + 
(3842+3844+3849) 384 28 Transport equipment

MOT 39 39. 48 Other manufacturing industries

Note: ISIC: International Standard Industrial Classification (Classification Internationale Type par Industrie, CITI).
NACE: General Industrial Classification of All Economic Activities in the European Communities
(Nomenclature des Activités dans les Communautés Européennes, NACE).

Table 2. Data patterns across twelve countries and fourteen industries by their sample frequency.

Freq. (no. of ind. 
across countries 
with the pattern)

No. of 
obs. 

(years)

19
73

19
74

19
75

19
76

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

27            21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
26            22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25            23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9            25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9            20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7            19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7            11 1 1 1 1 1 1 1 1 1 1 1
7            18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3            16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1            16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

121            11–25 1 1 1 1 1 1

Note: Bottom row refers to the whole sample.
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There is a voluminous literature on the definition and measurement of productivity. Es-

sentially, a typical measure of total factor productivity (TFP) is calculated as the difference be-

tween output growth and the weighted average of input growths. Commonly weights are factor

cost shares, following a CD (Cobb & Douglas, 1928) production function framework.14 There are

known shortcomings of the standard measures of productivity, including inadequate control for

returns to scale, level of capacity utilization, quality of inputs, and externalities. We nevertheless

use the official OECD TFP indices from ISDB (1990=1.00, see OECD, 1999, pp. 50-52, Equa-

tion 13 in particular). Our estimation method and the choice of explanatory variables cure some

of the shortcomings the productivity measure may have (see below). As mentioned in Endnote 6,

we will ‘reverse the scaling’ of the official TFP measures (exchange rates as below) so that our

specification will correspond exactly to Equation (2), without some arbitrary scaling of TFP fig-

ures.

ANBERD includes R&D figures in national currencies and current prices. These figures

are transferred to 1990 prices by using industry-level implicit gross fixed capital formation price

indices derived from ISDB (if not available, we used implicit manufacturing GDP deflators in-

stead). We use gross fixed capital formation (gfcf) purchasing power parity (ppp) exchange rates

from ISDB (OECD, 1999) to transfer the series to millions of 1990 U.S. dollars. Thus, we have se-

ries that are roughly comparable across countries in 1990, but the percentage changes correspond

to those in national currency 1990 price series.15 We take natural logs of both productivity and

R&D series.

We will consider including the overall TFP in manufacturing industries (other than the

representative one) as a measure of countrywide ‘aggregate shocks’.16 Furthermore, we experi-

ment with a measure of domestic R&D spillover flow, defined as the sum of R&D efforts in other

than the representative industry.17

See Table 10 in Appendix A for descriptive statistics.
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METHODOLOGY

AUTOREGRESSIVE DISTRIBUTED LAG MODEL18

Let us consider the following autoregressive distributed lag model (ADL) in a time-series

cross-section (TSCS) context ( t  refers to a point in time and i  refers to a cross-sectional unit, in-

dividual):

, , , ,
1 0

,   1, , ;  1, ,
p q

i t k i t k l i t l t i i t i
k l

y m y t T i Nα λ η υ− −
= =

= + + + + + = =∑ ∑ ! !ββββ x , (4)

where ,i tυ  a time-varying stochastic error term with some properties, iη  and tλ are, respectively,

individual and time specific effects, ,i tx  is a vector or explanatory variables, and m  is a combi-

nation of a constant term and its coefficient. Let us define , ,i t i i tε η υ= +  and omit the time specific

effect for the time being. For the present purposes there is no loss in generality in assuming that

1p q= =  and that there is only one explanatory variable. Now Equation (4) can be rewritten as

ADL(1,1) model:

, 1 , 1 0 , 1 , 1 ,i t i t i t i t i ty m y x xα β β ε− −= + + + + . (5)

Inverting the polynomial gives

2 2
, 1 1 1 1 0 , 1 , 1 ,(1 ) (1 )( )i t i t i t i ty m L L x xα α α α β β ε−= + + + + + + + + +! ! , (6)

where L  is the lag operator. Thus, the current value of ,i tx  has an effect on the current and future

values of ,i ty . This can be demonstrated by taking partial derivatives:

,
0

,

, 1
1 1 0

,

, 2 2
1 1 1 0

,

i t

i t

i t

i t

i t

i t

y
x

y
x

y
x

β

β α β

α β α β

+

+

∂
=

∂
∂

= +
∂

∂
= +

∂
"

. (7)

Immediate response of ,i ty  to a change in ,i tx  is followed by short-, medium-, and long-run re-

sponses. Assuming stability ( 1 1α < ), the total effect is given by 0 1 1( ) (1 )β β α+ − .19 After speci-

fying the initial equation (such as Equation (5)), at least four practical problems arise:
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1. how to account for the presence and features of the unobserved component ,i tε ,

2. how to control for the time-series cross-section nature of the data,

3. how to determined the appropriate lag lengths of the ADL process, and

4. how to account for the nature of the data generation process of ,i tx .

Let us first focus on the last (4.) of the aforementioned issues. A typical assumption is that ,i tx  is

stochastically independent of ,i tε , i.e., , ,( , ) 0i t i t sE x sε + = ∀ . This implies that past, current, and

future shocks have no effect on ,i tx , in which case ,i tx  is said to be strictly exogenous. If ,i tx  is

independent of current and future but not past disturbances, i.e., , ,( , ) 0 0i t i t sE x sε + = ∀ ≥ , ,i tx  is

said to be predetermined. Otherwise ,i tx  is endogenous. The remaining three issues will be dis-

cussed below.

DYNAMIC PANEL DATA ESTIMATORS

Let us rewrite Equation (5)

, 1 , 1 0 , 1 , 1 ,i t i t i t i t i i ty m y x xα β β η υ− −= + + + + + (8)

and assume that

1. the expected values of both unobserved components are zero, i.e., ,( ) ( ) 0i i tE Eη υ= = ,20

2. the individual effect and the time-varying error term are uncorrelated, i.e., ,( , ) 0i i tE η υ = ,

3. there is no autocorrelation in the time-varying error term, i.e., , ,( , ) 0 0i t i t sE sυ υ + = ∀ ≠ , and

4. the initial value of the dependent variable is not correlated with the future error terms, i.e.,

,1 ,( , ) 0 2i i tE y tυ = ∀ ≥  (the initial condition).21

Panel data estimators are obsolete unless the individual effect is indeed present, i.e., 2 0ηδ > . Ex-

plosive roots are ruled out, i.e., 1 1α < .22 The fact that the lagged dependent variable is included

as one of the regressors, makes pooled ordinary least squares (OLS) as well as classic error com-

ponent estimators23 obsolete.24 We could specify a maximum likelihood (ML) estimator for

Equation (8),25 but in order to do that we ought to have rather detailed knowledge of the proper-
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ties of the error term, which we obviously do not. Therefore, we resort to instrumental variable

(IV) or generalized method of moments (GMM) estimators (Hansen, 1982; White, 1982).

Anderson and Hsiao (1981) suggest first differencing the model in Equation (8) in order

to eliminate iη .26 The transformed error term becomes , , 1i t i tυ υ −− ,27 which is negatively corre-

lated with the transformed lagged dependent variable , 1 , 2i t i ty y− −− . However, assuming no auto-

correlation and the ‘initial condition’ (see above), , 2i ty −  and , 2i ty −∆  are not correlated with

, , 1i t i tυ υ −−  and are presumably correlated with , 1i ty −∆ , which makes them suitable instruments.28

Anderson and Hsiao propose estimating the first-differenced equation, with either lagged levels

or differences as instruments, by two stage least squares (2SLS). While this Anderson & Hsiao

estimator (AH) is consistent as N  →∞ , its efficiency can be improved since ,i t ly −  and ,i t ly −∆

for 3l ≥  also qualify as instruments. Furthermore, 2SLS does not account for the MA(1) process

with an unit root we introduced to the transformed error term ( , , 1i t i tυ υ −− ).29

Arellano and Bond (1991)30 propose an ‘optimal’ GMM estimator for a dynamic first-

differenced panel data equation,31 where all possible lags (and possibly current and future values

in case of strictly exogenous variables) of regressors are used as instruments. Let us define iZ  as

a matrix of these orthogonality conditions for individual i  ( Z  as a stacked version of these ma-

trices across individuals).32 We still have to account for the effects of the first-differenced trans-

formation on the error term. Assuming that ,i tυ  is 2(0, )IID υδ , the variance-covariance matrix

takes the form ' 2( )i i iE Hυυ υ δ∆ ∆ = , where '
,3 ,2 , , 1( , , )

i ii i i i T i Tυ υ υ υ υ −∆ = − −!  and

2 1 0 0
1 2 0 01

2 0 0 2 1
0 0 1 2

iH

− 
− 

=  
 −
 − 

!
!

" " # " "
!
!

. (9)

Let us define υ∆  as a stacked version of iυ∆  matrices. From orthogonality conditions we know

that ( ' ) 0E Z υ∆ = , and we can use the sample analogs of these conditions to specify a GMM es-

timator. Let us define '
,3 ,2 , , -1( , ,  )i i i i T i Ty y y y y∆ = − −! , and Y as a stacked version of these. Fur-
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thermore, if W is a matrix of stacked regressors and γ  a vector of coefficients, a  GMM estima-

tor can be written as follows:

1ˆ ( ' ' ) ' 'GMM N NW Z A Z W W Z A Z Yγ −= , (10)

 where NA  is an appropriately chosen weight matrix. An optimal GMM estimator will set

1
' '1

1

ˆ ˆ( )
N

N i i i iN
i

A Z Zυ υ
−

=

 = ∆ ∆  
∑ , (11)

which is efficient based on the finite sample moment conditions ( ' ) 0E Z υ∆ = . However, a pre-

liminary NA  has to be chosen in order to obtain consistent estimates of iυ∆  used for the con-

struction of the optimal NA . Arellano & Bond propose using iH  (see above) as the bases of the

first-step weighting matrix, i.e., setting

1
'1

1
( )

N

N i i iN
i

A Z H Z
−

=

 =   
∑ , (12)

which is asymptotically equivalent to *ˆGMMγ . Simulation studies suggest that the efficiency loss

from using weighting matrix in Equation (12) is rather small, whereas results and tests based on

the optimal weighting matrix in Equation (11) may be misleading in finite samples (Arellano &

Bond, 1991; Blundell & Bond, 1998). Thus, we will base our results in the weighting matrix in

Equation (11); on occasion we report both ‘one step’ and ‘two step’ results. Standard deviations

and test statistics are nevertheless based on White (1980) heteroskedasticity consistent covariance

matrices. In what follows the first-differenced Arellano & Bond (1991) dynamic panel data esti-

mator will be referred to as DPD-DIF.

DPD-DIF exploits all available linear moment conditions in the absence of outside in-

struments. Ahn and Schmidt (1995) propose using additional nonlinear moment conditions,

which offer potentially big improvements in efficiency when, e.g. in Equation (8), 1 1α  →  (the

dependent variable follows a random walk) and/or 2 2
η υδ δ  →∞  (the individual effect domi-

nates the time-varying error term). The downside is that a homoskedasticity through time restric-

tion is imposed and that these additional conditions are implemented with a nonlinear estimator.



11

Arellano and Bover (1995) first proposed using lagged differences as instruments for

equations in levels. The validity of these extra moment conditions depends on the initial condi-

tions on the process generating ,1iy . As long as the entry period ‘disequilibrium’ of ,i tε  from

(1 )iη α− is randomly distributed across individuals, the ‘level’ moment conditions remain valid.

Blundell and Bond (1998) propose a linear GMM estimator (DPD-SYS) exploiting this idea.

DPD-SYS can be defined as DPD-DIF above, but now we stack individual i ’s differenced equa-

tions and level equations. The instrument matrix is extended accordingly. One- and two-step

GMM estimators can be defined as above, but now the one-step estimator is not asymptotically

equivalent to the two-step estimator (not even in the IID  case).

EMPIRICAL RESULTS

In what follows we study the properties of the model in Equation (3) with methods dis-

cussed in the above section. Recall that our objective is to study four related issues, namely:

1. Does R&D Granger cause productivity and/or vice versa?

2. Is there a lag between R&D expenditure and its productivity effects?

3. Does the potency of R&D vary in timing and magnitude?

4. What is the role of R&D spillovers and aggregate shocks?

BIVARIATE GRANGER CAUSALITY TESTING

Granger’s (1969, p. 428) notion of causality states that “… tY  is causing tX  if we are

better able to predict tX  using all available information than if the information apart from tY  had

been used.” Since the notion of ‘all available information’ is not particularly operational,

Granger’s suggestion to regress tX  on its own lags and a set of lagged tY s has become the norm.

If the set of lagged tY s contributes statistically significantly to the explanation of tX , tY  Granger

causes tX .

Holtz-Eakin, Newey, and Rosen (1988) 33 propose using their panel VAR methodology to

test Granger causality in a panel data context: we will implement a similar test by using the
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aforementioned DPD-DIF. Granger causality test assumes that the series are stationary, which

should be the case after the first-difference transformation. Since we want the parameters to be

identified under both the null and the alternative hypotheses, we model both variables as being

endogenous, i.e., we will use lagged levels from the second lag onwards as instruments. To re-

duce the risk of overfitting and finite sample bias when the full set of orthogonality conditions are

used, we use instruments up to the maximum lag length in the model.

Hall, Mairesse, Branstetter, and Crépon (1998) use cross-country firm-level data to study

whether cash flow causes investment and R&D in a similar econometric framework. They ex-

periment with lag lengths from 2 to 5, and generally settle for 4 or 5 lags. Since Granger causality

tests are somewhat sensitive to the chosen lag length, we report results for lag lengths from 3 to 6.

Table 3. Granger causality tests.

Estimation information:
   Dep. variable ∆y t ln(TFP) ln(TFP) ln(TFP) ln(TFP)
   Lags of ∆y t  up to 6 5 4 3
   Indep. variable ∆x t ln(R&D) ln(R&D) ln(R&D) ln(R&D)
   Lags of ∆x t  up to 6 5 4 3
Sample information:
   No. of observations 1,672 1,793 1,914 2,035
   No. of parameters 30 29 28 27
   No. of individuals 121 121 121 121
   Longest time series 18 19 20 21
   Shortest time series 4 5 6 7
Does x t  cause y t ? 15.49 (6) ** 13.11 (5) ** 7.612 (4) 5.406 (3)

Estimation information:
   Dep. variable ∆y t ln(R&D) ln(R&D) ln(R&D) ln(R&D)
   Lags of ∆y t  up to 6 5 4 3
   Indep. variable ∆x t ln(TFP) ln(TFP) ln(TFP) ln(TFP)
   Lags of ∆x t  up to 6 5 4 3
Sample information:
   No. of observations 1,672 1,793 1,914 2,035
   No. of parameters 30 29 28 27
   No. of individuals 121 121 121 121
   Longest time series 18 19 20 21
   Shortest time series 4 5 6 7
Does x t  cause y t ? 7.356 (6) 2.120 (5) 2.135 (4) 1.568 (3)

Note: Computations with Ox 2.10 (see Doornik, 1999) and DPD 1.00a (Doornik, Arellano, & Bond, 1999). Imple-
mented with Arellano and Bond (1991) dynamic panel data estimator (DPD-DIF). All estimations include a
constant term and time dummies (instrumented by themselves). Question ‘Does tx cause ty ?’ refers to the
joint significance test of x s (χ2-distributed Wald tests; degrees of freedom in the parenthesis). Notions ***,
**, and * refer to the joint significance at 1, 5, and 10% levels. One-step results with robust standard errors.
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Results in Table 3 would seem to suggest that R&D Granger causes TFP but not vice

versa. With 5 and 6 lags, the tests for R&D causing TFP are nearly statistically significant at 1%

level and therefore are clearly significant at 5% level. With four lags the test just misses the mark

at 10% level, i.e., would be significant at 11% level.  With three lags the test would be significant

at 15% level. Even in the most favorable case of 6 lags, the reverse causality test would not be

significant even at 25% level.

Besides Granger causality, the tests in Table 3 also suggest that lagged values of R&D

may help to explain TFP in an economic model. Since causality is unidirectional, there does not

appear to be feedback from TFP to R&D. This also leaves open whether R&D is exogenous or

endogenous.34

TRADITIONAL PANEL DATA ESTIMATORS

Above we discussed problems and asymptotic biases associated with some traditional

panel data estimators. It is nevertheless worthwhile to consider these, as they provide useful

checks on the performance of the model when modern dynamic panel data estimators are being

used.

Table 4 presents estimation results and an ADL(1,6) model with a few traditional panel

data estimators. We use the largest available sample in all estimations. Note that the 2SLS results

are not directly comparable to the OLS and WG results, since in the 2SLS case the first observa-

tion of each individual is lost as a consequence of the first-difference transformation. Even if

R&D were strictly exogenous, OLS and WG results would be biased (see Endnote 24 for a brief

discussion). The Anderson and Hsiao (1982) two-stage least squares instrumental variable esti-

mator would be perhaps the simplest acceptable instrumental variables estimator in this context –

again assuming the strictly exogeneity of R&D.

The results in Table 4 do not provide a very fruitful starting point for further analysis.

The data generation process of TFP seems to be close to having an unit root, i.e., is close to a ran-

dom walk, in which case first differences may not be very informative (see above). Current and

past values of R&D seem to contribute relatively little to TFP. The fourth lag of R&D becomes
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consistently significant in these estimations. In what follows we will further examine ADL(1,4)

specification.35

Table 4. Results with a few traditional panel data estimators.

Indep. variables below.1 Method:2 OLS WG 2SLS (AH) 9

Dependent variable: ln(TFP )t Est. St. dev. Est. St. dev. Est. St. dev.

ln(TFP )t -1 .9609 .0072 *** .8356 .0221 *** .8165 .0478 ***
ln(R&D )t .0020 .0078 -.0129 .0088 -.0220 .0124 *
ln(R&D )t -1 .0060 .0096 .0051 .0092 .0087 .0093
ln(R&D )t -2 -.0062 .0132 -.0054 .0132 -.0098 .0136
ln(R&D )t -3 -.0102 .0125 -.0106 .0119 -.0104 .0115
ln(R&D )t -4 .0271 .0132 ** .0242 .0122 ** .0224 .0125 *
ln(R&D )t -5 -.0118 .0128 -.0093 .0115 -.0133 .0112
ln(R&D )t -6 -.0044 .0071 -.0035 .0072 -.0019 .0076

Transformation: None Within groups First differences
R-squared: .9725 .8053 –
No. of observations: 1,793 1,793 1,672
No. of parameters: 27 147 8 26
No. of individuals: 121 121 121
Longest time series: 19 19 18
Shortest time series: 5 5 4

Joint significance of regressors:3 44,990.0 (8) *** 1,906.0 (8) *** 363.9 (8) ***
Joint significance of dummies:4 300.0 (19) *** 277.8 (18) *** 275.3 (18) ***
Joint signif. of time dummies:5 271.4 (18) *** 277.8 (18) *** 275.3 (18) ***
First-order autocorrelation:6 1.5 N(0,1) 1.3 N(0,1) -5.2 N(0,1) ***
Second-order autocorrelation:7 -1.2 N(0,1) -1.8 N(0,1) -1.0 N(0,1)

Note: Computations with Ox 2.10 (see Doornik, 1999) and DPD 1.00a (Doornik et al., 1999).
1 A constant term and time dummies included in every estimation.
2 Standard errors and test statistics are based on White heteroskedasticity consistent covariance matrices. No-
tions ***, **, and * refer to significance at 1, 5, and 10% levels.
3 Joint significance of regressors excluding the constant term and time dummies (a χ2-distributed Wald test;
degrees of freedom in the parenthesis). A low p-value suggests that the null hypothesis of regressors being
zero should be rejected.
4 Joint significance of the constant term and dummies (a χ2-distributed Wald test; degrees of freedom in the
parenthesis). A low p-value suggests that the null hypothesis of the constant term and dummies being zero
should be rejected.
5 Joint significance of dummies excluding the constant term (a χ2-distributed Wald test; degrees of freedom
in the parenthesis). A low p-value suggests that the null hypothesis of dummies being zero should be rejected.
6 Arellano and Bond (1991) test for first-order serial correlation. Based on standardized average residual
autocovariances. As indicated, asymptotically distributed N(0,1) under the null of no serial correlation. A low
p-value suggests that first-order serial correlation exists.
7 Arellano and Bond (1991) test for second-order serial correlation. See above note.
8 Includes the dummies implied by the within group transformation.
9 Anderson and Hsiao (1982) instrumental variables estimator. Lagged dependent variable is being instrument
by its second and third lagged levels; other variables instrumented by themselves, which suggests that R&D
is assumed to be strictly exogenous. Note that due to the transformation we expect to find first-order serial
correlation in the transformed error term.



15

EFFICIENT DYNAMIC PANEL DATA ESTIMATORS

As the title of this section suggests, DPD-DIF and DPD-SYS discussed above are effi-

cient in the sense that they, in principle, exploit the maximum number of moment conditions un-

der certain conditions. In practice, the number of orthogonality conditions may have to be limited

not only for computational but also for theoretical reasons (see above).

In a sense the simplest overidentifying instrument set for a DPD-type estimation would

be the same as the one used in implementing the Anderson and Hsiao (1982) estimator in Table

4:36 this is equivalent to assuming that the original error term follows MA(0) process, and that

R&D is strictly exogenous. Unfortunately, Sargan test for overidentifying restrictions in Table 5

(left) rejects the null hypothesis of instruments being valid.

Table 5. DPD-DIF estimates of an ADL(1,4) R&D–productivity model.

Indep. variables below. Method: DPD-DIF (1-step) DPD-DIF (1-step) DPD-DIF (1-step)

Dependent variable: ∆ln(TFP )t Est. St. dev. Est. St. dev. Est. St. dev.

∆ln(TFP )t -1 .7975 .0376 *** .7843 .0368 *** .7657 .0413 ***
∆ln(R&D )t -.0170 .0105 -.0993 .0463 ** -.0703 .0378 *
∆ln(R&D )t -1 .0105 .0081 .0260 .0124 ** -.0281 .0412
∆ln(R&D )t -2 -.0081 .0127 -.0184 .0139 -.0022 .0135
∆ln(R&D )t -3 -.0086 .0096 -.0196 .0119 * -.0247 .0126 *
∆ln(R&D )t -4 .0122 .0077 .0140 .0083 * .0078 .0106

No. of observations: 1,793 1,793 1,793
No. of parameters: 25 25 25
No. of individuals: 121 121 121
Longest time series: 19 19 19
Shortest time series: 5 5 5

Joint significance of regressors: 500.6 (6) *** 483.1 (6) *** 401.6 (6) ***
Joint significance of dummies: 281.1 (19) *** 262.7 (19) *** 305.1 (19) ***
Joint signif. of time dummies: 281.1 (19) *** 262.7 (19) *** 305.1 (19) ***
First-order autocorrelation: -4.9 N(0,1) *** -4.9 N(0,1) *** -4.8 N(0,1) ***
Second-order autocorrelation: -1.3 N(0,1) -1.2 N(0,1) -1.2 N(0,1)
Sargan test of overid. Restr.1 57.1 (38) ** 83.7 (75) 81.2 (74)
Differenced Sargan test.2 – 2.5 (1) –

Note: Computations with Ox 2.10 (see Doornik, 1999) and DPD 1.00a (Doornik et al., 1999).
1 Sargan test (also known as Hansen or J test) tests the validity of overidentifying restrictions, i.e., whether
the instruments used in a GMM estimation are jointly valid (H0) or not (H1). Based on the idea that if the
orthogonality conditions were true, their sample analogs should be reasonably close to zero. The test is χ2-
distributed with the degrees of freedom equal to the number of columns in the instrument matrix minus the
number of parameters. Robust to heteroskedasticity only in 2-step estimations (reported).
2 Differenced Sargan test can be used to test a nested hypothesis concerning the validity of some instrument(s).
The full set of instruments under H0 is tested against a strict subset under H1. The χ2-distributed test statistic and
its degrees of freedom are equal to the differences between the usual Sargan tests under H0 and H1. In this par-
ticular case, we test the validity of the H0 of R&D being predetermined against H1 of R&D being endogenous.
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The middle section of Table 5 uses the assumptions of MA(0) and R&D being predeter-

mined instead; TFP is instrumented with its second through fifth lagged levels, and R&D is in-

strumented with first through fifth lagged differences. Sargan test suggests that the instrument set

is fine.

The rightmost estimation in  Table 5 in done under the assumption of MA(0) and R&D

being endogenous. Comparing this to the middle column and performing a differenced Sargan

test leads to the acceptance of the null hypothesis of R&D being predetermined. Since in none of

the estimations the test statistics of serial correlation suggest anything but MA(0) in the untrans-

formed error term, we accept this hypothesis.

The problem with the estimations in Table 5 is that they impose somewhat implausible

long-run properties. In fact, they would seem to suggest that the elasticity of productivity with re-

spect to R&D is negative! As discussed above, in our case the DPD-SYS estimator could offer

significant improvements in efficiency since the coefficient of the lagged dependent variable is

fairly close to one.

In Table 6 we use the DPD-SYS estimator to obtain results for the model discussed

above. For the first-difference equations, we use the same instrument set as in the 2SLS estima-

tion in Table 4 and in the first DPD-DIF estimation of Table 5. Note that as far as R&D is con-

cerned, we can maintain the same instrument set also for the level equations; the lagged depend-

ent variable in the level equations is instrumented by its lagged first difference.

The use of the level (Table 6) information seem to be somewhat problematic, although

the test statistics do not suggest particular problems with the DPD-SYS specification at 5% level.

To some extent this is expected, as levels are not strictly comparable across cross-sectional units.

Only the level equations seem to have reasonable long-run properties: DIF-SYS estimates suggest

that the long-run elasticity of TFP with respect to R&D is roughly .07. Only the data generation

process of TFP is close to random walk.37 Thus, we would expect that the introduction of the

level equations would mainly improve the coefficient estimates of the lagged dependent variable.
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Table 6. DPD-SYS estimates of an ADL(1,4) R&D–productivity model.

Indep. variables below. Method: DPD-SYS (1-step) DPD-SYS (2-step)

Dependent variable: ln(TFP )t Est. St. dev.         Est. St. dev.         

ln(TFP )t -1 .8762     .0382 *** .8719     .0095 ***
ln(R&D )t -.1307     .0681 * -.1295     .0192 ***
ln(R&D )t -1 .1224     .0564 ** .1166     .0176 ***
ln(R&D )t -2 -.0139     .0123 -.0082     .0061
ln(R&D )t -3 -.0053     .0133 -.0057     .0054
ln(R&D )t -4 .0360     .0189 * .0352     .0055 ***

No. of observations: 1,914 1,914
No. of parameters: 26 26
No. of individuals: 121 121
Longest time series: 19 19
Shortest time series: 5 5

Joint significance of regressors: 3,832.0 (6) *** 2,770.0 (6) ***
Joint significance of dummies: 266.2 (20) *** 1,183.0 (20) ***
Joint signif. of time dummies: 264.6 (19) *** 1,169.0 (19) ***
First-order autocorrelation: -5.5 N(0,1) *** -5.2 N(0,1) ***
Second-order autocorrelation: -1.4 N(0,1) -1.4 N(0,1)
Sargan test of overid. Restr. – 75.6 (60) *
Differenced Sargan test: – 17.1 (23)

Note: Computations with Ox 2.10 (see Doornik, 1999) and DPD 1.00a (Doornik et al., 1999). In this case the dif-
ferenced Sargan test refers to the test of level instruments, i.e., DPD-SYS results are tested against the results
obtained with otherwise similar DPD-DIF specification (H0: additional assumptions of the DPD-SYS esti-
mator are satisfied).

STABILITY OF PARAMETERS ACROSS TIME

Several authors (for discussion see, e.g., Englander et al., 1988) have suggested that the lag

structure and the effects of R&D on productivity may be “… highly variable, both in timing and

magnitude…”  (Griliches & Mairesse, 1984, p. 369). Below we will shed some light to the ‘timing &

magnitude’ issue in our context.

Since the asymptotic properties of DPD-style estimators depend on N  →∞ , results

can be derived for arbitrarily short time periods, provided that the appropriate transformations can

be made and the dependent variables can be instrumented. This idea is clearly demonstrated in the

Panel VAR approach of Holtz-Eakin et al. (1988), who even suggest for allowing nonstationary

individual effects. With the first-difference transformation and a DPD-style estimator, a minimum

of three observations across time is needed.38 Due to the measurement problems associated with
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the dependent variable and expected lengthy lags in responses, however, one should be cautious

in using short periods while estimating R&D–productivity models.

In Table 7 we re-estimate the model across a few subsamples and perform F-tests to see

whether any of the subsample coefficients appear to be different from those estimated for the full

sample (Table 6). The results suggest that the coefficients for the third and fourth lags of R&D in

the 1985–97 sample may be different from those obtained with the full sample. Also the long-run

dynamics of the model are quite different in this subsample; the long-run elasticity of productivity

with respect to R&D is near zero.

Table 7. DPD-SYS subsample estimates of an ADL(1,4) R&D–productivity model.

Indep. variables below. Method: DPD-SYS (1-step) DPD-SYS (1-step) DPD-SYS (1-step)

Dependent variable: ln(TFP )t Est. St. dev. F 1 Est. St. dev. F 1 Est. St. dev. F 1

ln(TFP )t -1 .8154 .0651 *** .9 .8810 .0589 *** .0 .9574 .0630 *** 1.7
ln(R&D )t -.0392 .1041 .8 -.1906 .0733 *** .7 -.2817 .1211 ** 1.6
ln(R&D )t -1 .0703 .0946 .3 .1595 .0621 *** .4 .1948 .0972 ** .6
ln(R&D )t -2 -.0210 .0160 .2 -.0204 .0201 .1 .0251 .0385 1.0
ln(R&D )t -3 .0003 .0164 .1 .0280 .0256 1.7 -.0513 .0216 ** 4.6
ln(R&D )t -4 .0024 .0276 1.5 .0324 .0204 .0 .1133 .0361 *** 4.6

First year in the sample: 1973 1979 1985
First usable observation:2 1979 1985 1991
Last year in the sample: 1985 1991 1997

No. of observations: 883 916 565
No. of parameters: 14 14 14
No. of individuals: 111 121 114
Longest time series: 7 7 7
Shortest time series: 2 1 1

Joint significance of regressors: 2236.0 (6) *** 4422.0 (6) *** 2767.0 (6) ***
Joint significance of dummies: 115.3 (8) *** 81.9 (8) *** 75.9 (8) ***
Joint signif. of time dummies: 115.1 (7) *** 54.5 (7) *** 75.3 (7) ***
First-order autocorrelation: -3.5 N(0,1) *** -5.0 N(0,1) *** -5.1 N(0,1) ***
Second-order autocorrelation: -0.8 N(0,1) -0.5 N(0,1) -0.8 N(0,1)
Sargan test of overid. Restr. 29.7 (24) 40.4 (24) ** 56.9 (24) **

Note: Computations with Ox 2.10 (see Doornik, 1999) and DPD 1.00a (Doornik et al., 1999).
1 F-test as discussed in Greene (1993, p. 208) Critical values for (1, )F ∞ : 3.84 (5%), 6.63 (1%).
2 A few observations are being lost due to transformations, lags, and instrumentation.

It is rather alarming that we do not get significant results in the two first subsamples of

Table 7. Obviously degrees of freedom are being lost by slicing the data, but due to the asymp-
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totic properties of the estimator reduction in the degrees of freedom alone should not drive this

finding.

Rather than slicing the data across time, let us consider estimating separate coefficient

estimates for some years and testing whether these are statistically significantly different from

those of the full sample. Two alternatives are considered in Table 8: first, estimating separate co-

efficients for R&D variables alone; second, estimating separate coefficients for TFP and R&D

variables. A time window of five years as well as each year separately are being considered.39

Table 8. DPD-SYS estimates of an ADL(1,4) R&D–productivity model with
separate coefficient estimates for selected time periods.

Separate coefficients 
estimated for the following 

year(s):

1980–4 11.93 ** 14.78 **
1981–5 12.49 ** 13.68 **
1982–6 7.35 17.46 ***
1983–7 15.21 *** 26.73 ***
1984–8 13.11 ** 12.35 *
1985–9 9.53 * 18.23 ***

1986–90 10.58 * 15.14 **
1987–91 14.11 ** 18.50 ***
1988–92 6.51 32.09 ***
1989–93 4.82 8.31
1990–4 11.41 ** 12.93 **
1991–5 8.28 13.07 **
1992–6 9.07 16.66 **
1993–7 6.06 7.31

1980 4.16 5.64
1981 2.74 0.41
1982 16.21 *** 15.30 **
1983 4.30 3.86
1984 7.54 13.37 **
1985 11.41 ** 12.65 **
1986 2.66 4.93
1987 5.47 0.28
1988 5.42 1.86
1989 5.33 0.77
1990 6.98 1.67
1991 3.35 3.12
1992 2.38 15.44 **
1993 8.25 5.72
1994 20.56 *** 23.80 ***
1995 2.42 4.96

Wald tests with 5 degrees of freedom 
(H0: R&D coefficients for the specified 
period do not differ from those of the 

whole sample)

Wald tests with 6 degrees of freedom 
(H0: TFP and R&D coefficients for the 

specified period do not differ from 
those of the whole sample)

Note: DPD98 (ver. 30/12/98 in Gauss-386i 3.2.13, Arellano & Bond, 1998) is used for computations.
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Wald tests are being performed for the joint significance of the time dummy interacted explana-

tory variables. Thus, the null hypothesis is, that the coefficients estimated for the specified period

are not different from those obtained for the full sample.

The results suggest considerable turbulence in coefficient estimates across time: years

1982, 1985, and 1994 seem to be among the most turbulent ones as far as R&D–productivity dy-

namics are concerned. The five-year window estimates are obviously influence by these ‘outlier’

years. As such, we can not confirm whether there was ‘dry holes’ or periods of reduced potency

of R&D during the sample period. We can, however, say that there is some indication the rela-

tionship may be varying significantly in timing and magnitude and that our findings are not in-

consistent with the existence of ‘dry holes’. Unfortunately we can not quantify to what extend

these results may be driven by the shortcomings of the productivity measure.

SPILLOVERS

In a companion essay (Rouvinen, 1999), we discuss R&D spillovers quite extensively. As

discussed above, we do not interpret our aggregate shock measure as suggested in the Caballero

& Lyons (1989; 1990; 1992) tradition.40

Below we re-estimate our basic model in Table 6 with additional explanatory variables,

namely measures of aggregative shocks (or productive spillovers) and domestic inter-industry

R&D spillovers. We assume that respective lag lengths of aggregate shocks and R&D spillovers

correspond, respectively, to those of TFP and R&D in the basic model. Since both of these meas-

ures should be strictly exogenous from the point of view of the representative industry, we esti-

mate both variables by themselves. Results appear in Table 9: we consider adding the aggregate

shock measure alone (left), the R&D spillover measure alone (middle), and the two together

(right).

In all of the three specifications the long-run elasticity of TFP with respect to R&D is

roughly .06, and the coefficient estimates remain similar to those of the basic model. The coeffi-

cients of aggregate shocks are highly significant and suggest that TFP is quite elastic with respect

to them: the leftmost (rightmost) estimates suggest an elasticity of .38 (.56). R&D spillover coef-
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ficients are typically not significant and the elasticities of TFP with respect to them remain low

(negative in the rightmost specification).

Table 9. DPD-SYS estimates of an ADL(1,4) R&D–productivity model with additional
measures for aggregate shocks and domestic inter-industry R&D spillovers.

Indep. variables below. Method: DPD-SYS (1-step) DPD-SYS (1-step) DPD-SYS (1-step)

Dependent variable: ln(TFP )t Est. St. dev. Est. St. dev. Est. St. dev.

ln(TFP )t -1 .8764 .0427 *** .8845 .0382 *** .8722 .0422 ***
ln(R&D )t -.1403 .0712 ** -.1405 .0691 ** -.1594 .0743 **
ln(R&D )t -1 .1319 .0583 ** .1304 .0570 ** .1472 .0603 **
ln(R&D )t -2 -.0141 .0111 -.0137 .0124 -.0143 .0117
ln(R&D )t -3 -.0073 .0134 -.0055 .0135 -.0073 .0141
ln(R&D )t -4 .0369 .0195 * .0367 .0189 * .0416 .0210 **
ln(Aggr. shock )t .5500 .0742 *** – .5530 .0765 ***
ln(Aggr. shock )t -1 -.5032 .0711 *** – -.4817 .0728 ***
ln(Inter-ind. spillovers )t – .1138 .0538 ** .0861 .0558
ln(Inter-ind. spillovers )t -1 – -.1344 .0715 * -.0824 .0699
ln(Inter-ind. spillovers )t -2 – -.0089 .0574 .0120 .0586
ln(Inter-ind. spillovers )t -3 – .0342 .0550 -.0185 .0554
ln(Inter-ind. spillovers )t -4 – -.0031 .0293 .0000 .0283

No. of observations: 1,914 1,914 1,914
No. of parameters: 28 31 33
No. of individuals: 121 121 121
Longest time series: 19 19 19
Shortest time series: 5 5 5

Joint significance of regressors: 6,815.0 (8) *** 7,095.0 (11) *** 7,541.0 (13) ***
Joint significance of dummies: 74.3 (20) *** 221.9 (20) *** 62.6 (20) ***
Joint signif. of time dummies: 69.4 (19) *** 214.1 (19) *** 60.3 (19) ***
First-order autocorrelation: -5.8 N(0,1) *** -5.6 N(0,1) *** -5.8 N(0,1) ***
Second-order autocorrelation: -1.1 N(0,1) -1.4 N(0,1) -1.1 N(0,1)
Sargan test of overid. restr. 64.6 (60) 77.1 (60) * 65.3 (60)

Note: Computations with Ox 2.10 (see Doornik, 1999) and DPD 1.00a (Doornik et al., 1999).
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CONCLUSION

In light of the results derived above, we can conclude that R&D indeed Granger causes

TFP, but not vice versa. At shorter lag lengths there were some ambiguity on the causality tests,

but overall evidence is quite solid. This is comforting, especially since this is frequently taken for

granted.

Productivity seems to respond to changes in R&D expenditure at a considerable lag. We

include annual lags of R&D up to four in our ADL(1,4) specification: in most cases the fourth lag

is significant at conventional levels and frequently the coefficient estimate value of the fourth lag

is the highest as far as R&D is concerned (see, e.g., the leftmost results in Table 9). Our findings

suggest that perpetual inventory method R&D capital stock and R&D-intensity approaches to

productivity analysis, frequently applied in the literature, may have to be reconsidered.

The answer to the question on whether the potency of R&D vary in timing and magnitude

is a solid ‘yes’. We can not, however, identify clear points of structural change in the R&D–pro-

ductivity dynamics; nor can we single-handedly argue that there would have been ‘dry holes’ or

periods of reduces potency of R&D during the sample period.41

Our analysis of aggregate shocks (or productive spillovers) and R&D spillovers is per-

haps somewhat superficial, but we can nevertheless conclude that adding these variables either

jointly or separately seem to have minor influence on the long-run properties of our R&D–pro-

ductivity model. The elasticity of TFP with respect to aggregate shocks, as proxied by the TFP in

other manufacturing industries besides the representative one, seem to high and statistically sig-

nificant. R&D spillovers, as proxied by domestic R&D efforts in other manufacturing industries

besides the representative one, seem be redundant in our specification. This finding may, how-

ever, be driven by the fact that all of our estimations include time dummies which may in part

capture externalities related to scientific and R&D efforts outside the representative industry.42

Can our findings be ‘a figment of specification error’ (a quote from the title of Basu &

Fernald, 1995)? Our evidence is not solid enough to single-handedly rule out this possibility. We

argue that our inability to get solid evidence across the board is rather related the sample size and

measurement problems. Further analysis is nevertheless needed. In our own further work we will
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firm data to study the issue. Methodologically error correction specifications and distributed lag

models with explicit parameter restrictions may be alternative the approach chosen here.

ENDNOTES

1 Conventionally measured, total factor productivity (TFP), also called technological progress
or economic growth in some contexts., is essentially the residual of a Solow (1956; 1970; 1957)
model.

2 Either the current or the one-year lags of the constructed R&D stocks are used as regressors.
3 The R&D-investment intensity rather than variables derived from R&D stock measures are

considered.
4 One should note that profits and productivity are related, but nevertheless different, con-

cepts.
5 Griliches & Mairesse (1984) have suggested that the potency of R&D may vary considera-

bly across time.
6 We will, however, reverse the scaling in order to keep left- and right-hand side variables

comparable. The two parameters in the denominator of the left-hand side variable are defined as
discussed in OECD (1999, pp. 50–2)

7 The data set, and the Stata (StataCorp, 1999) procedure used to create it, is available upon re-
quest.

8 Note that ISIC division 38 is a sum of 381, 382, 383, 384, and 385. With the exception of
two countries, however, one or more of the subdivisions of 38 are not available. Thus, including
division 38 is justified as it provides additional information.

9 Thus Ireland and Spain are excluded from the analysis.
10 TFP figures were unavailable.
11 In what follows West Germany will be referred to as Germany.
12 Canada, Denmark, Finland, France, Germany, Italy, Japan, The Netherlands, Norway,

Sweden, The United Kingdom, and The United States.
13 The period covered in the current version of ANBERD.
14 This is the index number approach, the other main alternative being the factor demand ap-

proach (for extensive discussion see Good, Nadiri, & Sickles, 1996, see also Handbook of Ap-
plied Econometrics (Vol. II) by Pesaran & Schmidt (eds.)).

15 We proceed this way in order to get a series that is comparable with our TFP measure. As
far as the choice of deflators and exchange rates are concerned, we treat R&D investment as we
would treat physical capital investment.

16 This measure has also been debated in the now rather extensive discussion in the Caballero
and Lyons (1989; 1990; 1992) tradition of productive spillovers (for critique see, e.g., Basu &
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Fernald, 1995). Note that we do not suggest the same interpretation of aggregate productivity as
studies in the Caballero and Lyons tradition.

17 Units of measurement as above. Both variables in natural logs.
18 Unless otherwise mentioned, we draw from the discussion in Chapter 8 of Johnston and

DiNardo’s (1997).
19 Similarly for a general ADL(p,q).
20 In the presence of a constant term this would hold by construction with most reasonable

panel data estimators.
21 Note that in the presence of the lagged dependent variable as one of the regressors the

model is not defined at 1t = . Also note that no assumptions on the form of heteroskedasticity are
being made.

22 Having 1 1α =  would indicate that the dependent variables follows random walk, i.e., had
an unit root.

23 We are referring to the within groups (WG, also known as least squares dummy variable,
fixed effects, and covariance), between groups, and random effects estimators.

24 See Baltagi (1995, pp. 125-6) for a brief discussion on the problems in OLS and classic panel
data estimators. Note that if an OLS estimator is used, a large realization of the lagged dependent
variable suggests that the individual effect may be large, i.e., , 1( , ) 0i t iE y η− > . Thus, 1ˆ

OLSα is up-
wardly biased. The within groups estimator introduces a different bias. The estimator can be im-
plemented via the ‘within’ transformation, which in turn means that

1
, 1 , 1 ,1 , ,( , , , , )

iii t i t i i t i TTy y y y y− −= −$ ! !  and 1
, , ,1 , 1 ,( , , , , )

iii t i t i i t i TTυ υ υ υ υ−= −$ ! ! . It is immediately ob-

vious that , 1 ,( , ) 0i t i tE y υ− <$ $ . Thus, 1ˆ
WGα is downwardly biased. The asymptotic biases in 1ˆ

OLSα  and

1ˆ
WGα  provide a convenient way to check the estimates of asymptotically unbiased estimators.

25 See Hsiao (1986, Chapter 4) for discussion on ML estimators in panel data contexts.
26 There are obviously a number of transformations that would get rid of the iη ; first differ-

ences is, however, widely used and convenient. Furthermore, it turns out that the actual choice of
transformation has minor or no effect on the results (Arellano & Bover, 1995).

27 Note that , , 1i t i tυ υ −−  follows MA(1) process with a unit root.
28 While either levels or differences qualify as instruments here, using differences will cause

us to loose an additional observation. Furthermore, Arellano (1989) convincingly shows that lev-
els are more appropriate instruments in this context.

29 For discussion see Baltagi (1995, p. 126).
30 See Baltagi (1995, pp. 126-32) for a textbook presentation.
31 Optimal in the sense that the estimator exploits all linear orthogonality conditions in the

absence of outside instruments. In a balanced sample, there are ( 1)( 2)
2

T T− −  of these or-

thogonality conditions.

32 In case of , 1  (for 3)i ty t−∆ ≥ , 
,1

,1 ,2

,1 ,2 , 2

0 0 0 0 0
0 0 0 0

0 0 0
i

i

i i
i

i i i T

y
y yZ

y y y −

 
 

=  
 
 

! !
! !

" " " # " " # "
! !

. The avail-

able instruments for ,i tx∆  will depend on whether x  is strictly exogenous (all past, current, and
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future values qualify as instruments), predetermined (past values qualify as instruments), or en-
dogenous (available instrument set is similar to iZ  defined in this footnote, i.e., lags from 2t −
on qualify as instruments).

33 The panel VAR estimator, a 3SLS estimator on a system of equations, can be regarded as a
special case of the GMM estimator used here. As compared to panel VAR, the standard form of
the estimator used here imposes a stationary restriction on coefficients across time, assumes that
the individual effect is time stationary, and exploits a larger instrument set.

34 Granger non-causality in necessary for strict exogeneity.
35 Also our ‘general-to-specific’ tests with the DPD-DIF estimator, starting from ADL(1,9)

and working our way down towards ADL(1,1), suggesting that ADL(1,4) specification may be
the most appropriate one.

36 In this case the only improvement over the AH estimator would be the fact that the DPD-
type estimators account for the peculiar properties of the transformed error term.

37 If R&D would be the dependent variable in a specification such as Equation (5), 1α̂  would
typically be less than 0.3.

38 Assuming that the regressors include the lagged dependent variable and overall there are no
lags beyond the first in the model, and that the untransformed error follows ARMA(0,0) process.
This does not mean that we could calculate all the desired test statistics, e.g., Wald tests for serial
correlation, with so few time-series observations.

39 We will not consider years 1996 and 1997 separately due to the low number of observa-
tions.

40 Note that also our construction of the measure is different: we calculate productivity in the
other manufacturing industries besides the representative one.

41 We choose not to discuss problems of productivity measurement here.
42 Time dummies may be regarded as a measure for overall technological development, at

least as far as country and industries are symmetrically influenced by them.
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APPENDIX A. DESCRIPTIVE STATISTICS, COUNTRY AND INDUSTRY CODES.

Table 10. Sample descriptive statistics.

Variable Number of obs. Mean St. dev. Minimum Maximum

Cross-section identifier 2519 – – 1 121
Country code 2519 – – 1 12
Industry code 2519 – – 1 14
Observation year 2519 – – 1973 1997
ln(TFP), scaling reversed 2519 7.01 0.36 5.01 7.99
ln(R&D), 1990 p., gfcf ppp ex. rates 2519 18.59 2.46 11.92 25.04
Aggr. shock: ln(other manuf. TFP) 2519 7.02 0.23 6.38 7.48
Spillovers: ln(manuf. R&D)–ln(R&D) 2519 21.90 1.75 18.06 25.26

Note: Country and industry codes are documented in Table 11 below.

Table 11. Country and industry codes.

Country code Explanation

1 Canada
2 Denmark
3 Finland
4 France
5 West Germany
6 Italy
7 Japan
8 The Netherlands
9 Norway
10 Sweden
11 The United Kingdom
12 The United States

Industry code Explanation

1 Food, beverages and tobacco
2 Textiles, wearing apparel and leather industries
3 Wood, and wood products, including furniture
4 Paper, and paper products, printing and publishing
5 Chemicals and chemical petroleum, coal, rubber and plastic products
6 Non-metallic mineral products except products of petroleum and coal
7 Basic metal industries
8 Fabricated metal products, machinery and equipment
9 Fabricated metal products, except machinery and equipment
10 Machinery except electrical
11 Professional, scientific, measuring and controlling equipment n.e.c.
12 Electrical machinery apparatus, appliances and supplies
13 Transport equipment
14 Other manufacturing industries

Note: Table 1 above gives additional information on the industrial classification used.
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